
SOA Using
Java™ Web Services

Mark D. Hansen

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: www.prenhallprofessional.com

Library of Congress Cataloging-in-Publication Data

Hansen, Mark D.
SOA Using Java Web Services / Mark D. Hansen.

p. cm.
Includes bibliographical references and index.
ISBN 978-0-13-044968-9 (pbk. : alk. paper) 1. Web services.
2. Java (Comput0er program language) 3. Computer network architectures. I.

Title.
TK5105.88813.H35 2007
006.7’6—dc22

2007009650

Copyright © 2007 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission
in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
One Lake Street
Upper Saddle River, NJ 07458
Fax: (201) 236-3290

ISBN-13: 978-0-13-044968-9
ISBN-10: 0-13-044968-7

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, April 2007

vii

Contents

Foreword . xv
Preface . xix

About This Book . xxi
Acknowledgments . xxvii
About the Author . xxix

Chapter 1 Service-Oriented Architecture with Java
Web Services . 1

1.1 Am I Stupid, or Is Java Web Services Really Hard? 2
1.1.1 Don’t Drink That Kool-Aid . 4
1.1.2 JWS Is a Toolset, Not an Application Framework 6
1.1.3 Epiphany . 7

1.2 Web Services Platform Architecture . 8
1.2.1 Invocation . 8
1.2.2 Serialization . 11
1.2.3 Deployment . 16

1.3 Java Web Services Standards: Chapters 2 through 8 18
1.4 The SOAShopper Case Study: Chapters 9 and 10 21
1.5 SOA-J and WSDL-Centric Development: Chapter 11 22

Chapter 2 An Overview of Java Web Services 25

2.1 The Role of JWS in SOA Application Development 26
2.1.1 A Hypothetical SOA Application . 26
2.1.2 JWS Enables SOA Development . 29

2.2 A Quick Overview of the Ease-of-Use Features 36
2.2.1 Source Code Annotations . 37
2.2.2 Standard WSDL/Java Mapping . 38
2.2.3 Standard Serialization Context . 39
2.2.4 Development Models . 40
2.2.5 JWS Trade-Offs . 42

viii Contents

2.3 JAX-WS 2.0 . 43
2.3.1 Java/WSDL Mapping . 44
2.3.2 Static WSDL . 45
2.3.3 Dynamic and Static Clients . 45
2.3.4 Invocation with Java Interface Proxies 46
2.3.5 Invocation with XML . 46
2.3.6 XML Service Providers . 46
2.3.7 Handler Framework . 47
2.3.8 Message Context . 48
2.3.9 SOAP Binding . 48
2.3.10 HTTP Binding . 49
2.3.11 Converting Exceptions to SOAP Faults 49
2.3.12 Asynchronous Invocation . 50
2.3.13 One-Way Operations . 50
2.3.14 Client-Side Thread Management 50
2.3.15 WSDL Styles—Support for RPC/Literal and

Document/Literal Wrapped . 50
2.3.16 XML Catalogs . 51
2.3.17 Pseudoreference Passing (Holder<T> for Out

and In/Out Parameters) . 52
2.3.18 Run-time Endpoint Publishing (Java SE Only) 52

2.4 JAXB 2.0 . 54
2.4.1 Binding XML Schema to Java Representations 57
2.4.2 Mapping Java Types to XML Schema 59
2.4.3 Mapping Annotations . 59
2.4.4 Binding Language . 62
2.4.5 Binding Run-time Framework (Marshal/Unmarshal) 65
2.4.6 Validation . 69
2.4.7 Portability . 70
2.4.8 Marshal Event Callbacks . 71
2.4.9 Partial Binding . 71
2.4.10 Binary Data Encoding (MTOM or WS-I) 72

2.5 WS-Metadata 2.0 . 73
2.5.1 WSDL Mapping Annotations . 78
2.5.2 SOAP Binding Annotations . 78
2.5.3 Handler Annotations . 79
2.5.4 Service Implementation Bean . 79
2.5.5 Start from WSDL and Java . 79
2.5.6 Automatic Deployment . 80

2.6 WSEE 1.2 . 80
2.6.1 Port Component . 81
2.6.2 Servlet Endpoints . 81
2.6.3 EJB Endpoints . 82
2.6.4 Simplified Packaging . 82
2.6.5 Handler Programming Model . 82

Contents ix

2.7 Impact of Other Java EE 5 Annotation Capabilities 82
2.7.1 Dependency Injection . 82
2.7.2 Interceptors . 83
2.7.3 POJO Support in EJB 3.0 . 83

2.8 Conclusions . 84
2.8.1 Configuring Your Environment to Build and Run the

Software Examples . 84

Chapter 3 Basic SOA Using REST . 85

3.1 Why REST? . 85
3.1.1 What Is REST? . 86
3.1.2 Topics Covered in This Chapter . 87

3.2 XML Documents and Schema for EIS Records 88
3.2.1 No WSDL Doesn’t Necessarily Mean No Interfaces 96

3.3 REST Clients with and without JWS . 97
3.3.1 Getting EIS Records from a REST Service

without Using JWS . 98
3.3.2 Getting EIS Records from a REST Service with JWS 101
3.3.3 Sending EIS Records to a REST Service

without Using JWS . 105
3.3.4 Sending EIS Records to a REST Service with JWS 110

3.4 SOA-Style Integration Using XSLT and JAXP for Data
Transformation . 114
3.4.1 How and Why to Use XSLT for Data Transformation 115
3.4.2 XSLT Processing Using JAXP . 121

3.5 RESTful Services with and without JWS 125
3.5.1 Deploying a REST Service without Using JWS 126
3.5.2 Deploying a RESTful Service with JWS 131

3.6 Conclusions . 136

Chapter 4 The Role of WSDL, SOAP, and Java/XML
Mapping in SOA . 137

4.1 The Role of WSDL in SOA . 138
4.1.1 A WSDL Example . 141

4.2 The Role of SOAP in SOA . 145
4.3 Dispatching: How JAX-WS 2.0 Maps WSDL/SOAP to

Java Invocation . 151
4.3.1 Determining the WSDL Port . 151
4.3.2 The Role of the WS-I Basic Profile 153
4.3.3 RPC/Literal . 154
4.3.4 Document/Literal . 156
4.3.5 Document/Literal Wrapped . 159

x Contents

4.3.6 Summary of the Dispatching Process 162
4.3.7 Shortcomings of the JAX-WS 2.0 Dispatching for

SOA Integration . 165
4.4 Working around Some JAX-WS 2.0 Dispatching Limitations . . 166
4.5 SOA Often Requires “Start from WSDL and Java” 175

4.5.1 The Role of Java/XML Mapping in SOA 178
4.5.2 Limitations of JAXB 2.0 for Java/XML Mapping in SOA 180

4.6 Working around JAXB 2.0 Java/XML Mapping Limitations . . . 182
4.6.1 Using the Schema Compiler and Java 182
4.6.2 Using the Schema Generator and XSLT 189

4.7 Conclusions . 194

Chapter 5 The JAXB 2.0 Data Binding 195

5.1 Binding versus Mapping . 195
5.2 An Overview of the Standard JAXB 2.0 Java/XML Binding 199
5.3 Implementing Type Mappings with JAXB 2.0 209
5.4 A Recursive Framework for Type Mappings 217
5.5 Implementing Type Mappings with JAXB 2.0 Annotations 224
5.6 Implementing Type Mappings with the JAXB 2.0

Binding Language . 235
5.7 Implementing Type Mappings with the JAXB 2.0

XmlAdapter Class . 245
5.8 JAXB 2.0 for Data Transformation (Instead of XSLT) 256
5.9 Conclusions . 262

Chapter 6 JAX-WS—Client-Side Development 265

6.1 JAX-WS Proxies . 265
6.1.1 The JAX-WS WSDL to Java Mapping 267
6.1.2 Service Endpoint Interface Annotations 273
6.1.3 Invoking a Web Service with a Proxy 279
6.1.4 Fault Handling with Proxies . 282

6.2 XML Messaging . 285
6.2.1 XML Messaging with Raw XML 286
6.2.2 XML Messaging with Custom Annotated JAXB Classes 289

6.3 Invocation with Custom Java/XML Mappings: An Example
Using Castor Instead of JAXB . 292

6.4 Asynchronous Invocation . 297
6.4.1 Polling . 297
6.4.2 Asynchronous Methods with Proxies 299
6.4.3 Callback . 301

Contents xi

6.5 SOAP Message Handlers . 304
6.6 Conclusions . 310

Chapter 7 JAX-WS 2.0—Server-Side Development 311

7.1 JAX-WS Server-Side Architecture . 311
7.2 Start from WSDL Using a Service Endpoint Interface (SEI) . . . 316
7.3 Providers and XML Processing without JAXB 320
7.4 Deploying Web Services Using Custom Java/XML

Mappings . 325
7.5 Validation and Fault Processing . 329

7.5.1 Validation . 329
7.5.2 Fault Processing . 332

7.6 Server-Side Handlers . 343
7.7 Java SE Deployment with javax.xml.ws.Endpoint 347
7.8 Conclusions . 355

Chapter 8 Packaging and Deployment of SOA Components
(JSR-181 and JSR-109) . 357

8.1 Web Services Packaging and Deployment Overview 359
8.1.1 Packaging a Servlet Endpoint Using a WAR 361
8.1.2 Packaging an EJB Endpoint Using an EJB-JAR 363
8.1.3 Auto-Deployment . 365
8.1.4 Overview of the Container’s Deployment Processing 365
8.1.5 EJB Endpoint Deployment and Dispatching 371

8.2 Deployment without Deployment Descriptors 376
8.2.1 Using Only a Service Implementation Bean 376
8.2.2 Using a Service Endpoint Interface 378
8.2.3 Including a WSDL Artifact . 381

8.3 Using Deployment Descriptors . 384
8.3.1 web.xml for Servlet Endpoints . 384
8.3.2 ejb-jar.xml for Stateless Session Bean Endpoints 390
8.3.3 When to Use webservices.xml . 395
8.3.4 Platform-Specific Deployment Descriptors 397

8.4 Automatic Deployment with GlassFish 402
8.5 Web Services Security . 405
8.6 OASIS XML Catalogs 1.1 . 407
8.7 Wrapping Up . 409

xii Contents

Chapter 9 SOAShopper: Integrating eBay, Amazon, and
Yahoo! Shopping . 411

9.1 Overview of SOAShopper . 411
9.2 SOAShopper SOAP Services . 417
9.3 An SOAShopper RESTful Service and the Standard XML

Schema . 423
9.4 Service Implementation . 431
9.5 eBay and Amazon Services (SOAP) . 434
9.6 Yahoo! Services (REST) . 444
9.7 SOAShopper API and the Integration Layer 450
9.8 Conclusions about Implementing Real-World SOA

Applications with Java EE . 460

Chapter 10 Ajax and Java Web Services 463

10.1 Quick Overview of Ajax . 464
10.2 Ajax Together with Java EE Web Services 468
10.3 Sample Code: An Ajax Front-End for SOAShopper 470
10.4 Conclusions about Ajax and Java EE 479

Chapter 11 WSDL-Centric Java Web Services with SOA-J 481

11.1 SOA-J Architecture . 483
11.2 WSDL-Centric Development with SOA-J 486
11.3 Invocation Subsystem . 493
11.4 Serialization Subsystem . 503
11.5 Deployment Subsystem . 514
11.6 Conclusions . 519

Appendix A Java, XML, and Web Services Standards
Used in This Book . 523

Appendix B Software Configuration Guide 525

B.1 Install Java EE 5 SDK . 526
B.2 Install Apache Ant 1.7.x . 527
B.3 Install Apache Maven 2.0.x . 527
B.4 Install the Book Example Code . 528

Contents xiii

B.5 Configure Maven . 528
B.6 Configure Ant . 530
B.7 Starting and Stopping the GlassFish Server 532
B.8 Test the Installation by Running an Example 532
B.9 Build and Deploy the SOAShopper Case Study

(Chapters 9 and 10) . 534
B.10 Build and Deploy the SOA-J Application Framework

(Chapter 11) . 535
B.11 Install Java SE 6 (Optional) . 535

Appendix C Namespace Prefixes . 537

Glossary . 539
References . 555
Index . 561

xv

Foreword

Pat Helland, formerly of Microsoft, has a great acronym he likes to use
when talking about interoperability: HST, or “Hooking Stuff Together.”
(Actually, he uses an altogether different word there in the middle, but I’m
told this is a family book, so I paraphrased.) No matter how much you dress
it up in fancy words and complex flowcharts, interoperability simply means
“Hooking Stuff Together”—something Web Services are all about.

Ever since the second computer came online, True Interoperability
remains the goal that still eludes us. IT environments are home to a wide array
of different technologies, all of which serve some useful purpose (or so I’m
told). Despite various vendors’ attempts to establish their tool of choice as the
sole/dominant tool for building (and porting) applications, the IT world has
only become more—not less—diverse. Numerous solutions have been posited
as “the answer” to the thorny problem of getting program “A” to be able to talk
to program “B,” regardless of what language, platform, operating system, or
hardware the two programs are written in or running on. None had proven to
be entirely successful, either requiring an “all-or-nothing” mentality, or offering
only solutions to handle the simplest situations and nothing more.

In 1998, Don Box and Dave Winer, along with a couple of guys from
Microsoft, IBM, and Lotus, sat down and wrote a short document
describing an idea for replicating a remote procedure call stack into an
XML message. The idea was simple: If all of the various distributed object
toolkits available at the time—DCOM, Java RMI, and CORBA being the
principal concerns—shared a common wire format, it would be a simple
matter to achieve the Holy Grail of enterprise IT programming: True
Interoperability.

In the beginning, SOAP held out the prospect of a simpler, better way
to Hook Stuff Together: XML, the lingua franca of data, passed over HTTP,
the Dark Horse candidate in the Distributed Object wars, with all the
semantics of the traditional distributed object programming model sur-
rounding it. It seemed an easy prospect; just slip the XML in where nobody
would see it, way down deep in the distributed object’s generated code.
What we didn’t realize at the time, unfortunately, was that this vision was all

xvi Foreword

too simplistic, and horribly naïve. It might work for environments that were
remarkably similar to one another (à la Java and .NET), but even there,
problems would arise, owing to differences XML simply couldn’t wash
away. Coupled with the fact that none of the so-called standards was, in fact,
a standard from any kind of legitimate standards body, and that vendors
were putting out “WS-Foo” specifications every time you turned around,
the intended simplicity of the solution was, in a word, absent. In fact, to put
it bluntly, for a long time, the whole Web Services story was more “mess”
than “message.”

In Chapter 1 of this book, Mark Hansen writes, “Web Services are not
easy.” Whatever happened to the “Simple” in “SOAP?”

Ironically, even as Web Services start to take on “dirty word” status,
alongside EJB and COBOL, the message is becoming increasingly clear,
and the chances of “getting it right” have never been higher. Distractions
such as the SOAP versus REST debate aside (which really isn’t a debate, as
anyone who’s really read the SOAP 1.2 spec and the REST dissertation can
tell), the various vendors and industry groups are finally coming to a point
where they can actually Hook Stuff Together in more meaningful ways than
just “I’ll pass you a string, which you’ll parse….”

As an instructor with DevelopMentor—where I taught Java, .NET, and
XML—I had the privilege of learning about SOAP, WSDL, and Web Ser-
vices from the very guys who were writing the specs, including Don Box and
Martin Gudgin, our representative to the W3C, who helped coauthor the
SOAP and Schema specs, among others. As an industry consultant focused
on interoperability between Java, .NET, and other platforms, I get a unique
first-person view of real-world interoperability problems. And as an inde-
pendent speaker and mentor, I get to study the various interoperability tool-
kits and see how well they work.

Not everybody gets that chance, however, and unless you’re a real low-
level “plumbing” wonk like I am, and find a twisted joy in reading through
the myriad WS-*-related specifications, things like SOAP and WSDL
remain arcane, high-bar topics that seemingly nobody in his or her right
mind would attempt to learn, just to get your Java code to be able to talk to
other platforms. That’s okay; quite honestly, you shouldn’t have to. If you
have to absorb every level of detail in a given programming environment in
order to use it, well, something is wrong.

The JAX-WS and JAXB standards were created to help you avoid hav-
ing to know all those low-level, byzantine details of the Web Services
plumbing, unless and until you want to. Mark’s book will help you navigate
through the twisty parts of JAX-WS and JAXB because he’s been there. He
had to fight his way through the mess to get to the message, and now he’s

Foreword xvii

going to turn around and act as your guide—Virgil to your Dante, if you
will—through the rocky parts.

Because in the end, all of this is supposed to be about Hooking Stuff
Together.

—Ted Neward
Java, .NET, XML Services
Consulting, Teaching, Speaking, Writing
www.tedneward.com

xix

Preface

Java became a powerful development platform for Service-Oriented Archi-
tecture (SOA) in 2006. Java EE 5, released in May 2006, significantly
enhanced the power and usability of the Web Services capabilities on the
application server. Then Java SE 6, released in December 2006, incorpo-
rated the majority of those capabilities into the standard edition of the Java
programming language.

Because robust Web Services technology is the foundation for imple-
menting SOA, Java now provides the tools modern enterprises require to
integrate their Java applications into SOA infrastructures.

Of course, Java has had basic Web Services capabilities for some time.
JAX-RPC 1.0 was released in June 2002. J2EE 1.4, finalized in November
2003, included JAX-RPC 1.1. So what is significant about the latest versions
of the Java Web Services (JWS) APIs?

The answers are power and ease of use. Programmers will find it much
easier to build enterprise-class applications with Web Services in Java EE 5
than in J2EE 1.4. Evidence of that is contained in Chapters 9 and 10, which
describe an application I developed to integrate online shopping across
eBay, Yahoo! Shopping, and Amazon. It’s a pure Java EE 5 application,
called SOAShopper, that consumes REST and SOAP services from those
shopping sites. SOAShopper also provides its own SOAP and REST end-
points for cross-platform search, and supports an Ajax front-end. SOAShop-
per would have been a struggle to develop using J2EE 1.4 and JAX-RPC.
With the new Java Web Services standards, it was a pleasure to write.

This book focuses on the following standards comprising the new Java
Web Services:

■ JAX-WS 2.0 [JSR 224]—The Java API for XML-Based Web Ser-
vices. The successor to JAX-RPC, it enables you to build and con-
sume Web services with Java.

■ JAXB 2.0 [JSR 222]—The Java Architecture for XML Binding.
Tightly integrated with JAX-WS, the JAXB standard controls how
Java objects are represented as XML.

xx Preface

■ WS-Metadata [JSR 181]—Web Services Metadata for the Java Plat-
form. WS-Metadata provides annotations that facilitate the flexible
definition and deployment of Java Web Services.

■ WSEE 1.2 [JSR 109]—Web Services for Java EE. WSEE defines the
programming model and run-time behavior of Web Services in the
Java EE container.

These standards contain a few big improvements and many little
enhancements that add up to a significantly more powerful Web Services
programming platform. New annotations, for example, make it easier to
write Web Services applications. And the delegation, in JAX-WS 2.0 [JSR
224], of the Java/XML binding to JAXB 2.0 [JSR 222] greatly improves the
usability of JAX-WS as compared with JAX-RPC. The deployment model
has been greatly simplified by WS-Metadata 1.0 [JSR 181] and an improved
1.2 release of WSEE [JSR-109].

Chapters 1 and 2 review these JWS standards in detail and describe
how they improve on the previous set of JWS standards. Chapters 3 through
10 focus on writing code. To really understand the power and ease of use of
the new Java Web Services, you need to start writing code. And that is pri-
marily what this book is about. Chapters 3 through 10 are packed with code
examples showing you how to best take advantage of the powerful features,
avoid some of the pitfalls, and work around some of the limitations.

Chapter 11 looks to the future and offers some ideas, along with a pro-
totype implementation, for a WSDL-centric approach to creating Web Ser-
vices that might further improve JWS as a platform for Service-Oriented
Architecture.

I started writing this book in 2002, when JAX-RPC first appeared on the
scene. I soon ran into trouble, though, because I wanted it to be a book for
programmers and I had a hard time writing good sample code with JAX-
RPC. Four years later, when I started playing around with beta versions of
the GlassFish Java EE 5 application server, I noticed that things had signifi-
cantly improved. It was now fun to program Web Services in Java and I
recommitted myself to finishing this book.

The result is a book with lots of code showing you how to deal with
SOAP, WSDL, and REST from inside the Java programming language.
Hopefully this code, and the writing that goes with it, will help you master
Java Web Services and enable you to start using Java as a powerful platform
for SOA.

Preface xxi

About This Book

An Unbiased Guide to Java Web Services for SOA

My primary goal in this book is to offer an unbiased guide to using the Java
Web Services (JWS) standards for SOA. Of course, any author has a bias,
and I admit to believing that the JWS standards are quite good. Otherwise,
I would not have written this book.

Having admitted my bias, I also freely admit that JWS has weaknesses,
particularly when it comes to the development approach known as Start
from WSDL and Java. As you will see described in many different ways in
this book, the JWS standards present a Java-centric approach to Web Ser-
vices. That approach can be troublesome when you need to work with
established SOA standards and map your Java application to existing XML
Schema documents and WSDLs.

In such situations, it’s helpful to be able to take a WSDL-centric
approach to Web Services development. In this area, JWS is less strong.
Throughout the book, I point out those shortcomings, and offer strategies
you can use to overcome them. Chapter 11 even offers a prototype frame-
work, called SOA-J, that illustrates an alternative, WSDL-centric approach
to Java Web Services.

Written for Java Developers and Architects

This is a book for people who are interested in code—primarily the devel-
opers who write systems and the architects who design them. There are a
lot of coding examples you can download, install, and run.

Being a book for Java programmers working with Web Services, the dis-
cussion and examples provided within assume you have a working knowledge
of Java and a basic understanding of XML and XML Schema. You don’t need
to know a lot about SOAP or WSDL to dive in and start learning. However, as
you go along in the book, you might want to browse through an introductory
tutorial on WSDL and/or XML Schema if you need to firm up your grasp on
some of the Web Services basics. Throughout the book, I offer references to
Web sites and other books where you can brush up on background material.

Knowledge of J2SE 5.0 Is Assumed

This book assumes you have a basic understanding of J2SE 5.0—particu-
larly the Java language extensions generics and annotations. If you are not

xxii Preface

familiar with generics or annotations, you can learn all you need to know
from the free documentation and tutorials available at http://java.sun.com.

Don’t be intimidated by these topics. Generics and annotations are not
hard to master—and you need to understand them if you are going to do
Web Services with Java EE 5 and Java SE 6. The reason I have not written
an introduction to generics and annotations as part of this book is that there
is so much good, free information available on the Web. My focus in this
book is to go beyond what is freely available in the online tutorials and doc-
umentation.

Why GlassFish?

All the code examples presented in this book have been developed and
tested using the GlassFish [GLASSFISH] open source Java EE 5 reference
implementation. At the time I wrote this, it was the only implementation
available. Now that the book is going to press, there are more, and the code
should run on all these platforms without change. The only changes that
will need to be made have to do with the build process where GlassFish
specific tools (e.g., the wsimport WSDL to Java compiler, the asadmin
deployment utility) are used.

I plan to test the example code on other platforms as they become avail-
able and to post instructions for running them on JBoss, BEA, IBM, and so
on, as these vendors support the JWS standards. Check the book’s Web site
(http://soabook.com) for updates on progress with other platforms.

If you haven’t tried GlassFish, I suggest you check it out at https://
glassfish.dev.java.net. It supports the cutting edge in Java EE and the
community is terrific. In particular, I’ve had good experiences getting
technical support on the mailing lists. It’s not uncommon to post a ques-
tion there and have one of the JSR specification leads respond with an
answer within minutes!

Why Some Topics Aren’t Covered

Both SOA and Web Services are vast topics. Even when restricting the dis-
cussion to Java technology, it is impossible to cover everything in one book.
Faced with that reality, I decided to focus on what I consider to be the core
issues that are important to Java developers and architects. The core issues
involve creating, deploying, and invoking Web Services in a manner that
enables them to be composed into loosely coupled SOA applications.

Preface xxiii

In narrowing the book’s focus, it is inevitable that I will have disap-
pointed some readers because a particular topic of interest to them isn’t
covered. Some of these topics, pointed out by my reviewers, are listed here,
along with the reasons why I didn’t include them.

SOA Design Principles

This is not a book that covers the concepts and design philosophy behind
SOA. It is a how-to book that teaches Java developers to code SOA com-
ponents using Java Web Services. For a thorough introduction to SOA
concepts and design, I recommend Thomas Erl’s Service-Oriented
Architecture [Erl].

UDDI

UDDI is very important. And Java EE 5 includes the JAX-R standard inter-
face to UDDI repositories. But JAX-R hasn’t changed since J2EE 1.4. And
it is covered well in many other books and online tutorials. So, in an effort to
keep this book to a manageable size, I have left it out.

Enterprise Messaging

I wish I could have included a chapter on Enterprise Messaging. After all, it is
a cornerstone of SOA. However, this book restricts itself to the capabilities
provided by JWS. JWS does not support WS-Reliable Messaging [WS-RM]
or any other SOAP/WSDL-oriented reliable messaging mechanism. Of
course, Java EE 5 includes support for the Java Message Service API (JMS).
And JMS is a useful tool for implementing SOA applications. But by itself,
JMS isn’t a Web Services tool. So, in the interest of focus, I have left it out.

WS-Addressing, WS-Security, and the Many Other WS-* Standards

Explaining the myriad standards for the Web Services stack would require
many thousands of pages. Since these WS-* standards are not yet part of
JWS, I have not covered them. In addition, my sense is that most Java
developers are still mastering SOAP over HTTP. The need for a program-
mer’s guide to WS-* is probably several years away.

xxiv Preface

Fonts and Special Characters

Courier font is used for Java types, XML Schema components, and all code
examples included in the text. For example:

java.lang.String—a Java class (fully qualified)
MyPurchaseOrder—a Java class
xs:string—an XML Schema type
po:billTo—an XML Schema global element

Courier font is also used to signify software-environment-specific items
(e.g., paths, directories, environment variables) and text interactions with
the computer. For example:

JAVA_HOME—an environment variable
$JAVA_HOME/bin—a directory
mvn install—an instruction typed into the console

Italics indicate that a term is defined in the glossary. I don’t always use
italics—only when a term may not have been used before and I think the
reader might want to know it is defined in the Glossary. For example, Chap-
ter 2 uses this sentence:

When a service implementation bean (SIB) with minimal source
code annotations is deployed, the resulting WSDL is based on this
default mapping.

In this usage, the term “service implementation bean” has not yet been
defined.

Italics may also be used for emphasis, as in this example:

However, while the standard mapping makes it easy to deploy a Web
Service, it is not clear that the result is a useful Web Service.

<> indicates an environment specific directory location. For example:

<AppServer>—the location where the Java EE 5 application server is
installed
<book-code>—the location where the book example code is installed

Preface xxv

Code Fragments in Text

The text contains lots of code fragments to illustrate the discussion. At the
bottom of each code fragment is the file path showing where it came from.
So, for example, the following code fragment comes from <book-code>/
chap03/eisrecords/src/xml/order.xml. Moreover, the line numbers on the
left show you the line number in the file where the code comes from.

 4 <Order xmlns="http://www.example.com/oms"
 5 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 6 xsi:schemaLocation="http://www.example.com/oms
 7 http://soabook.com/example/oms/orders.xsd">
 8 <OrderKey>ENT1234567</OrderKey>
 9 <OrderHeader>
 10 <SALES_ORG>NE</SALES_ORG>
 11 <PURCH_DATE>2005-12-09</PURCH_DATE>
 12 <CUST_NO>ENT0072123</CUST_NO>
 13 <PYMT_METH>PO</PYMT_METH>
 14 <PURCH_ORD_NO>PO-72123-0007</PURCH_ORD_NO>
 15 <WAR_DEL_DATE>2005-12-16</WAR_DEL_DATE>
 16 </OrderHeader>
 17 <OrderItems>
 18 <item>
 19 <ITM_NUMBER>012345</ITM_NUMBER>
 20 <STORAGE_LOC>NE02</STORAGE_LOC>
 21 <TARGET_QTY>50</TARGET_QTY>
 22 <TARGET_UOM>CNT</TARGET_UOM>
 23 <PRICE_PER_UOM>7.95</PRICE_PER_UOM>
 24 <SHORT_TEXT>7 mm Teflon Gasket</SHORT_TEXT>
 25 </item>
 26 <item>
 27 <ITM_NUMBER>543210</ITM_NUMBER>
 28 <TARGET_QTY>5</TARGET_QTY>
 29 <TARGET_UOM>KG</TARGET_UOM>
 30 <PRICE_PER_UOM>12.58</PRICE_PER_UOM>
 31 <SHORT_TEXT>Lithium grease with PTFE/Teflon</SHORT_TEXT>
 32 </item>
 33 </OrderItems>
 34 <OrderText>This order is a rush.</OrderText>
 35 </Order>

book-code/chap03/eisrecords/src/xml/order.xml

xxvii

Acknowledgments

I could not have written this book without help and support from many tal-
ented people. In particular, I am indebted to everybody in the Project
GlassFish community for providing valuable insights that appear through-
out this book. In particular, I’d like to recognize Stephen DiMilla, Jerome
Dochez, Joseph Fialli, Mike Grogan, Doug Kohlert, Kohsuke Kawaguchi,
Jitendra Kotamraju, Bhakti Mehta, Carla Mott, Dhiru Pandey, Vivek Pan-
dey, Dinesh Patil, Eduardo Pelegri-Llopart, Vijay Ramachandran, and
Kathy Walsh. From among this list, additional thanks are owed to Vijay
Ramachandran and Doug Kohlert at Sun Microsystems for reviewing the
chapters on WS-Metadata, WSEE, and JAX-WS.

I first considered this project when Professor Stuart Madnick invited
me to be a visiting scholar at MIT where I conducted research on process
and data integration using Web Services technology. Working with him and
his research team sparked my interest in Java Web Services and eventually
led to this book.

Bruce Scharlau, Art Sedighi, and Matt Anderson reviewed early ver-
sions of this book and provided many helpful comments that have been
incorporated.

I would also like to acknowledge my friends in Bangalore, India—
Kishore Gopalakrishna and his team: Rohit Agarwal, Vinit Sharma, and
Rohit Choudhary. They provided invaluable contributions to the SOA-J
project described in Chapter 11.

Ted Neward provided insightful comments and graciously agreed to
write the Foreword. It is a great privilege to have him associated with this
project.

This book could never have happened without the patient guidance of
my editor, Greg Doench, at Prentice Hall. His wisdom and experience were
invaluable. I’d also like to thank Michelle Housley, Julie Nahil, Dmitri
Korzh, and all the staff at Prentice Hall for shepherding this book through
the publication process.

On the home front, my children, Elizabeth, Eric, and Emily, provided
lots of hugs and playful interruptions that helped keep me going while I was

xxviii Acknowledgments

writing. Lastly, and most importantly, it was the love and support of my
wife, Lorraine, that made this book possible. Without her patience and
understanding, this task would have been impossible.

xxix

About the Author

Mark D. Hansen, Ph.D., is a software developer, consultant, and entre-
preneur. His company, Javector Software, provides consulting and software
application development focused on Web Services. Mark is also a content
developer for Project GlassFish and has developed the open source SOA-J
application framework for WSDL-centric Web Services development.

Previously, Mark was a visiting scholar at MIT researching applications
for process and data integration using Web Services technology. Before
that, Mark was an executive vice president for Xpedior, Inc., a leading pro-
vider of eBusiness consulting services. He joined Xpedior when they
acquired his consulting firm—Kinderhook Systems.

Mark founded Kinderhook in 1993 to develop custom Internet solutions
for Fortune 500 firms. Prior to founding Kinderhook Systems, Hansen was a
founder and vice president of technology for QDB Solutions, Inc., a Cam-
bridge, Massachusetts, based software firm providing tools for data integrity
management in corporate data warehouses. QDB Solutions was acquired by
Prizm Technologies in 1997.

Mark’s work has been featured in publications such as the Wall Street
Journal, Information Week, Computer World, Database Management, Data-
base Programming and Design, Business Communications Review, EAI Jour-
nal, and IntelligentEnterprise.

Mark earned a Ph.D. from the MIT Laboratory for Computer Science, a
masters degree from the MIT Sloan School of Management, a master’s degree
in mathematics from the University of Chicago, and a bachelor’s degree in
mathematics from Cornell University.

Mark and his wife, Lorraine, live in suburban New York, with their
three children, Elizabeth, Eric, and Emily.

1

C H A P T E R 1

Service-Oriented
Architecture with Java Web
Services

Modern enterprise Java applications need to support the principles of Ser-
vice-Oriented Architecture (SOA). The foundation of most SOA applica-
tions is Web Services. So, if you are an enterprise Java developer, you
probably want to master the Web Services standards included with Java EE 5
and Java SE 6. These standards include JAX-WS (formerly JAX-RPC) [JSR
224], JAXB [JSR 222], Web Services Metadata (WS-Metadata) [JSR 181],
SOAP with Attachments API for Java (SAAJ) [JSR 67], and Web Services
for Java EE (WSEE)1 [JSR 109]. I call these standards, taken together, Java
Web Services (JWS).

SOA applications are constructed from loosely coupled Web services.
Therefore, naturally, as enterprise Java developers, we turn to JWS tools for
creating SOA applications. Furthermore, the leading enterprise Java ven-
dors hold out JWS technologies as the development platform of choice for
SOA applications.

So, the JWS standards are very important. They are the foundation for
SOA development with enterprise Java. And loosely coupled SOA applica-
tions are critical to corporate competitiveness because they enable business
processes to be flexible and they adapt to rapidly changing global markets.

Unfortunately, if you are like me, you may have found the Java Web
Services learning curve a little steep. It seems that lots of powerful and
complex machinery is required just to deploy a Java class as a Web service
or create a simple client to consume such services. Sure, you can get the
simple “Hello World” application from the Java EE 5 tutorial to work.

1. As the deployment standard for EE containers, WSEE is supported only in Java EE, not
Java SE.

2 Service-Oriented Architecture with Java Web Services

However, when you need to deploy your purchase ordering system,
things suddenly seem to get much more complicated. Either the WSDL
you start with gets compiled into myriad bizarre classes that have to be
manually wrapped and mapped into your real purchasing system, or, if
you start from your Java classes, the WSDL that gets produced doesn’t
turn out the way you need it to. If you have been frustrated by problems
like these, I sympathize with you. So have I, and that is what motivated
me to write this book.

1.1 Am I Stupid, or Is Java Web Services Really Hard?

At first, I just thought I was stupid. Prior to getting involved with Java Web
Services, I had been running a consulting business. I figured that since I’d
been a manager for the past several years, the technologist side of my brain
had atrophied. “Keep working at it!” I said to myself, “and you’ll master this
stuff.” That was three years ago, and as I wrestled with JWS annotations,
deployment descriptors, WSDL proxies, schema compilers, and so on, I’ve
compiled my “lessons learned” into this book.

During these past three years, I’ve mastered topics such as Java gener-
ics, reflection, persistence, and concurrency. I’ve studied the Apache Axis
[AXIS, AXIS2] source code—and even submitted a few patches. I’ve con-
vinced myself that I’m not stupid. Yet, it was a long struggle for me to
develop an intuitive understanding of the JWS standards. And I’m not the
only one who has experienced this.

Richard Monson-Haefel, a distinguished technologist, published a 960-
page book [Monson-Haefel] on the J2EE 1.4 versions of these Java Web
Services specifications in late 2003. Nine hundred sixty pages! That fact
alone indicates that a significant learning curve is associated with JWS. It’s
not that any one particular topic is very difficult. Sure, it takes a little while
to figure out what the JAX-WS API does. However, the real difficulty is get-
ting your mind around all these APIs and how they relate to the underlying
Web Services standards (e.g., XML, WSDL, and SOAP), the HTTP proto-
col, and the other Java EE container services (e.g., dependency injection).
Trying to mentally connect what’s going on at the Java level with the under-
lying WSDL, SOAP, XML, and HTTP can make working with the JWS
standards feel awkward and unnatural.

During the past two years, a chorus of technologists—Monson-Haefel
among them—has been bashing the Java Web Services standards. Their

1.1 Am I Stupid, or Is Java Web Services Really Hard? 3

view is based on experiences they had working with the older, J2EE 1.4 ver-
sions, of JWS. And I agree that it is difficult to do useful SOA-style develop-
ment work with those older APIs. However, I have trouble agreeing that the
specifications themselves, especially the latest versions embedded in Java
EE 5 and Java SE 6, are the real problem. Instead, I suspect the problem
itself—creating a general-purpose framework for Java Web Services devel-
opment—is just plain complicated.

Richard Monson-Haefel posted this e-mail on his blog April 22, 2006. It
summarizes pretty well how many of us feel after having spent a lot of time
working on Java Web Services:

One thesis of this book, simply stated, is that Web Services are hard. We
need to accept that fact and move on. Web Services are hard because they
are a form of distributed computing, and distributed computing is just
about the hardest problem in computer science.

So, this book doesn’t hype the JWS standards and tell you that they
make building SOA-style applications easy. Instead, this book helps you
navigate JWS and understand the strengths and weaknesses of its compo-
nent technologies. Along the way, I share with you the lessons I have
learned, showing how JWS can be used to build powerful SOA-style appli-
cations that deploy and consume Web Services effectively. The culmination
of this journey is the construction of the sample SOAShopper application,
in Chapters 9 and 10, which implements a consolidated shopping engine
integrated with eBay, Amazon, and Yahoo! Shopping. SOAShopper pub-
lishes both REST and SOAP endpoints, consumes both REST and SOAP
endpoints, and provides an Ajax front end.

Dave Podnar’s Five Stages of Dealing with Web Services
1. Denial—It’s Simple Object Access Protocol, right?
2. Over Involvement—OK, I’ll read the SOAP, WSDL, WS-I BP, JAX-RPC, SAAJ,

JAX-P, ... specs. Next, I’ll check the Wiki and finally follow an example
showing service and client sides.

3. Anger—I can’t believe those #$%&*@s made it so difficult!
4. Guilt—Everyone is using Web Services, it must be me, I must be missing

something.
5. Acceptance—It is what it is, Web Services aren’t simple or easy.

4 Service-Oriented Architecture with Java Web Services

1.1.1 Don’t Drink That Kool-Aid

In early 2001, when Ariba, IBM, and Microsoft published WSDL 1.1 as a
W3C Note [WSDL 1.1], Web Services were envisioned as a way to make
distributed computing easier. No longer would developers need to under-
stand CORBA to create cross-platform, distributed applications. Even bet-
ter, Web Services were envisioned as a technology to make distributed
computing over the Internet possible.

Like me, most Java developers bought into this early Web Services
vision. It made sense given our experience with the Internet during the
1990s. HTML over HTTP had fueled the astonishing growth of the World
Wide Web—a distributed computing platform for people. We believed that
standards (like SOAP and WSDL) for XML over HTTP would fuel similar
growth for Web Services—a distributed computing platform for business
applications.

We all drank that Kool-Aid. We believed that Web Services would make
distributed computing easy.

The leaders of the Enterprise Java industry set to work implementing
the Web Services vision. Along the way to realizing this vision, the Java
industry discovered that they had created some pretty daunting specifica-
tions. The people who read the early JAX-RPC, JAXB, and other specifica-
tions—including myself—became alarmed. We figured that something must
have gone wrong. We assumed that the Expert Groups leading these specifi-
cations had gotten off-track. We became disillusioned and bitter about the
lost promise of Web Services. We started bickering among ourselves about
SOAP versus REST and who is to blame for the complexity of the Java Web
Services specifications.

But the complexity problem isnt a result of choosing the SOAP frame-
work instead of REST. It’s not a result of overengineering on the part of the
Expert Groups. As the Expert Groups got down to brass tacks—trying to
make the Web Services vision happen—they rediscovered that distributed
computing really is a daunting challenge. SOAP, WSDL, XML, and even
REST are not going to make distributed computing easy.

Certainly, the JWS specifications are flawed. But that is to be
expected—new technologies often come out with quirks and idiosyncra-
sies that make them difficult to work with (look at EJB). These problems
are corrected as enhancements are made in subsequent versions2 of the
technology.

2. Note that EJB 3.0 continues to improve and implements the advanced Aspect Oriented
Programming and Inversion of Control features its many detractors have been calling for.

1.1 Am I Stupid, or Is Java Web Services Really Hard? 5

As one example of how the JWS specifications have improved, consider
JAX-WS 2.0. Chapters 6 and 7 describe that specification in detail, so for
now, I’m just going to give a preview of why I think it’s such a big improve-
ment over JAX-RPC 1.1. For starters, the JAX-RPC data binding has been
removed and the specification has been simplified to focus on the WSDL to
Java mapping along with support for REST endpoints. The XML Schema to
Java data binding from JAX-RPC has been replaced with JAXB 2.0, a much
superior and widely used technology. Second, JAX-WS lets you use annota-
tions to control the shape of the WSDL generated from a Java interface.
The use of annotations in this manner simplifies and in some cases elimi-
nates the need for the deployment descriptors required to deploy a JAX-
RPC service. Third, JAX-WS provides interfaces (Dispatch on the client
side and Provider on the server side) that enable programmers to directly
access and work with XML—effectively bypassing the JAXB data binding
when they don’t want to use it.

For certain, JAX-WS 2.0 could still be improved. The biggest improve-
ment I can think of would be to provide an alternative binding (in addition
to JAXB) that lets the developer work directly with the native XML types
that are specified in a WSDL and its associated schema. Some type of XML
extension to Java, like XJ [XJ], might do the job. Much of the complexity
and confusion developers experience when working with JAX-WS relate to
the difficulty of determining how the JAX-WS/JAXB-generated classes cre-
ated by the JAX-WS WSDL compiler map to the XML messages specified
in the WSDL. However, that is a whole research area (creating a language
that makes it simple to program directly with native XML types) unto itself
where we are all still waiting for some breakthroughs. My point here is not
that JAX-WS is ideal, but simply that is has improved on JAX-RPC, much as
EJB 3.0 has improved on EJB 2.1.

To summarize, in the years since the WSDL specification came out,
the Enterprise Java community has created from scratch a Java-centric
platform for distributed computing based on Web Services technologies.
This has been a Herculean task and it shouldn’t surprise anyone that the
specifications are difficult to understand! Viewed from this perspective,
the JWS standards are not bad at all. In fact, they are a huge step toward
enabling Java to become an SOA development platform. These standards
give us the APIs we need to wrestle with the complexities of Web Services
development.

So why are we disillusioned? What lesson should we be learning as we
wallow in our disillusionment? I think it is the same lesson we learn over
and over again in this business—“Don’t drink the Kool-Aid”! If we didn’t
start out by assuming that Web Services were going to be a silver bullet

6 Service-Oriented Architecture with Java Web Services

for distributed computing, we wouldn’t be disillusioned. Instead, we
would be optimistic.

1.1.2 JWS Is a Toolset, Not an Application Framework

Realizing that Web Services are intrinsically difficult forced me to rethink
my assumptions about the JWS specifications. I no longer believed that
these specifications could be significantly simplified. I accepted their com-
plexity as the natural expression of the complexity of the underlying distrib-
uted computing problem.

Instead of viewing JWS as an application framework for SOA-style
development, I recognized it as a toolset for consuming and deploying Web
Services—the components of an SOA-based distributed computing envi-
ronment. My problem had not been stupidity, but expecting too much from
my tools. Creating SOA applications with the JWS technologies requires
some discipline and design savvy. Throughout this book, I offer examples of
good design that make application development with JWS easier.

For example, in Chapter 4 I discuss the use of centralized XML
Schema libraries as a mechanism to promote separation of concerns. Such
libraries separate the type definition process (a necessary part of creating
SOA application with Web Services) from the interface definition process
(i.e., creating WSDL representations of individual SOA components). As
another example, Chapter 5 shows how to isolate the JWS generated
classes from the rest of your application by introducing a type mapping
layer into your SOA systems. This technique is then used in the Chapter 9
implementation of SOAShopper.

One way to encourage good design and make programming easier is
to use an application framework. For example, the Apache Struts
[STRUTS] framework encourages Web applications development based
on the Model 2 or Model View Controller (MVC) framework. Frame-
works offer a layer of abstraction on top of complex toolsets. The layer of
abstraction encourages you to program in a certain way. By restricting
your programming choices to a subset of proven patterns, the framework
makes your job easier and less confusing.

Application frameworks can also encourage good design. A good
SOA framework, therefore, should encourage the use of XML Schema
libraries and promote the reuse of schema across WSDL documents. A
good SOA framework should separate compiled schemas and WSDL
from the rest of the application classes.

1.1 Am I Stupid, or Is Java Web Services Really Hard? 7

Application frameworks employ toolsets, but they also go beyond
toolsets. They encourage a particular manner of using toolsets. Struts,
for example, employs servlets and JavaServer Pages (JSP), among other
toolsets. On top of these toolsets, Struts provides a framework of classes
(e.g., Action, ActionMapping) for building applications according to the
MVC framework.

Thinking through the Struts analogy to Web Services, I realized that
JWS provides a toolset but not an application framework. To develop SOA
business applications, I really wanted an application framework like
Struts—not just the underlying toolset. Because SOA is WSDL-centric (i.e.,
WSDL defines the interfaces for communicating with services), ideally, I
wanted a framework that allowed me to do WSDL-centric development.

Unfortunately, as of this writing, no popular application frameworks,
analogous to Struts, have emerged for Java Web Services. I’ve taken a first
pass at developing one, called SOA-J. For curious readers, an overview of
SOA-J is included in Chapter 11.

1.1.3 Epiphany

Understanding that JWS is a toolset and not an application framework was
my epiphany. Once I got past that, I realized that to be successful with JWS,
I would need to spend a lot of time getting intimately familiar with how the
toolset operates. This book passes those experiences on to you. It is filled
with lots of examples of how to accomplish various tasks (e.g., publish a
REST endpoint, replace the JAXB binding with something else like Castor,
consume a Web service with no WSDL, etc.). So, if you like lots of code
examples, you will not be disappointed.

Before digging in to the code, however, I need to introduce some com-
mon terminology to discuss the different components common to any plat-
form that enables the development and deployment of Web Services.3 I call
any such platform a Web Services platform. The next section introduces
what I call the Web Services Platform Architecture (WSPA), which provides
the common terminology that is used throughout this book for discussing
Web Services platforms. Think of the WSPA as our reference architecture.
As we discuss Java Web Services, we will refer to the WSPA to discuss its
strengths and weaknesses.

3. Some other platforms, in addition to Java EE 5, for deploying Web services include Axis
[AXIS] [AXIS2], Systinet Server [SYSTINET], and XFire [XFIRE].

8 Service-Oriented Architecture with Java Web Services

1.2 Web Services Platform Architecture

A Web Services platform is a set of tools for invoking and deploying Web
Services using a particular programming language. Although my focus is
Java, the concepts described in this section apply across languages.

The platform has server-side components and client-side components.
The server-side components are usually packaged within some type of con-
tainer (e.g., a Java EE application server or a servlet engine). The client-
side components are usually packaged as tools for accessing Java interface
instances that are bound to Web Services. Any Web Services platform,
whether Apache Axis, XFire, Systinet Server [SYSTINET], JWS, or some-
thing else, has to provide three core subsystems: Invocation, Serialization,4

and Deployment. To get started, a basic discussion of these subsystems, in
the abstract, will help us understand what JWS is designed to do and give us
some terminology for discussing its behavior.

1.2.1 Invocation

There are invocation mechanisms on both the server side and the client
side. On the server side, the invocation mechanism is responsible for:

Server-Side Invocation
1. Receiving a SOAP message from a transport (e.g., from an HTTP or

JMS endpoint).
2. Invoking handlers that preprocess the message (e.g., to persist the

message for reliability purposes, or process SOAP headers).
3. Determining the message’s target service—in other words, which

WSDL operation the message is intended to invoke.
4. Given the target WSDL operation, determining which Java class/

method to invoke. I call this the Java target. Determining the Java
target is referred to as dispatching.

5. Handing off the SOAP message to the Serialization subsystem to
deserialize it into Java objects that can be passed to the Java target as
parameters.

6. Invoking the Java target using the parameters generated by the Seri-
alization subsystem and getting the Java object returned by the tar-
get method.

4. I use the term “Serialization” as shorthand for “Serialization and Deserialization.”

1.2 Web Services Platform Architecture 9

7. Handing off the returned object to the Serialization subsystem to
serialize it into an XML element conformant with the return mes-
sage specified by the target WSDL operation.

8. Wrapping the returned XML element as a SOAP message response
conforming to the target WSDL operation.

9. Handing the SOAP response back to the transport for delivery.

At each stage in this process, the invocation subsystem must also handle
exceptions. When an exception occurs, the invocation subsystem often must
package it as a SOAP fault message to be returned to the client. In practice,
the invocation process is more nuanced and complex than this. However,
the steps outlined here offer a good starting point for our discussion of Java
Web Services architecture. Later chapters go into greater detail—particu-
larly Chapters 6 and 7 where I examine JAX-WS, and Chapter 11 where the
SOA-J5 invocation mechanism is described.

As you can see, the invocation process is nontrivial. Part of its complex-
ity results from having to support SOAP. We’ll look at a simpler alternative,
known as REST (Representational State Transfer), in Chapter 3. Even with
REST, however, invocation is complicated. It’s just not that easy to solve the
generalized problem of mapping an XML description of a Web service to a
Java target and invoking that target with an XML message.

On the client side, the invocation process is similar if you want to invoke
a Web service using a Java interface. This approach may not always be the
most appropriate way to invoke a Web service—a lot depends on the prob-
lem you are solving. If your client is working with XML, it might be easier
to just construct a SOAP message from XML and pass it to the Web service.
On the other hand, if your client is working with Java objects, as JWS
assumes, the client-side invocation subsystem is responsible for:

Client-Side Invocation
1. Creating an instance of the Web service endpoint implementing a

Java interface referred to (JWS terminology) as the service endpoint
interface (SEI). The invocation subsystem has one or more factories
for creating SEI instances. These instances are either created on the
fly, or accessed using JNDI. Typically, SEI instances are imple-
mented using Java proxies and invocation handlers. I cover this fasci-
nating topic in depth in Chapter 6.

2. Handling an invocation of the SEI instance.

5. SOA-J is introduced in Section 1.5 as an application framework built on top of JWS.

10 Service-Oriented Architecture with Java Web Services

3. Taking the parameters passed to the SEI and passing them to the
Serialization subsystem to be serialized into XML elements that con-
form to the XML Schema specified by the target service’s WSDL.

4. Based on the target service’s WSDL, wrapping the parameter ele-
ments in a SOAP message.

5. Invoking handlers that post-process the message (e.g., to persist the
message for reliability purposes, or set SOAP headers) based on
Quality of Service (QoS) or other requirements.

6. Handing off the message to the transport for delivery to the target
Web service.

7. Receiving the SOAP message response from the transport.
8. Handing off the SOAP message to the Serialization subsystem to

deserialize it into a Java object that is an instance of the class speci-
fied by the SEI’s return type.

9. Completing the invocation of the SEI by returning the deserialized
SOAP response.

Again, for simplicity of presentation, I have left out a description of the
exception handling process. In general, client-side invocation is the inverse
of server-side invocation. On the server side, the invocation subsystem
front-ends a Java method with a proxy SOAP operation defined by the
WSDL. It executes the WSDL operation by invoking a Java method. Con-
versely, on the client side, the invocation subsystem front-ends the WSDL-
defined SOAP operation with a proxy Java interface. It handles a Java
method call by executing a WSDL operation. Figure 1–1 illustrates this
mirror image behavior.

One interesting point to make here is that only the middle part of Fig-
ure 1–1, the SOAP request/response, is specified by the WSDL. The Java
method invocations at either end are completely arbitrary from a Web Ser-
vices perspective. In fact, you have one Java method signature on the client
side and a completely different method signature on the server side. In
most cases, the method signatures are different, and the programming lan-
guages used are different, because if both sides were working with the same
Java class libraries, this invocation could occur via Java RMI.

Also keep in mind that Figure 1–1 simply illustrates the mirror-image
nature of invocation on the client and server sides. In practice, one side of
this diagram or the other is probably not doing a Java method invocation.
For example, Web Services enable us to have a Java client invoking a CICS
transaction over SOAP/HTTP. In that scenario, you have a Java invocation
subsystem only on the client side and something else that converts SOAP to
CICS on the server side.

1.2 Web Services Platform Architecture 11

1.2.2 Serialization

Serialization is the process of transforming an instance of a Java class into an
XML element. The inverse process, transforming an XML element into an
instance of a Java class, is called deserialization. In this book, I often refer to
both serialization and deserialization as simply “serialization.”

Serialization is arguably the most important component of any platform
for Java Web Services. Figure 1–2 illustrates the problem serialization
solves. I’m going to dive into some details about how serialization relates to
WSDL and SOAP here to explain this figure.6 The details are necessary
(even in Chapter 1!) to understand exactly what the serialization subsystem
of the WSPA is doing.

Hosted within a Web Services container may be many SOAP end-
points—each corresponding to a group of Web services. An endpoint has an
associated WSDL interface that defines the operations that can be per-
formed on the endpoint.

Figure 1–1 The client-side invocation subsystem translates a method call on the SEI
proxy into a SOAP request/response and, vice versa, the server-side invocation sub-
system translates the SOAP request/response into a method call on the Java target.

Invocation Subsystem
(Client Side)

Java Method
Invocation

SOAP Message
Exchange

(Specified by WSDL)

Java Method
Invocation

return

param

param

param

S
EI

 :
 J

av
a

Pr
ox

y

Request :
SOAP

Response :
SOAP

Invocation Subsystem
(Server Side)

Target :
Java Object

Request :
SOAP

Response :
SOAP return

param

param

param

6. Don’t worry if you need a better understanding of WSDL and SOAP to understand
this explanation. I cover it in more detail in Chapter 4. For now, just focus on getting the
general idea.

12 Service-Oriented Architecture with Java Web Services

In Figure 1–2, the callout box in the lower right shows a snippet of such
a WSDL interface. Examine this snippet and notice the <types> element.
This element contains the XML Schema type definitions that are used in
the Web services defined by the rest of the WSDL document. The snippet
shows the definition for an element named customerPurchase. The quali-
fied name of this element is wrapper:customerPurchase. As you can see,
that element is used as the single part in the message definition for onCus-
tomerPurchase. Looking further down in the snippet, the portType named
CustomerPurchase is defined with an operation named processCustomer-
Purchase that uses the onCustomerPurchase message as its input.

So, the snippet defines a Web service, processCustomerService, which
requires an input message containing a single instance of the element
wrapper:customerPurchase. Invoking this Web service, therefore,
requires constructing a SOAP message containing an instance of wrap-
per:customerPurchase. Notice that the definition of wrapper:customer-
Purchase in the WSDL snippet references the two elements
imported:customer and imported:po. The schema for these two elements
is not shown, but from the name of the prefix (imported), we can assume
that they are imported into the WSDL elsewhere. So, constructing the
SOAP message requires creating instances of imported:customer and
imported:po.

Now, examine the Java snippet in the callout box in the lower-left side of
Figure 1–2 and notice the imported classes com.soabook.sales.Customer
and com.soabook.purchasing.PurchaseOrder. These classes are used as the
parameter classes for the method newPurchase. The Web service proxy shown
in Figure 1–2 binds the Java interface method newPurchase to the WSDL
operation processCustomerPurchase. This proxy was created by the invoca-
tion subsystem. It invokes the WSDL operation deployed at the SOAP end-
point by sending it a SOAP message. So, the Web service proxy’s
implementation of the method newPurchase must invoke some machinery
that takes instances of com.soabook.sales.Customer and com.soabook.pur-
chasing.PurchaseOrder and creates an instance of wrapper:customerPur-
chase that can be embedded in the body of a SOAP message.

That machinery is the serialization subsystem of the Web Services Plat-
form Architecture (WSPA). The Serialization subsystem is responsible for
the following steps in the invocation process:

Serialization Subsystem’s Role during Invocation
1. Receiving the parameters from the Web service proxy
2. Serializing the parameter cust (an instance of com.soabook.sales

.Customer) into an instance of imported:customer

1.2 Web Services Platform Architecture 13

Figure 1–2 Serialization translates a Java instance into an XML document for transport
via SOAP to a Web service.

Web Services Container

SOAP Endpoint

WSDL Interface

Java Virtual Machine

Web Service Proxy

Java Interface

<definitions ...
 targetNamespace="http://soabook.com"
 xmlns:soa="http://soabook.com"
 xmlns:wrapper="http://soabook.com/wrapper" ...>
 <types>
 <schema elementFormDefault="qualified"
 targetNamespace="http://soabook.com/wrapper"

 <element name="customerPurchase">
 <complexType>
 <sequence>
 <element ref="imported:customer"/>
 <element ref="imported:po"/>
 </sequence>
 </complexType>
 </element>
 ...
 </schema>
 ...
 </types>
 <message name="onCustomerPurchase">
 <part element="wrapper:customerPurchase"
 name="purchase"/>
 </message>
 ...
 <portType name="CustomerPurchase">
 <operation name="processCustomerPurchase">
 <input message="soa:onCustomerPurchase"

 ...
 </operation>
 </portType>
 ...

</definitions>

package com.soabook;

import com.soabook.sales.Customer;
import
com.soabook.purchasing.PurchaseOrder;

public interface PurchaseTransactions {

 public void newPurchase
 (Customer cust,
 PurchaseOrder po);
 ...

}

SOAP
Message

...>

... />

14 Service-Oriented Architecture with Java Web Services

3. Serializing the parameter po (an instance of com.soabook.purchas-
ing.PurchaseOrder) into an instance of imported:po

4. Combining these two elements into an instance of wrapper:custom-
erPurchase

5. Handing off the instance of wrapper:customerPurchase to the Web
service proxy to be embedded in a SOAP message and sent to the
SOAP endpoint

As this simple example illustrates, the serialization subsystem is cen-
tral to the process of invoking a Web service via a Java interface. The seri-
alization subsystem translates the parameters (passed to the interface
proxy) from instances of their respective Java classes into instances of the
target XML Schema—in this case, the target is wrapper:customerPur-
chase. These mappings—from Java classes to target XML Schema com-
ponents—are called type mappings. To accomplish this translation, the
serialization engine needs a set of mapping strategies (as illustrated in
Figure 1–3) that tell it how to implement the type mappings; in other
words, how to serialize the instances of the Java classes into instances of
the XML Schema components.

A mapping strategy associates a Java class, its target XML Schema type,
and a description of a serializer (or deserializer) that can transform
instances of the class to instances of the Schema type (or vice versa). A seri-
alization context is a set of mapping strategies that can be used by the serial-
ization subsystem to implement the type mappings used by a particular
Web service deployment.

Different Web Services platforms provide different mechanisms for
specifying the mapping strategies that make up a serialization context. In
many cases, multiple methods are used. Some of these mechanisms are:

Mechanisms for Implementing Type Mappings
■ Standard binding. The mappings are predefined by a standard bind-

ing of Java classes to XML Schema. Each Java class has a unique rep-
resentation as an XML Schema. JWS starts from this approach and
allows customizations. The standard binding is described by the
JAXB and JAX-WS specifications.

■ Source code annotations. JWS uses this approach to provide custom-
izations on top of the standard binding. Annotations in the source
code of a target Java class modify the standard binding to specify how
the class maps to XML Schema components and how the WSDL
description of the Web service is shaped.

1.2 Web Services Platform Architecture 15

■ Algorithmic. The mappings are embedded in the algorithms exe-
cuted by the serialization subsystem. JAX-RPC 1.1 and Axis 1.x
[AXIS] take this approach.

■ Rule-based. The mappings are specified as rules that can be created
and edited independent of the serialization subsystem. The rules are
interpreted by the serialization subsystem. SOA-J (introduced in
Section 1.5) uses a rule-based approach for mapping. The Castor
[CASTOR] serialization framework also supports this approach with
its mapping files mechanism.

Each of these approaches has advantages and disadvantages. JWS has
introduced source code annotations as a mechanism to make it easier for
Java programmers to specify how a Java target should be represented as a
WSDL operation. I happen to like the rule-based approach because it

Figure 1–3 The serialization context contains mapping strategies used by the
Serialization subsystem to perform serialization.

Java Classes

Class1

Class2

Class3

Serialization Context

mapping strategy

mapping strategy

mapping strategy

XML Schema

«datatype»
Type1

«datatype»
Type2

16 Service-Oriented Architecture with Java Web Services

enables end users to map preexisting Java classes to preexisting XML
Schema types—something that is very useful if you are using Web Services
to do enterprise integration in a loosely coupled, SOA style where there are
lots of legacy classes and schemas to work with.

Serialization is a rich and fascinating topic. Different approaches are
better suited to different types of tasks (e.g., legacy integration versus
Greenfield development). That is why there are and probably always will be
a number of different approaches to serialization competing in the market-
place. I look at JAXB 2.0 serialization in depth in Chapter 5.

1.2.3 Deployment

The deployment subsystem supplies the tools for setting up a Java target so
that it can be invoked as a Web service via SOAP messages. At a high level,
the deployment subsystem needs to handle:

Deployment Subsystem Responsibilities
■ Deploying the Java target(s). This task varies greatly depending on

the Java container where invocation takes place. For an EJB con-
tainer, it may mean deploying a stateless session bean. In other situa-
tions, it simply means making each Java target’s class definition
available to the class loader employed by the invocation subsystem.

■ Mapping WSDL operation(s) to a Java target(s). This involves con-
figuring the Web Services platform so that the invocation sub-
system can properly associate an incoming SOAP message with its
Java target. This association (or binding) is stored as meta-data
which the invocation subsystem can access from the deployment
subsystem to determine the Java target that should be invoked. In
addition to associating a WSDL operation with a Java method, the
deployment subsystem must help the invocation system to properly
interpret the SOAP binding (e.g., rpc versus document style,
wrapped versus unwrapped parameters) of an incoming message.

■ Defining a serialization context. The deployment subsystem config-
ures the serialization subsystem with the serialization context (see
Figure 1–3) needed to bind the XML Schema types from the WSDL
with the parameter and return classes from the Java target(s). This
serialization context is used by the serialization subsystem to imple-
ment the binding of WSDL operation(s) to Java target(s).

■ Publishing the WSDL. The deployment subsystem associates a
Java target with the WSDL document containing the WSDL oper-
ation it is bound to. This WSDL document is made available to the

1.2 Web Services Platform Architecture 17

Web service’s clients as a URL or in another form (e.g., within a
UDDI registry).

■ Configuring SOAP handlers. The deployment subsystem configures
the necessary SOAP handlers needed to provide QoS pre- or post-
invocation of the Java target. These handlers provide services such as
authentication, reliability, and encryption. Although the invocation
subsystem invokes the handlers, they are configured and associated
with a Web service by the deployment subsystem.

■ Configuring an endpoint listener. The deployment subsystem config-
ures the container so that there is a SOAP message transport listener
at the URI specified by the WSDL port. In some Web Services plat-
forms, the WSDL is supplied without an endpoint being defined,
and the endpoint is “filled in” by the deployment subsystem from a
deployment descriptor.

As you can see from this description, the deployment subsystem needs
to do a lot of rather nonglamorous tasks. To handle a wide variety of situa-
tions (e.g., QoS requirements, custom Java/XML bindings, configurable
endpoint URLs, etc.), the deployment descriptors (XML files used by the
deployment subsystem) quickly grow complicated and difficult to manage
without visual tools.7 Figure 1–4 shows the possible deployment descriptors
used by a Web Services platform and their relationships to the underlying
containers.

As shown in Figure 1–4, the Web Services platform may span multiple
containers. Here, I am showing you the application server container (e.g.,
Java EE) and a Web Services directory container (e.g., UDDI). The direc-
tory may be included in the application server container. Arrows show the
dependencies. As you can see, each of the objects deployed in the container
depends on container-specific deployment descriptors. The endpoint lis-
tener, SOAP handlers, and Java target may also be described in the WSDL/
Java mapping descriptor. The multiple references reflect the multiple roles
of the objects. For example, the Java target is deployed both as an object in
the container and in the Web Services platform.

To summarize, the Web Services Platform Architecture (WSPA) defines
three subsystems: invocation, serialization, and deployment. As the explora-
tion of Java Web Services unfolds through the rest of the book, I refer to

7. Historically, the proliferation of deployment descriptors has been a common complaint
when working with EJB 2.1. With Web Services in J2SE 1.4, the deployment descriptors
grow even more complex! Luckily, in Java EE 5, the need for deployment descriptors has
been greatly reduced.

18 Service-Oriented Architecture with Java Web Services

these subsystems and their details, to discuss the roles that various compo-
nents of JWS play in the overall WSPA specified by Java EE and Java SE.

1.3 Java Web Services Standards: Chapters 2 through 8

As mentioned, the primary purpose of this book is to provide you with a
detailed technical understanding of how to use Java Web Services in your
SOA application development. Since real technical understanding only
comes with hands-on coding, this book provides many software examples
for you to examine and play with. The first step toward developing a
detailed technical understanding is to explore the JWS APIs in depth, exam-
ining their strengths and limitations. Chapter 2 provides a high-level over-
view of the JWS APIs. Chapters 3–8 provide detailed examples of how to
write and deploy Web services with these APIs. These examples go well
beyond the usual “Hello World” tutorials provided by vendors. Rather, they

Figure 1–4 Many possible deployment descriptors can be used by a deployment subsystem.

Web Services Platform

Container (e.g., J5EE,
Servlets, Axis)

+someMethod()

Java Target

-url

Endpoint Listener

WSDL/Java
Mapping

Serialization
Context

Web Services Directory
(e.g., UDDI)

+someOperation()

WSDL

WSDL
Deployment

Container
Deployment
Descriptors

SOAP
Handlers

Source Artifacts
(e.g., EJB wrapper)

1.3 Java Web Services Standards: Chapters 2 through 8 19

provide detailed, real-world implementations. In addition to simply show-
ing you how to program with these APIs, I use the examples to relate them
back to the Web Services Platform Architecture described in Section 1.2.
Here is a summary of these chapters and how they work together.

Chapter 2: An Overview of Java Web Services—A high-level over-
view of the features, strengths, and weaknesses of the major Java Web Ser-
vices APIs is provided, including JAX-WS 2.0 [JSR 224], JAXB 2.0 [JSR
222], WS-Metadata 2.0 [JSR 181], and Web Services for Java EE 1.2 [JSR-
109]. I explore where each of these APIs fits into the Web Services Applica-
tion Framework. The SOAP with Attachments API for Java (SAAJ) [JSR 67]
is not discussed here, but investigated in Chapters 6 and 7 within the con-
text of the JAX-WS discussions on SOAP processing.

Chapter 3: Basic SOA Using REST—The technical examples start
by looking at the simplest approach to Web Services: Representational State
Transfer (REST). I show how to implement RESTful services using plain
old HTTP, and JWS. I also discuss the limitations of REST as an approach
to SOA integration. Understanding these limitations provides the motiva-
tion for introducing SOAP and WSDL in the next chapter.

Chapter 4: The Role of WSDL, SOAP, and Java/XML Mapping in
SOA—This chapter starts by discussing why WSDL and SOAP are needed
for SOA. Then, it moves into a detailed description of how SOAP and
WSDL are used in real-world SOA integration scenarios. I relate SOAP and
WSDL to the Web Services Platform Architecture described in Section 1.2
to show how the dispatching of a SOAP request depends on the structure of
the WSDL. Some limitations of the JAX-WS 2.0 dispatching mechanism are
pointed out. Lastly, this chapter discusses how the XML carried by a SOAP
request should be mapped to the Java classes that implement a Web service.
JAXB 2.0 is introduced as a tool for implementing such a mapping, and
some of its limitations and workarounds are described.

Chapter 5: The JAXB 2.0 Data Binding—JAXB 2.0 is described in
depth and compared with other approaches for mapping XML to Java. Lots
of detailed technical examples are provided that demonstrate the JAXB 2.0
standard Java/XML binding, the schema compiler, and the annotations gener-
ated by the schema compiler. I also describe how the JAXB runtime performs
serialization and deserialization based on the annotations, and how you can
use your own annotations to customize the behavior of the JAXB serialization
and deserialization processes. I relate JAXB 2.0 back to the serialization sub-
system of the Web Services Platform Architecture—the reference architec-
ture used in this book. Some JAXB 2.0 limitations are explored in detail—in
particular, I discuss the difficulty of abstracting out type mappings from a seri-
alization subsystem based on JAXB 2.0, and how this violates separation of

20 Service-Oriented Architecture with Java Web Services

concerns and negatively impacts change management. Workarounds to these
limitations are demonstrated, including detailed examples of how to use
advanced JAXB 2.0 features like the XmlAdapter class and how to custom-
build your own recursive serialization subsystem based on JAXB 2.0. The cus-
tom serialization scheme introduced here is further elaborated on in Chapter
11 where the prototype SOA-J serialization subsystem is introduced.

Chapter 6: JAX-WS 2.0—Client-Side Development—The client-
side APIs from JAX-WS 2.0 are described in detail. I explain how to invoke
a Web service using a JAX-WS 2.0 proxy class that provides a Java interface
to the target service. In these examples, I show you how to use the JAX-WS
WSDL compiler (e.g., the GlassFish wsimport utility8) to create Java inter-
faces from WSDL at compile time, and then how to use those interfaces to
create JAX-WS proxy class instances that can invoke Web services at run-
time. In addition to these nuts-and-bolts examples, Chapter 6 provides an
in-depth discussion of the JAX-WS 2.0 WSDL to Java mapping. Under-
standing this mapping is critical to understanding how to use the classes
generated by the JAX-WS WSDL compiler. The annotations used by JAX-
WS on the generated interface classes are described, and I demonstrate
how these annotations shape the SOAP messages that are sent and received
by a JAX-WS 2.0 proxy. This chapter also discusses exception handling and
how JAX-WS maps SOAP fault messages to Java Exception class instances.
Having covered the basics, I then come back to the REST model intro-
duced in Chapter 3 and explore in more depth how to do XML messaging
(without SOAP) using JAX-WS. This leads to a discussion of how you can
replace the default binding and use JAX-WS (via the Dispatch API) to
invoke Web services using a variety of bindings, including custom annotated
JAXB classes and Castor [CASTOR]. Detailed technical “how-to” examples
are also provided to illustrate JAX-WS asynchronous invocation and SOAP
message handlers.

Chapter 7: JAX-WS 2.0—Server-Side Development—This chapter
is the second half of the JAX-WS 2.0 discussion, and focuses on the server-
side APIs. The discussion starts with a description of the JAX-WS server-
side architecture and how it maps to the Web Services Platform Architec-
ture reference design discussed in Section 1.2. This description gives you a
detailed understanding of how the various JAX-WS pieces fit together,
including the SOAP protocol binding, fault processing, message handlers,

8. As discussed in the Preface to this book, all the examples have been developed and tested
using GlassFish [GLASSFISH]. However, the underlying code will run on any JAX-WS
implementation. The IBM, JBoss, BEA, and Oracle tools for JAX-WS, for example, will all
implement the same WSDL to Java mapping and generate similar classes.

1.4 The SOAShopper Case Study: Chapters 9 and 10 21

JAXB binding interface, WSDL generation, and dispatching services. After
this description, I introduce a series of examples that illustrate how to
deploy Web services using both the @WebService and @WebServicePro-
vider annotations. Resource injection of the WebServiceContext is
explored as a mechanism to access the HTTP request headers delivered
with a SOAP request. I also go through a detailed example of how to deploy
a Web service using Castor [CASTOR] as an alternative binding mechanism
to JAXB 2.0. The chapter ends with discussions of validation and fault pro-
cessing, and an example of how to implement server-side handlers and how
to do container-less deployment using the javax.xml.ws.Endpoint class
for Web Services deployment in J2SE.

Chapter 8: Packaging and Deployment of SOA Components
(JSR-181 and JSR-109)—This chapter wraps up the detailed discussion of
the JWS standards by focusing on the nuts and bolts of how Web services
are packaged and deployed. I cover the WS-Metadata [JSR 181] annota-
tions and give examples of how to use them to deploy Web services as EJB
and servlet endpoints. You learn how to deploy Web services without using
any deployment descriptors (yes, it is possible with Java EE 5!), and when
and where it makes sense to use deployment descriptors to override the
defaults and annotation-based deployment mechanisms. This chapter
includes a description of the WAR structure required for servlet endpoint
deployment, and the EJB JAR/EAR structure used with EJB endpoints. In
addition, I give a detailed overview of how a Java EE 5 container imple-
ments the deployment processing (i.e., how the container goes from anno-
tated package components to a deployed Web service). Like the other JWS
API descriptions, this discussion relates back to the Web Services Platform
Architecture reference design discussed in Section 1.2 to critique the pluses
and minuses of the Java EE 5 Web Services deployment subsystem. There
are many variations in how you can do packaging and deployment, so this
chapter includes ten different packaging examples illustrating the appropri-
ate use of each variation. Lastly, as an advanced topic, I cover the support
for OASIS XML Catalogs [XML Catalog 1.1] provided in Java EE 5.

1.4 The SOAShopper Case Study: Chapters 9 and 10

Chapters 9 and 10 pull together all the technologies and techniques
described in Chapters 2 through 8 and demonstrate how to build an SOA
integration application using JWS. The SOAShopper application is an
online shopping system that integrates eBay, Amazon, and Yahoo! Shop-

22 Service-Oriented Architecture with Java Web Services

ping. It is a Web Services consumer since it is a client of those shopping
sites. It is also a Web Services provider since it deploys REST and SOAP
endpoints that provide search services across the three shopping sites.

Chapter 9: SOAShopper: Integrating eBay, Amazon, and Yahoo!
Shopping—Although SOAShopper is a demo application, the techniques it
demonstrates are powerful. In this chapter, you will see all the tools of the
previous chapters come together to create a real SOA integration system.
The discussion and examples in this chapter include code for consuming
and deploying RESTful services, consuming and deploying WSDL/SOAP
services, implementing type mappings with JAXB, WSDL-centric service
integration, and support for Ajax clients.

Chapter 10: Ajax and Java Web Services—Chapter 10 uses the
SOAShopper application developed in Chapter 9 and shows how to build an
Ajax front-end that consumes the RESTful services it provides. The focus in
this chapter is on how JWS can be used to support Ajax clients.

1.5 SOA-J and WSDL-Centric Development: Chapter 11

Readers who only want to learn Java Web Services (JWS) can skip Chapter
11. However, if you are interested in exploring how to implement a Web
Services Platform Architecture (WSPA) that is WSDL-centric and uses the
tools provided by JWS, you should read Chapter 11. This final chapter pro-
vides a detailed walkthrough of SOA-J.

The term “WSDL-centric” means creating a Web service by building its
WSDL and annotating that WSDL document with references to the Java
elements that implement it. Such a WSDL-centric approach is intended for
situations9 where you need to create Web services that integrate into a stan-
dard corporate or eBusiness framework (i.e., where there are standard
schemas and message descriptions).

SOA-J is a prototype application framework. I created it as a proof-of-
concept to explore the viability of WSDL-centric SOA development with
JWS. The source code (open source) for SOA-J is included with the code
examples you can download with this book.10 You can also find the latest
version of SOA-J at http://soa-j.org.

9. Such situations are discussed in Chapter 4.
10. See Appendix B for instructions on how to download, install, and configure the book
software.

1.5 SOA-J and WSDL-Centric Development: Chapter 11 23

Chapter 11: WSDL-Centric Java Web Services with SOA-J—This
chapter walks you through how SOA-J is designed as an application frame-
work on top of JWS. I show how it provides a straightforward mechanism for
composing an SOA component by constructing its WSDL. There are many
UML diagrams in this chapter, because I go through the architecture of SOA-
J in some detail. This discussion should be useful for anybody who has ever
wondered how a Web Services engine (aka “SOAP server”) works. The princi-
ples used here are summarized in the WSPA11 and are employed by products
such as Axis and XFire. My motivation for including the implementation
details goes back to my early experiments with Apache Axis. The first time I
looked at the Axis source code, I felt completely lost. After reading my
description of SOA-J, hopefully you will not feel as lost when and if you ever
find yourself looking at the source code for another Web Services engine.

11. See Section 1.2.

25

C H A P T E R 2

An Overview of Java Web
Services

This chapter provides an overview of the capabilities provided by the Java
Web Service (JWS) standards supported by Java EE 5 and Java SE 6. The
discussion starts (Section 2.1) by looking at the role of JWS in SOA applica-
tion development. Next (Section 2.2), some of the Java EE 5 “ease-of-use”
features are covered. Making the programming process easier was stated as
the number-one goal for the release of Java EE 5 Web Services, so right up
front there is a quick review of these ease-of-use design decisions and their
impact on development.

The main discussion in this chapter (Sections 2.3–2.5) groups each
JWS capability according to the Java Specification Request1 (JSR) that
defines it. As each of the JSRs is reviewed, its features are related back to
the reference platform—the Web Services Platform Architecture described
in Chapter 1, Section 1.2. The primary JSRs discussed here, and throughout
the book, are JAX-WS 2.0 [JSR 224], JAXB 2.0 [JSR 222], WS-Metadata 2.0
[JSR 181], and Web Services for J2EE 1.2 [JSR 109]—often abbreviated
WSEE.

The chapter concludes (Section 2.7) by looking at some of the other
Java EE 5 innovations that are not specifically part of the Web Services
JSRs, but have an impact on Web Services development. This discussion
covers capabilities such as dependency injection and EJB 3.0.

This chapter provides an appreciation for the big picture and sets the
stage to dive into the design and programming details described in Chap-
ters 3 through 11.

1. The Java community defines new features for the language using JSRs. JSRs are defined
and approved as part of the Java Community Process described at www.jcp.org.

26 An Overview of Java Web Services

2.1 The Role of JWS in SOA Application Development

Basically, JWS comprises a set of enabling technologies for consuming and
creating Web services using Java. To begin the discussion of where the JWS
enabling technologies fit in SOA development, a hypothetical SOA applica-
tion is examined.

2.1.1 A Hypothetical SOA Application

Figure 2–1 shows the hypothetical SOA application used in this discussion.
It is an Order Management application for processing customer orders. It
receives customer orders as SOAP requests and returns order confirmations
as SOAP responses.

The Order Management application at the center of Figure 2–1 is
labeled a “SOA Composite App” to emphasize that it is constructed as a
composite of underlying services. On page 46 of [Erl], Thomas Erl writes,
“services exist as independent units of logic. A business process can there-
fore be broken down into a series of services, each responsible for executing
a portion of the process.” Describing this example in Erl’s language, one
would say that the SOA composite application is automating the order man-
agement business process. That business process is broken down into the
following steps as labeled in Figure 2–1.

Order Management Business Process
1. A customer sends a Customer Order containing, among other infor-

mation, a PO Number and a list of Order Items—the products and
quantities being ordered.

2. The PO Number and Order Items are passed to the Purchase Order
System. It checks the Purchase Order to determine whether it cov-
ers the items being ordered and what payment terms are required.

3. If the PO covers the Order Items, an Authorization and a description
of the required Payment Terms are returned.

4. Next, the Order Items are forwarded to the Inventory Manage-
ment System to determine whether they are in stock and what the
likely delivery dates are.

5. This information—the Item Availability—is returned.
6. Lastly, a response message is sent back to the customer—the Order

Confirmation—detailing the payment terms and the anticipated
delivery dates for the items.

2.1 The Role of JWS in SOA Application Development 27

Using Erl’s terminology, this business process can be broken down into
two “independent units of logic”—the Purchase Order Service and the
Inventory Management Service. As services participating in an SOA com-
posite application, these “units of logic” can be described in terms of their
input and output messages. The Purchase Order Service (upper-right cor-
ner of Figure 2–1) is responsible for providing the following service:

Purchase Order Service
Input Message: A PO number and a list of items being ordered.
Processing: Determine whether the Purchase Order covers

the items being ordered and what payment terms
are required.

Figure 2–1 An SOA composite application for order management.

 Java EE 5

Java EE 5

Purchase Order
Service

.NET

Inventory
Managment
Service

SOA Composite App

Order Management

WSDL

SOAP

Customer Order

Order Confirmation

PO Number,
Order Items

Authorization,
Payment Terms

Order ItemsItem Availability

1

2

3

4

5

6

WSDL

SOAP

WSDL

SOAP

28 An Overview of Java Web Services

Output Message: An authorization for the items being ordered and a
description of the payment terms required for those
items.

As indicated in Figure 2–1, the Purchase Order Service is implemented
using Java EE 5. The other service composed by the Order Management
System is the Inventory Management System. It is responsible for providing
the following service:

Inventory Management Service
Input Message: A list of the items being ordered.
Processing: Determines whether the items are in stock and

when they will be available to ship.
Output Message: A list of the items and their estimated ship dates—

referred to as Item Availability.

As indicated in Figure 2–1, the Inventory Management Service is
implemented using .NET.

The Order Management System, pictured in the center of Figure 2–1,
is described as an SOA composite application because it is a composite of
the underlying services provided by the Purchase Order Service and the
Inventory Management Service. It processes the incoming Customer Order
by invoking first the Purchase Order Service and then the Inventory Man-
agement Service, and combining the information received from those ser-
vices to create the Order Confirmation. Notice that this Order
Management System itself can be considered a service. In fact, to the
sender of the Customer Order, it is treated exactly as any other service.
Hence, using SOA, services can be composed of underlying services. The
Order Management Service thus constructed can be described as follows:

Order Management Service
Input Message: A Customer Order containing, among other infor-

mation, a PO Number and a list of Order Items—
the products and quantities being ordered.

Processing: Determines whether the customer is authorized to
purchase the requested items under the specified
PO, and if so, what the payment terms are and
when the items will be available to ship.

Output Message: Order Confirmation—detailing the payment terms
and the anticipated delivery dates for the items.

2.1 The Role of JWS in SOA Application Development 29

As indicated in Figure 2–1, the Order Management Service is imple-
mented using Java EE 5.

2.1.2 JWS Enables SOA Development

When thinking about this Order Management design, it is clear that com-
posite SOA applications require that the underlying services they invoke
have well-defined interfaces. For example, for the Order Management Sys-
tem to request authorization and payment terms from the Purchase Order
System, it must know exactly what form that request should take. It must
also know how to encapsulate that request in a message with a format that
can be received and understood by the Purchase Order Service. In this
example, Web Services standards provide the structure necessary to define
the required interfaces. Although not required for SOA, Web Services pro-
vide a set of interface and messaging standards that facilitate building SOA
applications in a platform-neutral manner. In the example just discussed,
the Purchase Order Service is implemented on Java EE 5 and the Inventory
Management Service is implemented on .NET. However, since both Java
EE 5 and .NET support Web Services, it is possible to construct the Order
Management by invoking those underlying applications using their Web
Services interfaces.

When using Web Services, interface definitions are defined using
WSDL [WSDL 1.1, WSDL 2.0]. Hence, each of the services pictured in
Figure 2–1 is illustrated as being associated with a WSDL document.
WSDL is expressed using XML. It defines the input and output parameters
of a Web service in terms of XML Schema2 [XSD Part 0]. The input param-
eters are delivered to a Web service using a messaging structure. Likewise,
the output parameters are received in a message. Again, SOA does not force
any particular message structure, but an obvious choice is the SOAP [SOAP
1.1, SOAP 1.2] standard. SOAP messages can be used to carry the input and
output parameters specified by the WSDL interface definition. So, Web
Services provide two key ingredients needed for SOA development: an
interface definition language (WSDL) and a messaging standard (SOAP).

SOAP messages can be exchanged over a variety of transports (e.g.,
HTTP, SMTP, and JMS). In the Order Management example described
previously, HTTP is the transport that is used. HTTP GET requests are
issued to retrieve the WSDL interface definitions from services, and HTTP

2. This is just a quick overview. The use of WSDL and SOAP in Web Services is discussed in
detail in Chapter 4.

30 An Overview of Java Web Services

POST is used to handle the SOAP request/response exchanges. That is how
a basic Web Services framework (i.e., WSDL with SOAP/HTTP) is used for
SOA application development.

The JWS standards provide tools for working with WSDL and SOAP/
HTTP from within the Java programming language. There are server-side
tools for enabling Java methods to be invoked with SOAP and for publishing
the related WSDL interface definitions. Likewise, there are client-side tools
for reading WSDL documents and sending/receiving SOAP messages. Fig-
ure 2–2 shows how the various Java Web Services standards (JSRs) support
the server side of the equation. To explain the roles of these various JSRs on the
server side, the deployment and invocation of a service is traced using
the numerical labels in Figure 2–2. This discussion now becomes much
more detail-oriented, dropping down from the 10,000-foot SOA level to the
100-foot level where the JWS standards start to be discussed in depth.3

To understand what Figure 2–2 is illustrating, start at the bottom with
the folder labeled “Port Component.” This represents a packaged Web ser-
vice that is being deployed to the Java EE 5 container. The box in the cen-
ter, labeled “Web Service Application,” represents the run-time classes
(after deployment) that implement a Web service. Above that are some
boxes labeled “Java Parameters,” and a single box labeled “Java Return.”
The parameter boxes represent run-time instances of the Java objects being
passed to a method of one of the classes inside the “Web Service Applica-
tion.” Thinking back to the Purchase Order Service example (Figure 2–1),
these parameters could be the PO Number and Order Items. Likewise, the
boxes above these, labeled “XML Parameters” and “XML Return,” repre-
sent the XML form of these parameters and return value. Continuing up
the figure, near the top is a circle labeled “Endpoint.” That represents the
URL where the Web Service Application receives HTTP GET requests for
its WSDL interface definition document, and HTTP POST requests for
exchanging SOAP input and output messages.

The shaded bars in Figure 2–2 illustrate which JSRs correspond to the var-
ious stages of the Web service deployment and invocation. Tracing through
labels 1–10 in Figure 2–2, the role of these JSRs at each stage is explained:

Server-Side Deployment and Invocation of a Web Service
1. JWS defines the Port component (sometimes referred to as Port) as

the server view of a Web service. A Port component can be packaged

3. In subsequent chapters, the discussion drops down to the 10-foot level and examines
detailed coding examples.

2.1 The Role of JWS in SOA Application Development 31

as a WAR (for deployment as a servlet endpoint) or as an EJB JAR
(for deployment as an EJB endpoint). WSEE [JSR 109] is the primary
standard defining the deployment process and the packaging structure
(including the deployment descriptors). WS-Metadata [JSR 181]
describes how annotations on the packaged classes shape the deploy-
ment (e.g., the WSDL interface representing a Port component can
be customized using WS-Metadata annotations). Deployment of a

Figure 2–2 Server side—the role of the Java EE 5 Web Services JSRs.

Web Container

JAX-WS

JAXB

WSEE
WS-Metadata

Web Service Application

EJB Container

HTTP GET HTTP POST

2 10

Port Component
(WAR or EJB JAR)

deploy

1

SOAP

Endpoint

...

...

XML ParametersXML Return

Java ParametersJava Return

WSDL

JAX-WS
JAXB

WS-Metadata

3

4

5

6

7

8

9

Ja
va

 E
E

5

Annotated Java Classes
(User-Defined and Generated)

either

32 An Overview of Java Web Services

Java EE 5 Port component corresponds to a function of the deploy-
ment subsystem in the WSPA reference system introduced in Chap-
ter 1. Chapter 8 provides an in-depth discussion of deployment.

2. Moving to the top of Figure 2–2, this description now traces the
invocation of the Web service deployed by the Port component
described in step 1. The endpoint supports HTTP GET requests for
the WSDL describing the Web service. The structure of this WSDL
is determined by the JAX-WS WSDL/Java mapping. This mapping is
described in detail in Chapter 6. This mapping can be customized
using annotations defined by JAX-WS, JAXB, and WS-Metadata.
Generally, the JAX-WS annotations manipulate the style of WSDL
that is used (see Chapter 4 for a discussion of the WSDL styles).
JAXB annotations, on the other hand, manipulate the representation
of Java parameters and return types as XML Schema components.
WS-Metadata annotations manipulate the particulars of the WSDL
interface (e.g., the target namespace and the local names for many of
the XML elements contained in the WSDL document). Handling
WSDL requests is not officially part of the WSPA;4 however, it is
often a function that is included in the invocation subsystem of a
Web Services Platform.

3. The invocation of the deployed Web service is initiated when a
SOAP request is received, via an HTTP POST, at the endpoint.

4. The Web service’s endpoint is typically implemented by a servlet
class listening at the endpoint URL specified during deployment
(see step 1). This servlet is not specified by the developer of the Port
component. Rather, it is part of the internal Java EE 5 implementa-
tion of JWS. During deployment, the annotations and/or deployment
descriptors are read by the WSEE runtime, the endpoint URL is
determined, and the container’s internals are configured to deploy
the listener at that endpoint. This process is described in detail in
Chapter 8. Setting up the endpoint is a function of the deployment
subsystem in the WSPA.

5. Step 5 illustrates that the SOAP request has become a set of XML
parameters—instances of the XML Schema components specified as
parameters in the WSDL. The JAX-WS runtime is responsible for

4. That is because in practice, there are a number of ways the client can get a WSDL
description. Oftentimes, WSDL documents are accessed through a UDDI directory. In
such cases, the request for a WSDL is simply forwarded to the directory and not actually
handled by the Web Services Platform. UDDI is not covered in this book; I explain why in
the Preface.

2.1 The Role of JWS in SOA Application Development 33

extracting these parameters from the SOAP message. It is a fairly
nontrivial transformation that is discussed in detail in Chapter 4.
This extracting of the XML parameters is defined to be a part of the
dispatching process handled by the invocation subsystem in the
WSPA.

6. Next, the XML parameters are deserialized into Java parameters.
This deserialization is handled by the JAXB runtime. Deserialization
is controlled (i.e., the type mappings are defined) by the annotations
on the target Java classes. The JAXB runtime uses introspection to
examine the annotations on the target classes, and that information
(together with the standard Java/XML binding defined by JAXB) is
used to generate instances of the target parameters. JAXB serializa-
tion and annotations are described in Chapter 5. This step maps to
the serialization subsystem in the WSPA.

7. Once the parameters have been created, the target Java class/
method is invoked. In the WSPA, this is a responsibility of the invo-
cation subsystem. Within Java EE 5, it is handled by the JAX-WS
runtime. The class providing the method for invocation can be either
an EJB or a POJO. Figure 2–2 shows that JAX-WS, JAXB, and WS-
Metadata all play a role in defining the annotated Java classes that
comprise the Web service application. That is because annotations
from each of these JSRs are used in these classes. The class that is
invoked (called the service implementation bean) must be marked
by a WS-Metadata annotation (e.g., @WebService) indicating that it
implements a Web service. The classes representing the parameter
and return types most likely have many JAXB annotations. In addi-
tion, some JAX-WS annotations may have been used on the service
implementation bean to control the style of the WSDL.

8. After the invocation, the steps in this process run in reverse. That
Java return type class is handed off for JAXB serialization to become
an XML return type instance. This serialization (like the deserializa-
tion described in step 6) is controlled by the annotations on the Java
return class.

9. Next, the JAX-WS runtime takes the XML return type instance and
wraps it in a SOAP response.

10. Finally, the SOAP response is sent back to the requester as the pay-
load of the HTTP response.

Some steps have been left out of this description (e.g., server-side han-
dler invocation). However, it provides more than enough detail to convey an
idea of what is going on inside the Java EE 5 container when a Web service

34 An Overview of Java Web Services

is deployed and invoked. All the information presented in these steps is
explained in greater detail in subsequent chapters, so don’t get discouraged
if it feels a little overwhelming at this point. Remember Dave Podnar’s fifth
stage for dealing with Web Services:5 “Acceptance—It is what it is, Web
Services aren’t simple or easy.”

Figure 2–3 shows how the various JWS standards (JSRs) support the cli-
ent side of the Web services equation. This discussion applies to client-side
implementations using either Java SE 6 or Java EE 5. As in the server-side
description, the roles of these various JSRs are explained by tracing through
the process of reading a WSDL and invoking a service following the numer-
ical labels provided in Figure 2–3.

The overlapping shaded areas in Figure 2–3 show where the various
JSRs come into play on the client side.

Client-Side Invocation of a Web Service
1. The first step in client-side invocation of a Web service typically

involves the generation of a service endpoint interface (SEI) using a
WSDL to Java mapping tool. The SEI provides a Java representation
of the Web service to be invoked. The SEI is generated prior to com-
piling the client application, as its interface definitions are used in
the client application.6 Figure 2–3 shows that generating the SEI
involves JAXB, JAX-WS, and WS-Metadata. JAXB maps the XML
parameters and return types described in the WSDL to Java parame-
ters and a return type used in the SEI. WS-Metadata annotations
adorn the SEI to document the mapping from wsdl:operations to
Java methods. JAX-WS, meanwhile, provides the standard mapping
from WSDL to Java that is captured in the structure of the SEI and
documented with the WS-Metadata annotations.

2. At runtime, an instance of the JAX-WS javax.xml.ws.Service class is
used to provide the client view of the Web service to be invoked. One
of the Service.getPort methods is used to obtain a run-time instance
of the SEI generated in the previous step. The run-time instance is
implemented using Java proxy technology and is represented in Figure
2–3 as Proxy Instance. As shown in the figure, the Proxy Instance
implements the service endpoint interface (SEI).

5. See Chapter 1, Section 1.1.
6. It is also possible to invoke a Web service without generating a SEI by simply sending
XML directly to the Web service. This approach uses the JAX-WS Dispatch interface,
which is described in detail in Chapter 6.

2.1 The Role of JWS in SOA Application Development 35

3. Next, the Web service invocation is started by invoking one of the
SEI methods on the Proxy Instance. The parameters passed to the
SEI method are instances of classes that are generated during cre-
ation of the SEI (step 1). These classes are defined by the JAXB
mapping from the schemas included in the WSDL. Figure 2–3
indicates that the SEI implemented by the Proxy Instance also
makes use of WS-Metadata and JAX-WS. There are annotations on
the SEI that are defined by both of those JSRs—however, these
annotations do not impact the user’s call to the SEI method. These
annotations are used by the JAX-WS runtime to translate from the
JAXB parameters and method invocation to the SOAP request that
is sent to the Web service. Once the SOAP request has been gener-
ated by the JAX-WS runtime, and before it is sent to the Web ser-
vice endpoint, the handlers (if any) are invoked. Handlers are
defined by the user, and can manipulate the SOAP request/
response messages. The process of packaging client-side handlers

Figure 2–3 Client side—the role of the Java Web Services JSRs.

JAX-WS

JAXB

WSEE

WS-Metadata

Proxy Instance

WSDL to Java
Mapping Tool

(e.g., wsimport)

Web Service

WSDL

Endpoint URL

SOAP
Response

javax.xml.ws.Service

getPort(...)

2

4
JAXB WS-Metadata

3

5

Parameters

Return Value

Service
Endpoint
Interface

1

Handlers

SOAP
RequestService

Endpoint
Interface

36 An Overview of Java Web Services

is defined by the WSEE specification7 and the invocation of han-
dlers is done by the JAX-WS runtime. The annotations used to
attach handlers to an endpoint implementation are defined by the
WS-Metadata specification.

4. After handler processing, the SOAP request message is sent to the
Web service and a SOAP response is returned. The SOAP response
is processed in the reverse order. First, the handlers are applied.
Then, the SOAP response parameters are deserialized (via the
JAXB runtime).

5. Lastly, the proxy instance returns a JAXB instance as the return
value.

As you can see, the client-side process is a bit simpler than the server-
side deployment and invocation. Chapter 6 focuses on the client-side details
and goes through many programming examples showing how to invoke a
Web service.

2.2 A Quick Overview of the Ease-of-Use Features

A primary goal of JWS is to make it easier for Java developers to create and
deploy Web Services. As stated in the Java Specification Request for Java
EE 5 [JSR 244], “The major theme for the next version of Java EE is ease of
development.”

To make a programming framework easy to use, the architects must
make design decisions that involve trade-offs. For example, the JavaServer
Pages Standard Tag Library (JSTL) [JSR 52] makes it easier to create and
maintain JavaServer Pages (JSP) [JSR 152] by standardizing common func-
tions such as accessing URL-based resources and XML processing. How-
ever, this ease of use is paid for with functionality trade-offs. For example,
the XML processing in JSTL doesn’t support the Simple API for XML
(SAX), for processing XML documents.

A good trade-off provides lots of ease of use with few limitations.
Most JSP authors don’t need SAX processing capabilities, so the trade-
off in this example is a good one for them. Furthermore, a good trade-off
lets you “opt out” when necessary. For example, JSP 2.0 lets you opt out
of JSTL and use scriptlets, or custom tags, as needed to handle situations

7. Only supported with Java EE 5 or Java SE 6 clients.

2.2 A Quick Overview of the Ease-of-Use Features 37

that don’t fit within the JSTL framework. So, if you need to use SAX, you
still can.

In this section, I take a brief look at the “ease-of-use” design decisions
implicit in JWS and how they impact the usefulness of the platform. I
briefly discuss whether these design decisions are “good trade-offs,” but
most of that discussion is interspersed throughout Chapters 3–8.

As demonstrated by the Web Services Platform Architecture overview
from Chapter 1, Section 1.2, deploying Web Services with Java is inherently
rather complicated. A primary design goal of a Web Services platform
should be to hide this complexity—particularly the deployment complex-
ity—from the developer. You shouldn’t need to worry about multiple
deployment descriptor files in order to set up a simple, or even moderately
complex, SOA-style application based on Web Services.

A tried-and-true approach to reducing that complexity is to simplify the
problem by restricting its generality. JWS has several mechanisms that
attempt to reduce complexity by imposing constraints on how Web Services
are created and deployed. Chief among these are source code annotations,
a standard WSDL/Java mapping, a standard serialization context (i.e.,
JAXB), and the “Start from Java” development mode.

2.2.1 Source Code Annotations

The JWS designers have introduced source code annotations for Web Ser-
vices to help reduce deployment complexity. Annotations are defined by
JAX-WS [JSR 224], WS-Metadata [JSR 181], and JAXB [JSR 222]. These
annotations are used within all three subsystems defined by the WSPA:
invocation, serialization, and deployment.

For example, in many cases using WS-Metadata annotations allows one
to bypass the complex deployment descriptors required for deploying JAX-
RPC services, and instead simply annotate the class being deployed to
describe how it should map to a Web service. Using this approach, the JWS
deployment subsystem generates the descriptors required by the container
and Web Services platform. As a developer, you don’t need to worry about
the descriptors—just the annotations.

Of course, this leads to more-complex and difficult-to-read source
code. And if you want to publish SOA-style Web Services interfaces for
existing Java classes using this approach, you are going to have to either
create wrapper classes with the necessary annotations or add annotations
to the existing classes. Only time and real-world programming experience
will determine whether annotations are easier to manage than deploy-
ment descriptors.

38 An Overview of Java Web Services

2.2.2 Standard WSDL/Java Mapping

JAX-WS defines a standard mapping of WSDL to/from Java. When a service
implementation bean8 (SIB) with minimal source code annotations is
deployed, the resulting WSDL is based on this default mapping. Having a
default mapping certainly makes it easier for a Java programmer, who may
not understand much about WSDL or XML, to deploy a Web service. And
it is part of the larger goal of building Web Services support directly into the
Java programming language.

However, while the standard mapping makes it easy to deploy a Web
service, it is not clear that the result is a useful Web service. The problem
with the standard mapping is that it isn’t helpful if your Web service needs
to conform to an existing WSDL contract. Granted, the annotations dis-
cussed earlier allow you to “shape” the resulting WSDL, but there are
limitations on how far you can go with such customizations. For example,
you can’t map two operations on the same WSDL port to methods from
two different SIBs. So, if you have a wsdl:port with the operations foo
and bar, both foo and bar must be mapped to methods on the same Java
class or interface. One cannot map foo to MyClass.doFoo() and bar to
AnotherClass.doBar().9

Even more basic, you can’t map a WSDL port to anything but a SIB—
there is no capability to deploy a nonannotated class as a Web service.10

Again, time will tell how useful the standard WSDL/Java mapping
turns out to be. It is premature to either praise it or criticize it. At this
point, your best bet is to understand it well enough to determine
whether it meets your needs.

Having said that the jury is still out on the standard WSDL/Java
mapping, I must also say that the simple fact that Java has a standard
mapping for WSDL is incredibly important. The standard mapping,
despite its limitations, makes it possible to easily deploy Java classes as
Web services. It also makes it possible to automatically generate service
endpoint interfaces (SEIs), as illustrated in Figure 2–3, from an existing
WSDL.

8. A service implementation bean is the type of class that can be deployed as a Web service
endpoint. It can be either a POJO or a stateless session bean and must meet certain criteria
discussed in Chapter 8, Section 8.1.
9. This limitation is discussed further in Chapter 4, Section 4.3.6.
10. According to Section 3.1 of [JSR 181], an implementation of a SIB is required to have an
@WebService annotation.

2.2 A Quick Overview of the Ease-of-Use Features 39

2.2.3 Standard Serialization Context

A standard serialization context simplifies development by removing the
need to specify type mappings and serializers along with a Web Services
deployment. In other words, when using a standard serialization context,
you do not have to define the XML to which their Java classes are mapped.
A default mapping is provided by the standard serialization context. JWS
accomplishes this by delegating serialization to JAXB. JAXB has standard
rules for (de)serializing XML Schema components to/from Java objects.
Using JAXB limits the types of mappings that are supported, but greatly
simplifies the specification of a Web service.

This is definitely an area where simplification is welcome and JAXB
provides a solid framework for Java/XML binding. Again, difficulties creep
in when we start to look at how useful the results of such a standard serial-
ization framework are in practice. To be specific, when we compile an XML
Schema using JAXB, the Java classes that are produced often don’t resem-
ble any of our existing classes. So, for example, if you want to deploy a Web
service that uses some XML Schema type for a purchase order (e.g.,
imported:po) using the JAXB framework, you are not going to be able to
use your existing PurchaseOrder class. You will have to use the Po class gen-
erated by JAXB from imported:po.

Using the generated JAXB classes is fine if you are starting application
development from scratch. That is because when you are starting from
scratch, for example, it is not a problem to use the generated Po class that
JAXB maps to imported:po. However, if you are deploying a Web service
based on existing classes (e.g., your PurchaseOrder class), JAXB may have
less value. There are two ways to deal with this problem—both discussed in
detail in Chapter 5. First, you can customize the standard JAXB mapping to
“shape” the resulting classes. Using this approach, you may be able to add
annotations to your PurchaseOrder class so that JAXB maps it to
imported:po. As you will see in Chapter 4, however, using annotations in this
way is challenging, and many times, it is impossible to produce the mapping
desired. Second, you can use wrappers to map your familiar classes to the
JAXB-generated code. Using the wrapper approach, you would write Java
code to translate between the generated Po class and your existing Purchase-
Order class. Wrappers work, but if you write them, you must maintain that
code. The wrapper approach essentially boils down to storing your Java/XML
mappings as Java code—something that is not generally recommended
because it is difficult to debug and complicates change management. For
example, if the imported:po schema changes, the generated class Po also
changes, and you will then need to update your wrapper code.

40 An Overview of Java Web Services

Previous experience with JAX-RPC 1.1 offers a cautionary tale. JAX-
RPC 1.1 taught us that simplification achieved by restricting the supported
type mappings makes the platform impractical. In JAX-RPC 1.1 (taken
together with JSR-109 Version 1.1—the original deployment specification
for J2EE Web Services), the serialization context is defined in the JAX-RPC
mapping file. This mapping file can be automatically generated by a deploy-
ment tool, or it can be hand-coded to allow the type mappings to be
“shaped.” In this framework, mapping rules can be defined, but only to/
from simple Java types such as java.lang.String, arrays of simple types,
or a special type of Java Bean defined in Section 5.4 of the JAX-RPC 1.1
specification called the “JAX-RPC Value Type.” This restriction is imposed
to simplify serialization for JAX-RPC 1.1 implementations. Unfortunately,
for a great many use-case scenarios, Web services need to be deployed with
type mappings for classes that are not “JAX-RPC Value Types.” This limita-
tion has restricted the usefulness of JAX-RPC 1.1 as a Web Services plat-
form. Analogously, the standard JAXB type mapping mechanism based on
annotations, while certainly much easier to use than the JAX-RPC 1.1
approach, still restricts the structure of the XML that can be deployed in a
Web service and may, therefore, restrict the usefulness of JAXB as a stan-
dard serialization framework for Web Services deployment.

On the whole, however, my feeling is that JAXB 2.0 is not overly restric-
tive and strikes the right balance between simplification and functionality. It
has been embraced by a great many developers as their Java/XML binding
tool of choice.

2.2.4 Development Models

JWS is designed to help make Web Services development easier for Java
developers. As a result, it is biased toward the “Start from Java” develop-
ment mode. “Start from Java” assumes that you create a Web service by
starting with the development of a Java class. In fact, all you need to do to
deploy that class as a Web service, for the most part, is to annotate it with
@WebService. The JAX-WS and JAXB run-time engines will map that class
to a WSDL document using the standard WSDL/Java and XML/Java map-
pings. In the “Start from Java” development mode, if you need to tweak the
shape of your WSDL or XML types, that can be done by adding annotations
to your class. “Start from Java” is the only development mode that is
required by WS-Metadata implementations.

Alternatively, JWS also defines the “Start from WSDL” development
mode. Using this approach, you take a preexisting WSDL and use a WSDL
compiler (provided as part of the JAX-WS implementation) to generate a

2.2 A Quick Overview of the Ease-of-Use Features 41

set of Java program elements that implement the WSDL. Using this
approach, you get a set of SEIs that map to the WSDL. Your job is to imple-
ment the SEIs with the appropriate business logic to implement the Web
services defined by the WSDL.

Finally, the JWS specifications11 also mention a “Start from WSDL and
Java” development mode. Using this approach, you reference a preexisting
WSDL from the @WebService annotation on the Java class intended to
implement it. The annotations on this class must map the class to the refer-
enced WSDL. If there is a mismatch, failure will occur at some point in the
development or deployment process. Practically speaking, I think that this
approach will prove tricky for the majority of programmers because it
requires you to be intimately familiar with how the annotations shape the
WSDL. In addition, you may even unwittingly start out with a Java class that
is simply impossible to map to the referenced WSDL using the annotations.
Making this approach work will require vendors to provide good tools that
give programmers intelligent feedback on how to best use annotations to
map the Java class to the referenced WSDL.

As you can see, when doing “Start from WSDL and Java,” the deploy-
ment problem becomes a matter of mapping the WSDL structure to the
Java methods and parameters of your existing classes. In my experience, this
is the problem most commonly faced by developers who are using Web Ser-
vices for systems integration—either internally or with business partners.
Developers doing integration often start with a WSDL contract that needs
to be implemented (e.g., a specification for a business partner’s e-Business
interface or an SOA service needed for an internal EAI project). Develop-
ers doing integration also usually start with some existing classes (e.g., the
purchasing system). The programming challenge is to front-end the existing
system with a Web service that conforms to the WSDL.

Note that you can’t really solve the “Start from WSDL and Java” prob-
lem elegantly without a highly customizable serialization subsystem. In
“Start from WSDL and Java” development mode, you have preexisting
XML schema types that must map to preexisting Java objects (parameters
and return type). So, almost any Web Services platform that attempts to
simplify the serialization problem (e.g., by defining a standard serialization
context such as JAX-RPC 1.1) ends up introducing the need for wrapper
code in order to solve “Start from WSDL and Java” problems. The wrapper
code is needed to take you from the standard Java representations of the
existing WDSL and XML Schema document to your existing classes. In
practice, that is the approach most commonly used to solve the “Start from

11. See [JSR 181] Section 2.0.

42 An Overview of Java Web Services

WSDL and Java” problem. Developers use the JAX-WS WSDL compiler to
generate a SEI from the existing WSDL, following the “Start from WSDL”
development mode. Then, this SEI is mapped to the existing classes using
wrappers.

On the other hand, there is a case to be made that the “Start from
WSDL and Java” development mode is actually the easiest to deal with
because when both the WSDL and the Java are defined, the developer does
not need to do any design work. That is, the developer doesn’t need to
design a flexible and useful WSDL or a good Java API. This may be true
from a designer’s point of view, but from a developer’s point of view, “Start
from WSDL and Java” is the most difficult problem to solve using the JWS
tools. JWS can generate valid WSDL from your Java, and it can compile
Java classes from your XML Schema, but it can’t help you very much when
it comes to mapping existing Java to existing XML Schema and WSDL.

Precisely because of the difficulties it presents to the JWS tools, I feel
strongly that the best way to understand Web Services development and
deployment is to assume that you have existing WSDL and Java artifacts to
work with. As a developer, if you learn to solve “Start with WSDL and Java”
problems, the other two development modes are much easier to deal with.
That is because doing “Start with WSDL and Java” forces you to learn the
details of JWS Java/XML binding (JAXB) and Java/WSDL mapping (JAX-
WS). In addition, you will learn to recognize the limitations of “Start with
Java” and “Start with WSDL,” so you can avoid creating Web Services archi-
tectures that can cause problems down the road.

2.2.5 JWS Trade-Offs

As discussed previously, each of the JWS simplifications trade off against the
capability of the Web Services platform to create and deploy useful Web
Services. For example, the JWS “Start from Java” development mode makes
it easy to deploy a Web service, but how useful is that Web service? Is it
compliant with your enterprise or industry XML Schema standard types? I
discuss these trade-offs—for JAX-WS, JAXB, WS-Metadata, and WSEE—
throughout Chapters 3–10. In Chapter 11, I look at another design
approach to dealing with these trade-offs that focuses on making “Start
from WSDL and Java” and change management problems easier to solve by
employing what I call “WSDL-centric” development.

Before diving into Chapters 3–10, and heading further down the path of
explaining and critiquing JWS details, I spend the rest of this chapter taking
a step back to give you an overview of the JWS programming model as it
relates to the general Web Services Platform Architecture described in

2.3 JAX-WS 2.0 43

Chapter 1, Section 1.2. There is a lot of powerful machinery inside JWS,
and the better you understand it, the more tools you will have to bring to
bear on your own Web Services development challenges. The remainder of
this chapter provides a quick tour of that machinery.

2.3 JAX-WS 2.0

JAX-WS 2.0 specifies the invocation subsystem of JWS, part of the deploy-
ment subsystem, and even a little bit of the serialization subsystem. It is a
follow-on specification to JAX-RPC 1.1 and offers many improvements to
that specification.

JAX-WS provides a lot of features, and Table 2–1 shows where some of
them fit into the Web Services Platform Architecture described in Chapter 1,
Section 1.2. This section describes each of the features cataloged in Table 2–1.

Table 2–1 JAX-WS Feature Map

Invocation Serialization Deployment

Dynamic and Static
Clients

Invocation with Java
Interface Proxies

Invocation with XML

Message Context

Handler Framework

SOAP Binding

HTTP Binding

Converting Exceptions to
SOAP Faults

Asynchronous Invocation

One-Way Operations

Client Side Thread
Management

Pseudo Reference Passing

WSDL Styles—Support
for RPC/Literal and
Document/Literal
Wrapped

Java/WSDL Mapping
Static WSDL

XML Service Providers

XML Catalogs

Run-time Endpoint
Publishing (Java SE
Only)

44 An Overview of Java Web Services

2.3.1 Java/WSDL Mapping

The JAX-WS 2.0 specification [JSR 224] defines a standard Java/WSDL
mapping. This standard Java/WSDL mapping is part of the JWS deploy-
ment subsystem. It determines how WSDL operations are bound to Java
methods—in other words, when a SOAP message invokes a WSDL opera-
tion, the Java/WSDL mapping determines which Java method gets invoked
and how that SOAP message is mapped to the method’s parameters. Con-
versely, the mapping also determines how the method’s return value gets
mapped to the SOAP response.

This standard mapping allows one to start with a Java class, pass it
through a JAX-WS processor (usually a utility called something like
java2wsdl or wsgen), and generate a WSDL description of a Web service
endpoint. A developer can influence the shape of the generated WSDL by
annotating the Java source code as described in the WS-Metadata discus-
sion in Section 2.5. The generated WSDL always conforms to the WS-I
Basic Profile 1.1 [WS-I BP 1.1]. This is referred to as the “Start from Java”
development mode.

Conversely, one can start with a WSDL document and generate Java
classes and interfaces. The standard mapping can be customized by either
using embedded binding declarations (annotations to the WSDL source
that are made using the jaxws:bindings extension element) or supplying
an external binding file that contains the declarations. The Java classes
that one gets this way are wrapper classes, and the developer needs to fill
in the business logic required to implement the Web service. The classes
generated in this manner include source code annotations that describe
the WSDL/Java mapping. Deploying these classes, with the generated
annotations, results in a Web service that “faithfully reflects[s] the infor-
mation in the WSDL document(s) that were given as input to the map-
ping processes ….”12 So, when developers deploy those generated classes,
they might not get exactly the same WSDL they started with, but it should
be functionally equivalent. This is referred to as the “Start from WSDL”
development mode.

If you’ve noticed that the “Start from WSDL” development mode is
really the same as “Start from Java” once you get to deployment, you are
right. JWS is a Java-centric approach to Web Services. Even when you start
with the WSDL, you use JAX-WS to translate that WSDL into annotated
Java source that becomes the JWS implementation’s internal definition of
your Web service. JAX-WS treats WSDL as an interface definition language

12. JAX-WS 2.0 specification, Chapter 2 [JSR 224].

2.3 JAX-WS 2.0 45

(IDL) from which Java classes are generated. The actual WSDL that is dis-
played at runtime is derived from the annotations.

Although the annotations give you a great deal of flexibility in determin-
ing the shape of the WSDL (e.g., you can even force some of a Java
method’s parameters to be mapped to SOAP header elements), some basic
principles of this WSDL/Java mapping are not flexible:

■ WSDL port types map to Java interfaces: A wsdl:portType ele-
ment is mapped to a Java interface called the service endpoint inter-
face (SEI). This is a granularity constraint. You cannot map
individual operations within a port type to different Java interfaces.
The JWS model enforces a 1–1 correspondence between a SEI and a
port type. To implement a port type, you must deploy a SEI.

■ Parameter and return type mappings must be compatible
with JAXB: The annotations let you specify specific type mappings
for the SEI parameters and return type. However, these type map-
pings must be compatible with JAXB 2.0. That is, the classes used for
the SEI parameters and return type must use JAXB annotations to
specify the XML Schema components to which they are mapped.

2.3.2 Static WSDL

JAX-WS lets the developer specify a static WSDL document that can
bypass the automatic generation of WSDL that is based on the standard
WSDL/Java and XML/Java (JAXB) mappings. This is an important capabil-
ity when you need to publish a Web service that conforms to a specific
WSDL—the most common use case when you are doing SOA-style systems
integration.

This capability also makes it possible for you to publish WSDL based on
existing schemas (e.g., your existing po:purchaseOrder element definition)
rather than JAXB-generated types. The static WSDL approach is used in
the “Start from WSDL and Java” development mode (see Section 2.2.4).

2.3.3 Dynamic and Static Clients

JAX-WS Web Service clients are instances of javax.xml.ws.Service. An
instance of Service corresponds to a wsdl:service element of the target
Web service’s WSDL document. Service instances can be created dynami-
cally or statically. For dynamic generation, the Service is created at runtime
by one of the Service.create factory methods. Alternatively, during devel-
opment, one can generate a subclass of Service from a WSDL document

46 An Overview of Java Web Services

using the JAX-WS processing tool (e.g., wsimport for GlassFish) provided by
the JAX-WS vendor.

2.3.4 Invocation with Java Interface Proxies

Both dynamically and statically generated Service instances can create a
proxy for invoking a Web service using a service endpoint interface (SEI).
One of the Service.getPort methods is used to create an instance of the
SEI that is bound to the target wsdl:port. Of course, the SEI used must be
consistent with the JAX-WS Java/WSDL mapping and JAXB XML/Java
mapping. For this reason, when SEI proxies are used, it is usually with a
statically generated Service instance that is created along with the SEI
when the JAX-WS processing tool (e.g., wsimport from GlassFish) compiles
the target WSDL prior to runtime.

2.3.5 Invocation with XML

As an alternative to invocation with Java interface proxies, a Service
instance can be used to invoke a Web service by sending and receiving
XML messages. In this case, the Service provides an instance of
javax.xml.ws.Dispatch using one of the createDispatch methods. This
can be a useful feature for when you want to bypass the JAXB serialization
process.13 It lets you construct your own SOAP message and send it directly
to a Web service. It also enables you to interact with a Web service directly
via XML without having to translate in and out of Java. Often, when doing
Web Services programming, you will find that working directly with the
XML is the most natural way to get things done. Kudos to the JAX-WS
architects for putting this in (it was left out of JAX-RPC)!

2.3.6 XML Service Providers

Just as you can invoke a Web service using XML messages (see Section 2.3.5),
so it is possible to deploy a service that simply sends and receives XML mes-
sages without providing any automated binding to JAXB annotated classes.
JAX-WS provides this capability through the javax.xml.ws.Provider inter-
face. When a service is created using the Provider interface, it doesn’t use a
SEI—bypassing the JAX-WS Java/WSDL mapping and the JAXB Java/XML
mapping. The Provider interface lets you write services that work directly

13. Chapter 6 provides an example of how to use Dispatch to bypass JAXB serialization.

2.3 JAX-WS 2.0 47

with the XML request and response messages. I illustrate how to use this
approach to deploy services that make use of non-JAXB type mappings in
Chapter 7.

2.3.7 Handler Framework

JAX-WS defines request and response handlers that can be used on both
the client side and the server side. Handlers provide pre- and post-process-
ing of messages. For example, a handler could be used to post-process a cli-
ent message, adding authentication headers, before it is sent to a target
Web service. On the server side, a handler could be used to preprocess the
message, checking those authentication headers, before the message is dis-
patched to invoke the target service.

JAX-WS handlers are organized into an ordered list known as a handler
chain and are invoked in order. Handlers have read/write access to the XML
message and the message’s context (see Section 2.3.8)—both on the client
side and on the server side. Handler chains are configured using deploy-
ment metadata (i.e., @javax.jws.HandlerChain). Alternatively, on the cli-
ent side, handler chains can be configured at runtime using the
HandlerResolver interface.

Handler chains are defined at the port level—so all methods defined by
a SEI must use the same handler chain. This is true for both client- and
server-side invocation.

JAX-WS defines two types of handlers: logical and protocol. Logical
handlers are concerned with the processing of the XML message and are
independent of the protocol binding. Protocol handlers, on the other
hand, are designed for processing related to the protocol binding (e.g.,
SOAP). The protocol handler for SOAP,14 for example, has access to the
SOAP structure of a message via the SAAJ API [JSR 67]. A logical han-
dler15 on the same chain provides access to the message payload as a
javax.xml.transform.Source or JAXB annotated class instance, but not
via the SAAJ API.

Configuration files, termed “handler chain files,” are required for the
deployment of handlers specified using the @HandlerChain annotation.
WSEE [JSR-109] specifies the deployment model for handlers, including
the use of these handler chain files.

14. javax.xml.ws.handler.soap.SOAPHandler<T extends SOAPMessageContext>
15. javax.xml.ws.handler.LogicalHandler<C extends LogicalMessageContext>

48 An Overview of Java Web Services

2.3.8 Message Context

JAX-WS enables handlers, endpoints, and clients to manipulate a mes-
sage context (javax.xml.ws.handler.MessageContext) that travels
along with the XML request/response messages. This is a useful tool that
enables, for example, communication between request handlers, end-
point implementation, and response handlers. To understand how a mes-
sage context can be used, suppose you want to implement some type of
message sequencing (e.g., as in Web Services ReliableMessaging [WS-RM])
and you have a request handler that pulls a message’s order in a particu-
lar sequence out of a SOAP header element. In this case, the endpoint,
which is processing messages concurrently, might not want to send the
response until all previous messages in the sequence have been pro-
cessed. The ordering of the responses, or even the endpoint processing,
can be controlled based on the sequence information the request handler
has put in the message context.

Endpoint implementations can get access to the message context using
dependency injection (see Section 2.7.1).

Clients can access the message context using the getRequestContext
and getResponseContext methods of the BindingProvider interface.
This capability can be used to facilitate initialization of protocol-specific
features. While, strictly speaking, this is outside of the Web Services stack,
it can be very useful. For example, this feature enables you to work with
HTTP authentication by specifying the username and password in the cli-
ent message context.

2.3.9 SOAP Binding

JAX-WS 2.0 specifies a SOAP binding for SOAP message processing. This
includes mustUnderstand processing, and support for the SOAP 1.2 next16

and ultimateReceiver17 roles. The SOAP binding also supports SOAP han-
dlers (an extension of protocol handlers—see Section 2.3.3) for SOAP
header processing. The SOAP binding maps handler and service exceptions
to SOAP fault messages (see Section 2.3.11). WS-Metadata annotations (see
Section 2.5.2) can be used to customize this SOAP binding.

JAX-WS implementations must support the SOAP HTTP binding,
SOAP With Attachments, and SOAP MTOM.

16. Or, equivalently, the SOAP 1.1 next actor.
17. Or, equivalently in SOAP 1.1, the omission of the actor attribute.

2.3 JAX-WS 2.0 49

2.3.10 HTTP Binding

In addition to the traditional SOAP binding, JAX-WS provides an XML/
HTTP binding to enable the deployment and consumption of Web services
defined using the REST framework [Fielding]. Such services, often called
RESTful, send and receive XML over the HTTP transport, without using
SOAP. The HTTP binding enables JAX-WS to deploy and consume REST-
ful services. Chapter 3 describes how to implement RESTful services using
JAX-WS and the HTTP binding.

2.3.11 Converting Exceptions to SOAP Faults

The JAX-WS mapping of Java java.lang.Exception to SOAP fault mes-
sages (WSDL faults) is very useful. Even when one deploys a RESTful ser-
vice using the Provider interface (see Section 2.3.6), the JAX-WS runtime
can convert Exception instances into SOAP fault messages that are
returned to the client. The mapping from Java exceptions to WSDL faults is
controlled by the WebFault annotation. This feature saves you a lot of time
and energy by eliminating the need to write code that maps your service
exceptions to SOAP faults. Of course, if you want to customize the fault
handling process, you can do so with JAX-WS handlers.18 I take advantage
of this JAX-WS fault handling in SOA-J, even though I bypass the entire
Java/WSDL mapping and JAXB serialization mechanisms.

There has been criticism of the JAX-WS approach for turning Java
exceptions into SOAP faults. The main criticism seems to be that it inserts
Java-related implementation details into the Web Services stack, potentially
confusing Web Services consumers that are not implemented in Java and
have nothing to do with Java. This criticism strikes me as misguided. Java
exceptions thrown because a Web service gags on a badly constructed
SOAP message—or a message with bad content—are not Java-specific
exceptions. Translating these into WSDL fault messages makes a lot of
sense. On the other hand, if you throw an exception because of some kind
of Java run-time problem (e.g., a class cast exception), that should not make
its way out into a WSDL fault message.

So, you still need to write good code, and catch the exceptions that are
Java internal issues—reinterpreting them as SOAP fault messages that are not
Java-specific. On the other hand, it is safe to pass along application-specific
exceptions to the SOAP fault mechanism of JAX-WS.

18. Chapter 7, Section 7.5, provides programming examples showing how to implement
SOAP fault processing with handlers.

50 An Overview of Java Web Services

2.3.12 Asynchronous Invocation

JAX-WS adds asynchronous support to the invocation model defined by
JAX-RPC 1.1. This is a big step forward for enterprise Java, since asyn-
chrony is a fundamental requirement for SOAP.

Even better, however, is the fact that JAX-WS supports two models for
asynchronous request-response messaging: polling and callback. Polling
enables client code to repeatedly check a response object to determine
whether a response has been received. Alternatively, the callback approach
defines a handler that processes the response asynchronously when it is avail-
able. Asynchronous callback is much like defining a listener on a Java Mes-
sage Service (JMS) [JSR 914] temporary message queue to handle responses
that come in asynchronously. The listener is invoked when the responding
service “calls back” with the response. Polling is analogous to checking the
temporary queue periodically as you wait for the response to arrive.

2.3.13 One-Way Operations

JAX-WS 2.0 supports mapping Java methods to WSDL one-way operations.
This is an important feature because it enables “fire and forget” style messag-
ing similar to JMS, but based on SOAP over HTTP. One-way operations pave
the way for developers to add support for reliable messaging protocols (e.g.,
Web Services Reliable Messaging [WS-RM]). Reliable messaging would
enable JWS to be used as a platform for creating loosely coupled applications
based on messaging-style Web Services—a key goal of SOA design.

2.3.14 Client-Side Thread Management

An instance of java.util.concurrent.Executor can be set on a JAX-WS
client (i.e., an instance of javax.xml.ws.Service) to provide custom
thread control. This allows the developer to control thread creation and
usage when doing asynchronous Web service invocation. One use case for
this capability is to implement custom thread pooling to enhance perfor-
mance. See Section 2.3.12 for more on asynchronous invocation.

2.3.15 WSDL Styles—Support for RPC/Literal and
Document/Literal Wrapped

JAX-WS delegates serialization to JAXB. However, to package the serialized
parameters into a SOAP message, JAXB needs some guidance from JAX-
WS. That guidance depends on the WSDL style used by the deployed Web

2.3 JAX-WS 2.0 51

service—and that style is determined when the service is deployed. For
example, the parameters could be packaged as individual children of the
SOAP body element (unwrapped), or they could be wrapped into a single
element child of the body (wrapped).

JAX-WS supports the two most popular, WS-I-compliant, WSDL styles:
rpc/literal and document/literal wrapped.19 The rpc/literal style is called
“RPC” by the JAX-WS specification.20 It is specified by using a
javax.jws.SOAPBinding annotation with the following properties: a style of
RPC, a use of LITERAL, and a parameterStyle of WRAPPED. The docu-
ment/literal wrapped style is called “Document Wrapped” by the JAX-WS
specification.21 It is specified by using a javax.jws.SOAPBinding annotation
with the following properties: a style of DOCUMENT, a use of LITERAL,
and a parameterStyle of WRAPPED.

WSDL style is a confusing topic that is critical for interoperability of
Web Services across multiple platforms (e.g., Java and .Net). This topic is
described in depth in Chapter 4, Section 4.3.

Based on the style of WSDL being employed, JAX-WS defines two beans
for each method: a request bean and a response bean. These beans are essen-
tially wrappers for the request parameters and response value. When serialized
by JAXB, the request bean and response bean produce the correct SOAP
request message body and SOAP response message body, respectively.

2.3.16 XML Catalogs

JAX-WS provides support for XML Catalogs—including the OASIS XML
Catalogs 1.1 specifications. This is a great feature because, as discussed in
Chapter 4, it’s helpful for WSDL documents to import external schemas
so that you don’t have to keep duplicating the same schema information in
each WSDL document whenever you use standard types. The challenge
to importing schemas is being able to find them at runtime. Should you
deploy the schemas on some local HTTP server? You could, but if that
URL ends up as http://localhost/myschema.xsd, it’s not going to resolve
properly on another machine.

An XML Catalog lets you map external references to imported schemas
to local instances of such schemas. If you do your packaging properly (e.g.,
adding schemas to the application jar files), these local instances should be

19. It also supports document/literal/bare, which is not WS-I-compliant.
20. See Section 3.6.2.3 of [JSR 224].
21. See Section 3.6.2.1 of [JSR 224].

52 An Overview of Java Web Services

accessible by the context class loader at runtime. Chapter 8, Section 8.7,
provides a programming example illustrating how to use XML Catalogs.

2.3.17 Pseudoreference Passing (Holder<T> for Out and
In/Out Parameters)

Java method invocations pass object references by value. When you pass an
instance of PurchaseOrder in a Java method invocation, the value the
receiving object gets is a reference to that PurchaseOrder—not a copy of
that PurchaseOrder. Web Services do not work this way. When a Purchase-
Order is passed to a Web service, a serialized copy of the instance is
wrapped in a SOAP message and transmitted over the wire.

Passing references is useful because sometimes you would like to invoke a
method that changes the state of your PurchaseOrder instance (e.g., normal-
izes the billing address). JAX-WS 2.0 provides a pseudoreference passing
mechanism based on the Holder class. Of course, one can’t really pass a refer-
ence to a PurchaseOrder residing in a local address space using SOAP, but
JAX-WS can make it appear as though you are doing just that. This is accom-
plished by using a Holder<PurchaseOrder> class as a reference to your Pur-
chaseOrder. During the invocation of the Web service, JAX-WS sends a copy
of your PurchaseOrder to the target, and gets back a modified version of it
(e.g., with the billing address normalized). Under the covers, JAX-WS
updates the Holder<PurchaseOrder> instance so that it references the Pur-
chaseOrder instance received from the Web service.

This mechanism works, but I think it has dubious value and can even be
dangerous. Suppose that you have other objects referencing your Pur-
chaseOrder instance. These object references are not updated as a result of
the Web service invocation—only the Holder class instance gets updated.
Therefore, these references are now invalid and you will have to manually
update them. In my opinion, the Holder concept (along with in/out and out
parameters other than a return value) is misguided. You can’t pass an object
reference to a Web service, and trying to make it seem as though you are
leads to confusing and error-prone code.

2.3.18 Run-time Endpoint Publishing (Java SE Only)

JAX-WS provides a capability that enables the publishing of Web Services end-
points at runtime.22 There is a simple API (javax.xml.ws.Endpoint) that you
can use to assign an instance of a Web service implementation to a URL.

22. Typically, creating an endpoint that can be invoked requires a deployment step.

2.3 JAX-WS 2.0 53

Run-time endpoint publishing is awesome—in my opinion, it is one of
the coolest features in JAX-WS. Unfortunately, it isn’t allowed within the
Java EE 5 container per WSEE [JSR 109]. Section 5.3.3 of WSEE states,
“The use of this functionality is considered non-portable in a managed envi-
ronment. It is required that both the servlet and the EJB container disallow
the publishing of the Endpoint dynamically”

I wish the Expert Groups could have gotten together to figure out how
to support this terrific feature within the Java EE 5 container, particularly
since it is so consistent with the “ease-of-use” goals set out for Java EE 5.
Hopefully, we will see it in a future version of Java EE.

In any event, the good news is that the JAX-WS specified dynamic end-
point publishing mechanism is supported in Java SE—starting with version
6.23 I provide a detailed programming example of how to use this feature of
Java SE 6 in Chapter 7, Section 7.7.

The following code snippet gives you an idea of the power and simplic-
ity of the Endpoint API:

MyServiceImpl myWebService = ... // construct your Web service
Endpoint myEndpoint = Endpoint.publish("http://javector.com/myService",
 myWebService);

The JAX-WS runtime takes care of creating the necessary server
infrastructure. That includes creating the HTTP context and listening
for SOAP requests on the specified URL. When using this simple
approach, the WSDL contract for the endpoint is created dynamically
based on the source code annotations included in MyServiceImpl or the
metadata documents deployed using the Endpoint.setMetadata
method. The default location for the WSDL is http://javector.com/
myService?wsdl.

Additional Endpoint methods enable you to customize the binding (if
you want something other than SOAP1.1/HTTP) and the server context.
JAX-WS also lets you set custom java.util.concurrent.Executor
instances per endpoint to control how concurrent requests are serviced.
This is a nice feature if you need to optimize threading for concurrency or
performance objectives.

23. Java SE 6 can be downloaded from http://java.sun.com/javase/6.

54 An Overview of Java Web Services

2.4 JAXB 2.0

Section 2.3 highlighted what I consider the most interesting and important
features of the JAX-WS specification. Each of these features will be covered
in depth in the coming chapters—particularly Chapters 6 and 7, which
focus on the JAX-WS client side and server side, respectively.

In this section, the focus is on the important and interesting features of
JAXB 2.0. JAXB 2.0 defines a standard Java/XML binding from Java repre-
sentations to XML Schema components and vice versa. It tackles a tough
problem. XML Schema is a complex and expressive language. So is Java.
Implementing a standard binding between these languages is a big, complex
task. It is no wonder the specification weighs in at more than 370 pages!

JAX-RPC defined its own Java/XML binding—independent of JAXB
1.0. JAX-WS 2.0 (the successor to JAX-RPC) no longer defines a Java/XML
binding. That task has been delegated to JAXB 2.0.

My goal in this book is not to provide a comprehensive programmer’s
guide to JAXB 2.0. Rather, this book focuses narrowly on its application to
Web Services—on its role as the Java/XML binding framework for JAX-WS
2.0. This section of Chapter 2 talks about what kinds of problems JAXB can
solve and how it fits into the Web Services Platform Architecture described
in Chapter 1, Section 1.2. Along the way, I highlight those features of JAXB
2.0 that define its character—that is, the features that make it good at some
things and not so good at others. Chapters 4 and 5 provide much more
detail and programming examples related to JAXB 2.0.

To start the discussion about JAXB 2.0, it is helpful to clearly define
how I use the term Java/XML binding and the related terms Java/XML
map and type mapping.24 I define a type mapping to be a relationship
between a Java programming element and an XML Schema component—
for example, corp:AddressType and samples.Address. A type mapping is
implemented by a serializer and a deserializer. The serializer converts
instances of the Java class into XML instances that conform to the
schema. The deserializer does the reverse. A type mapping can be
expressed simply as a pair: <J, X>, where J is a Java program element and
X is an XML Schema component. By itself (i.e., without the serializer and
deserializer), a type mapping says nothing about how it is implemented.

24. As far as I can tell, there is no consistent usage of these terms in the general literature—
not even in the Java specifications. The usage described here is what I developed for this
book to try to bring some order to the terminology.

2.4 JAXB 2.0 55

I define a Java/XML map to be a set of type mappings. It is not neces-
sarily a function—in other words, the same Java class could be mapped to
two different XML Schema types. If a Java/XML map sends each Java pro-
gramming element to a unique XML Schema component (i.e., it defines a
function), I call it a Java/XML binding.

Beyond this definition of a binding as a map where each Java class
uniquely represents a schema component, is a difference in the way a bind-
ing framework encourages you to think about serialization versus how a
type mapping framework encourages you to think. Programmers working
with bindings tend to think of the Java class as a representation of some
schema type or element. That is, from the binding perspective, the Java
class represents the schema it is bound to. And that binding is thought of as
a higher-level API (e.g., higher-level than DOM) for manipulating schema
instances.

On the contrary, programmers working with a type mapping framework
are not encouraged to think of the Java classes as representing (or bound to)
particular schema components. Rather, the type mappings simply represent
a bridge to the XML world from the Java world. In this mindset, the Java
classes do not exist simply to represent a corresponding XML schema com-
ponent. Rather, they perform a function within an existing system (e.g., pur-
chasing) and when needed, they can be serialized to/from an appropriate
XML form to exchange data with another system.

Using this terminology, JAXB 2.0 is best thought of as a Java/XML bind-
ing tool. That is because the annotations on the Java classes used by JAXB
2.0 define a binding. Each class maps to a unique XML Schema component
based on its annotations.25 Chapter 5, Section 5.1, discusses the distinction
between binding and mapping in more detail.

As you read this section, keep in mind that the JAXB 2.0 specification
provides a Java binding of an XML schema to make it easy for Java pro-
grammers to work with XML instances of the schema. The goal of JAXB 2.0
is to provide a higher level of abstraction than Java implementations of SAX,
DOM, XPath, or other approaches to manipulating XML in the Java pro-
gramming language. The binding provides this mechanism by associating a
set of Java classes with an XML schema so that schema instances are manip-
ulated using Java methods.

25. This is slightly untrue in the case of the @XmlRootElement annotation. Classes so anno-
tated may define both an XML Schema type and a global element of that type. The basic
concept holds true, however. There is no way to apply two sets of annotations (and hence
define two type mappings) on a single Java class.

56 An Overview of Java Web Services

The JAXB 2.0 authors envision two scenarios from which bindings arise:

■ Start from Java: In this scenario, the Java classes exist first and are
used to generate an XML schema via a JAXB 2.0 schema generator.
The classes need not be explicitly annotated, because JAXB 2.0
defines defaults to supply implied annotations wherever needed.

■ Start from XML Schema: In this scenario, the schema(s) exists first
and the Java classes in the data binding are created using a JAXB 2.0
schema compiler.

Notice that neither case is designed to deal with the “Start from XML and
Java” situation commonly faced when approaching the problem of SOA-style
integration. In that scenario, you typically have an XML schema—or at least
some corporate standard XML types—which you need to make use of. You
also have a set of existing Java classes that need to be front-ended with Web
Services interfaces. So, the challenge is to map existing XML schema to exist-
ing Java classes26—the “Start from XML and Java” problem. In the integra-
tion scenario, you are interested in defining a Java/XML map (and the
serializers to implement its type mappings), rather than applying an existing
Java/XML binding—such as the one defined by JAXB 2.0. One difference is
that you may have multiple Java classes that need to map to a single XML
schema. Another difference is that you cannot rely on a schema compiler or
generator to automatically create the mappings needed for SOA-style integra-
tion. The mappings must be specified by the developer. In some cases, the
mappings might not even be possible to implement using JAXB 2.0 annota-
tions. Section 1.3 of the JAXB 2.0 specification [JSR 222] states that “The
JAXB annotation mechanism is not sophisticated enough to enable mapping
an arbitrary class to all XML schema concepts.”

This “Start from Schema and Java” problem is not solved directly by
JAXB 2.0, but you can use JAXB 2.0 as a tool for solving that problem. Some
ad hoc approaches using JAXB 2.0 to solve the “Start from Schema and
Java” problem are described in Chapter 5. A more general and sophisti-
cated approach is described in Chapter 11 where the SOA-J serialization
subsystem is analyzed.

Like JAX-WS, JAXB provides many features, and Table 2–2 shows how
those features I regard as the most important or interesting map to the invo-
cation, serialization, and deployment subsystems of the Web Services Plat-

26. This is similar to the “Start from WSDL and Java” development mode described in Sec-
tion 2.2.4.

2.4 JAXB 2.0 57

form Architecture described in Chapter 1, Section 1.2. The remainder of
this section describes each of the features cataloged in Table 2–2.

2.4.1 Binding XML Schema to Java Representations

As discussed previously, the JAXB 2.0 specification provides a standard Java/
XML binding that represents XML Schema components (e.g., elements,
types, attributes) as Java content (e.g., classes, bean properties). This bind-
ing forms the part of the JWS deployment subsystem that maps the WSDL
message parts to Java method parameters and return types that are used
during invocation of a Web service.

JAXB 2.0 implementations provide a schema compiler that generates
JAXB schema-derived Java program elements from an XML schema. In
general, the schema-derived program elements generated from complex
types are referred to as Java value classes. Each value class provides access
to the content of its corresponding schema component using get/set proper-
ties. So, the elements and attributes of a complex type are mapped to prop-
erties of a Java value class. The superficial characteristics of the value classes
(e.g., names of the bean properties) can be customized by using the JAXB
Binding Language (see Section 2.4.4). However, the basic structure of a
value class is determined by its source schema component. For example, an
element that occurs multiple times, such as

<xs:element name="foo" type="Bar" maxOccurs="unbounded"/>

Table 2–2 JAXB Feature Map

Invocation Serialization Deployment

Binding Runtime
Framework (Marshal/
Unmarshal)

Mapping Annotations

Validation

Marshal Event
Callbacks

Partial Binding

Binary Data Encoding
(MTOM or WS-I)

Binding XML Schema
to Java Representations

Mapping Java Types to
XML Schema

Mapping Annotations

Binding Language

Portability

58 An Overview of Java Web Services

can be mapped to a List<Bar> or Bar[], but either way, the structure is
basically the same.

Now, suppose you want to map an XML schema component represent-
ing a phone number as separate area code and local number, to a Java prop-
erty that is a single string (see Example 2–1).

Example 2–1 Mapping Two Attributes to a Single Bean Property

<xs:element name="phone">
 <xs:complexType>
 <xs:attribute name="area" type="xs:string"/>
 <xs:attribute name="localnum" type="xs:string"/>
 </xs:complexType>
</xs:element>

String getPhone(); // returns area+"-"+localnum
void setPhone(String s); // where s = area+"-"+localnum

To do this with JAXB, you have to resort to writing a custom mapping
class by extending javax.xml.bind.annotation.adapters.XmlAdapter
(see Section 2.4.3).

In contrast to complex types, simple types—and particularly the built-
in XML Schema types like xs:string—are mapped to the corresponding
Java primitives or holder classes (e.g., java.lang.String, java.lang
.Integer, int).

Outside of their use in the JWS framework, JAXB value classes can be a
great tool for manipulating XML instances at a high level of abstraction.
Along with these classes, the schema compiler generates factories for creating
element instances. These factories and value classes enable you to easily cre-
ate valid XML instances from a schema. Working with a lower-level API—like
DOM—makes writing programs that create valid schema instances much
harder. Using DOM, for instance, the programmer assembles an infoset and
then must run it through a JAXP Validator to catch errors. Alternatively,
using JAXB (or similar schema-compiler tools like XmlBeans [XMLBeans])
makes it much easier to write code that produces valid XML.

The primary drawback of the JAXB Java representation of XML
Schema is that it does not help us serialize existing Java objects to valid
instances of existing schema components. As discussed in Section 2.2.4, this
“Start from WSDL and Java” (SFJW) problem is important for SOA-style
integration. The consequence of this JAXB limitation is that when you

2.4 JAXB 2.0 59

deploy a Web service using an existing WSDL (or build a WSDL from some
existing schema(s)), the Java interfaces that are generated (i.e., the SEIs)
have parameters and return types that are JAXB value classes. To use these
classes with your existing Java applications, you need to write mapping code
to go from your existing classes to the JAXB value classes. That is almost as
much work as writing your own serializers!

2.4.2 Mapping Java Types to XML Schema

The JAXB 2.0 Java/XML binding also provides a standard map from Java
classes to XML Schema. JAX-WS 2.0 uses this map to generate WSDL
from a Java class deployed as a Web service. This “Start from Java” (SFJ)
approach to Web Services (see Section 2.2.4) is the primary use case for the
JAXB Java to XML Schema standard mapping.

When doing SFJ, the parameters and return type of a Java method
being deployed as a wsdl:operation determine the schema components in
the wsdl:types section. WSDL structure is explained in detail in Chapter
4, but for now it suffices to understand that the wsdl:types section contains
XML Schema element and type definitions used in the WSDL interface
definitions describing the Web service.

JAXB implementations provide a schema generator that creates schema
from existing classes using the standard map. The schema generator looks
for JavaBeans style properties and maps them to attributes and elements. If
the class you start with doesn’t look like a JavaBean, not much XML Schema
can be generated from it. However, if your class has lots of properties, the
JAXB schema generator will be able to create useful schema from it. How-
ever, the defaults may not come up with names you like—nor map proper-
ties to elements versus attributes in a way you would like. To get past these
problems, mapping annotations are provided (see Section 2.4.3) that enable
you to tell the schema generator how to match fields and classes with XML
Schema components. In theory, this approach could be used to map an
existing Java interface to an existing port type. But again, this is almost as
much work as writing a custom serializer. Another drawback is that you
can’t provide multiple sets of annotations to provide bindings to more than
one schema component.

2.4.3 Mapping Annotations

Mapping annotations are the mechanism used by JAXB 2.0 for customizing
the standard Java/XML binding. The schema generator discussed in Section
2.4.2 actually requires two inputs: a set of classes and a set of mapping

60 An Overview of Java Web Services

annotations. The schema generator, however, assumes defaults for every-
thing, so if there are no annotations, the schema generated is based entirely
on the default Java/XML binding.

Example 2–2 shows how a mapping annotation is used to map the Java-
Bean property defined by get/set PurchaseOrderNumber to the schema ele-
ment named orderNum:

Example 2–2 Customizing the Default Mapping of a Property’s Name

public class PurchaseOrder {
 // ...
 @XmlElement(name="orderNum")})
 String getPurchaseOrderNumber();
 void setPurchaseOrderNumber();
};

<xs:element name="orderNum" type="xs:string"/>

Besides allowing the developer to customize the Java/XML binding, these
annotations are also generated by the schema compiler when mapping in the
reverse direction. That is, when you are working in the “Start from XML”
(SFX) development mode, the code that JAXB generates from your schema
contains annotations that document the XML components from which the pro-
gram elements were mapped. These generated annotations are used at runt-
ime to marshal JAXB classes to/from an XML infoset representation. A JAXB
implementation can actually figure out how to marshal an instance of a gener-
ated class—created by another implementation of JAXB—based on these
annotations. That is the key to portability discussed in Section 2.4.7.

Yet another use for mapping annotations is controlling a binary data
encoding—i.e., how binary data such as images are encoded. This is dis-
cussed in Section 2.4.10.

As you can see, mapping annotations comprise part of the serialization
subsystem and the deployment subsystem for a JWS implementation.
These annotations are used in serialization because they guide the mar-
shalling of Java value classes to XML infosets that are serialized in/out of
SOAP messages before and after invocation. In addition, the annotations
are used during deployment (in the “Start from Java” development mode)
to define the XML schema for the WSDL message parts corresponding to
the parameters and return types of a deployed Java interface. These two

2.4 JAXB 2.0 61

uses go hand in hand. The annotations define a set of type mappings
(deployment) and serve as the marshalling instructions for implementing
those type mappings (serialization).

Combining the type mapping specification language and the marshal-
ling instructions into a single mechanism—annotations—has the following
implications for Web Services developers:

■ Creating the type mappings is a programming task that parallels the
creation of the Java classes. You can’t declaratively specify the type
mappings separately from their implementation.

■ The type mappings cannot be determined without running the
schema generator against the Java classes (or using some other form
of reflection to examine the annotations).

One of the goals for JWS is to make it easy to build a Web service from
a Java class. Annotations enable the Java programmer to specify the type
mappings and serialization mechanism in one language, right along with the
Java code that implements the Web service. So, for the pure Java program-
mers, annotations probably do make Web Services easier.

However, the impact of this annotation-centric design in other areas
may be less beneficial. It certainly makes the “Start from WSDL and Java”
(SFWJ) development mode more complex. For example, one obvious limi-
tation with annotations is that they force you to adopt a one-to-one corre-
spondence between schema components and Java classes. What happens,
for example, if you need to map the PurchaseOrder class to different XML
schema types for different Web services you need to deploy? If the binding
is captured in the PurchaseOrder annotations, you can’t do it without creat-
ing multiple versions of PurchaseOrder.

SFWJ development mode also requires type mappings that are not sup-
ported by JAXB 2.0 annotations. These situations are very common, as illus-
trated by the simple phone number case in Example 2–1. Unfortunately,
the @XmlJavaTypeAdapter method provided by JAXB is a cumbersome
mechanism for handling such situations. Using @XmlJavaTypeAdapter
requires that one:

■ Annotate the source Java class, and implement an adapter class
extending javax.xml.bind.annotation.adapters.XmlAdapter.

■ Create an adapter that must translate the class being mapped (i.e.,
the bound type) to a value type that the JAXB 2.0 annotations can
map to the target XML schema component. So, in addition to writ-
ing the translation class, you still need to write the annotations.

62 An Overview of Java Web Services

The @XmlJavaTypeAdapter approach gives you a lot of power to control
the serialization process, but it is a lot of work.

2.4.4 Binding Language

Section 2.4.3 described the annotation features that enable customization of
the JAXB Java/XML binding process. The JAXB 2.0 binding language pro-
vides an analogous feature for annotating XML that enables you to custom-
ize the Java representation of XML Schema described in Section 2.4.1.

The binding language is part of the deployment subsystem within the
JWS framework. It is used to shape the form of the Java types that become
the parameters and return types of the SEIs. Unlike mapping annotations,
the binding language declarations are not used by the JAXB runtime for
marshalling. So, the binding language is purely part of the deployment sub-
system and is not used by the serialization subsystem. The annotations that
are generated by the schema compiler, however, are derived from the
source schema together with its binding declarations. So, the binding decla-
rations are used to design the mapping annotations that ultimately control
(together with the standard XML/Java binding) the serialization subsystem,
but they are not part of the serialization subsystem.

Unlike annotations, which are always inline with the Java source code,
the binding language customizations, called binding declarations, can be
provided either inline with the XML schema (i.e., inline annotated schema)
or in a separate configuration file (i.e., external binding declaration).

Binding declarations have scope. For example, a binding declaration
can be global, as in Example 2–3.

Example 2–3 A Binding Declaration with Global Scope

<jaxb:globalBindings>
 <jaxb:javaType name="long" xmlType="xs:date"
 parseMethod="pkg.MyDatatypeConverter.myParseDate"
 printMethod="pkg.MyDatatypeConverter.myPrintDate"/>
 </jaxb:javaType>
</jaxb:globalBindings>

Such a declaration applies to all schemas being compiled. In this
case, it means that the XML instances of type xs:date should be

2.4 JAXB 2.0 63

mapped to a Java long rather than following the default binding to
javax.xml.datatype.XMLGregorianCalendar. The parseMethod and
printMethod attributes tell JAXB where to find the methods that can
marshal this type mapping. Note that the xmlType specified here must be
an XML atomic datatype derived from restriction. So this approach can-
not be used to specify nonstandard type mappings in general.

Alternatively, a binding may have component scope when it appears
within an <xs:appinfo> element inside the component’s schema definition.
Example 2–4 shows a binding declaration inside an element declaration.

Example 2–4 A Binding Declaration with Component Scope

<xs:complexType name="foo">
 <xs:sequence>
 <xs:element name="po" type="javector:PurchaseOrder"
 maxOccurs="unbounded"/>
 <xs:annotation><xs:appinfo>
 <jaxb:dom/>
 </xs:appinfo></xs:annotation>
 </xs:element>
 </xs:sequence>
</xs:complexType>

The binding declaration part of this schema appears in bold. Such a
declaration applies only to the local component. In this case, it means
that the element named po gets mapped to a DOM—specifically, an
instance of org.w3c.dom.Element. Mapping to a DOM can be useful
when you don’t want to use the JAXB 2.0 binding. It provides an ad hoc
method for integrating other serialization mechanisms with JAXB. In
this example, if you have a custom serializer for javector:PurchaseOr-
der, you could get the DOM from JAXB in this manner and then pass it
to your serializer.

In between global and component scope are two other levels: definition
scope and schema scope.

Binding declarations can also be provided in an external bindings file.
Such external bindings use XPath expressions to refer back to their associ-
ated schema. Example 2–5 shows how the binding declaration from Exam-
ple 2–4 looks as part of an external binding file.

64 An Overview of Java Web Services

Example 2–5 An External Binding File That References Its Associated Schema
Using XPath Expressions

<jaxb:bindings xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xs="http://www.w3.org/2001/XMLSchema" version="1.0">
 <jaxb:bindings schemaLocation=".../mySchema.xsd">
 <jaxb:bindings node="//xs:complexType[@name='foo']">
 <jaxb:bindings node=".//xs:element[@name='po']">
 <jaxb:dom/>
 </jaxb:bindings>
 </jaxb:bindings>
 </jaxb:bindings>
</jaxb:bindings>

It is important to be able to put the binding declarations in an external
file because many Web Services developers doing “Start from WSDL” do
not want to “pollute” their WSDL with implementation-specific XML.
After all, the entire point of Web Services is to provide technology- and
platform- independent access to business processes. Not only is it bad form
for such JAXB implementation-specific XML to creep into the WSDL, but
also it makes the WSDL harder for human readers to understand. In addi-
tion, some developers and architects are concerned about security in this
area. Putting Java implementation information in the WSDL gives mali-
cious hackers some information about your internal systems that might help
them exploit security holes. Whether or not you share those security con-
cerns, somebody in your organization might, and it could become an
impediment to getting your Web services deployed.

Unfortunately, the XPath-based approach to creating an external bind-
ings file is difficult to use. First, it requires a Web Services developer to be
comfortable with XPath. Most Java developers are not. Second, the external
bindings file is difficult to debug. You have to rerun the schema compiler
and test the resulting Java classes each time you change the binding declara-
tions. For this mechanism to be useable, the JAXB provider is going to have
to give you a nice set of visual development tools to create, edit, and test
these bindings.

Wrapping up this discussion of the binding language, I want to point out
that it is not possible to specify custom type mappings and serializations
using this approach. By comparison, when you are using the “Start from
Java” development mode to generate XML schema from an annotated
POJO, as discussed in Section 2.4.3, you can use the @XmlJavaTypeAdapter

2.4 JAXB 2.0 65

to insert a custom type mapping. No such equivalent mechanism exists for
going the other way, starting with an XML schema and binding declara-
tions. As a result, if you use the “Start from WSDL” development mode,
you need to apply a workaround to employ custom serialization.

One such workaround involves the <jaxb:dom> declaration shown in
Example 2–4 and Example 2–5. This binding declaration effectively
“exempts” an XML schema component from the standard mapping and
binds it to a DOM element. Within the generated program elements, the
schema component is represented as an instance of org.w3c.dom.Element.
Your application code can then pass this Element instance to a custom dese-
rializer. However, before marshalling back to XML, you must make sure
you invoke your custom serializer to get a DOM, and then pass this DOM
using the generated program elements. Once this is done, you invoke the
JAXB marshal operation.

To conclude this short analysis of the binding language, I’d say that it is
mostly useful for tweaking the structure of the Java program elements that
are generated by the schema compiler. There is not much support for cus-
tom serialization. The usefulness of the binding language is further ham-
pered by the fact that it is very difficult to use in an external binding file. To
avoid these difficulties, you are forced to put the binding declarations inline
with your WSDL. So, if you don’t want to pollute your WSDL with imple-
mentation-specific XML, you have to keep two separate copies of the
WSDL—one for internal use with JAXB and one for external publication.
Neither of these options is particularly appealing.

2.4.5 Binding Run-time Framework (Marshal/Unmarshal)

The JAXB 2.0 binding run-time framework is the heart of the serialization
subsystem for a JWS implementation. The binding run-time framework
implements the marshal and unmarshal operations.

JAXB uses the terms “marshal/unmarshal” rather than “serialize/deseri-
alize.” “Marshal” is more descriptive because the result of marshaling a Java
program element could be a DOM—for example—which is still not serial-
ized. So, marshalling is really the process of converting instances of JAXB-
annotated classes to an XML infoset representation (e.g., an XML docu-
ment stored in a file, a DOM) according to the JAXB 2.0 standard Java/
XML binding as customized by the annotations. Likewise, unmarshalling is
the process of converting an XML infoset representation (e.g., an XML
document stored in a file, a DOM) to a tree of content objects. The conver-
sion is defined by the infoset’s associated XML schema together with the
JAXB 2.0 standard Java/XML mapping as customized by any mapping

66 An Overview of Java Web Services

annotations specified in the program element definitions of the target con-
tent objects. The content objects’ Java program elements are either JAXB
2.0 schema-derived program elements or existing program elements
mapped to the schema by the schema generator.

The following steps indicate how the binding run-time framework
interfaces with the JAX-WS 2.0 invocation architecture to invoke a Web ser-
vice deployed in a JWS-compliant application:

1. The JWS application receives a SOAP message at a deployed endpoint.
2. Based on the configuration of the SOAP binding (javax.xml.ws.soap

.SOAPBinding) for the endpoint, JAX-WS prepares an instance of the
message context (javax.xml.ws.handler.soap.SOAPMessageCon-
text), which includes a SAAJ representation of the message.

3. JAXB may be required to provide MTOM/XOP27 processing in order
to create the SAAJ representation of the message. Such processing
may be deferred until required. That is, for performance reasons,
MTOM processing may be deferred until an application actually
requests access to a part of the SOAP message requiring MTOM
processing to be realized as a SAAJ instance.

4. JAX-WS invokes the handlers. During handler processing, the appli-
cation has SAAJ interface access to the SOAP message contents. As
discussed in the preceding step, SAAJ access may trigger MTOM
processing, which is handled by the JAXB run-time binding frame-
work.

5. After the request handlers are finished, the JAXB runtime unmar-
shals the SOAP message contents into a request bean (see Section
2.3.14). Although the request bean is defined by JAX-WS, based on
the parameter and return type packaging of the deployment, JAXB
implements the binding of the request bean to the SOAP message
request.

6. The request bean, constructed by the JAXB runtime, contains the
Java objects that are passed as parameters to the Java method that
implements the Web service. JAX-WS invokes the method using
these parameters.

7. JAX-WS hands off the Java object returned from the method invoca-
tion and uses it to create an instance of the response bean (see Sec-
tion 2.3.14).

8. JAXB marshals the response bean.

27. See Section 2.4.10 for a description of MTOM/XOP.

2.4 JAXB 2.0 67

9. As in step 2, based on the SOAP binding configuration for the end-
point, JAX-WS updates the message context to include a SAAJ repre-
sentation of the response. This is a SAAJ interface on top of the
response bean.

10. JAX-WS invokes the response handlers.
11. Prior to transmitting the response message, JAX-WS invokes the

JAXB runtime as necessary to provide MTOM processing for the
message.

12. JAX-WS hands off the response message to the protocol transport.

There are a few issues here to point out that will help our understand-
ing of the JWS specifications. First, two sets of deserialization activities
occur during an invocation. Initially, the JAX-WS implementation deserial-
izes the serialized form of the request message coming off the wire into an
infoset representation with a SAAJ interface. Because SAAJ is DOM-ori-
ented, the underlying infoset representation may be a DOM implementa-
tion, but it could also be STaX or some other type of pull parser that
provides “as-needed” access to the infoset.28 The subsequent set of serializa-
tion activities occurs when the JAXB runtime unmarshals the infoset repre-
sentation into JAXB-annotated program elements.

Second, although MTOM processing is actually part of the first serial-
ization (creating an infoset representation from the serialized wire format),
it is handled by the JAXB runtime on behalf of JAX-WS.

Third, all handler processing occurs before JAXB unmarshalling and
after JAXB marshalling from/to the infoset representation of the SOAP
message. As a result, programmers do not have access to the JAXB-anno-
tated program elements within the handlers by default. Of course, if you
want to do JAXB marshalling inside a handler, you can use that approach to
get access to the infoset via the JAXB binding. However, that approach
introduces yet another marshalling step into the process, which could
degrade performance.

Figure 2–4 illustrates this two-stage deserialization process. A SOAP
request starts in an “on-the-wire” format—shown here as a MIME package.
The first stage converts the wire format to an XML infoset and provides
SAAJ access. This form of the request is used by the handler framework.

28. While not a JWS implementation, Axis2 (http://ws.apache.org/axis2/) provides an exam-
ple of this approach. Its AXIOM object model provides a performance-oriented interface to
SOAP messages. With AXIOM, the SOAP message remains in its serialized form until the
application (e.g., a handler) requests access to a part of it. When access is requested, only as
much of the message as is needed gets deserialized.

68 An Overview of Java Web Services

The second stage unmarshals the infoset into Java program elements. These
elements are used by the Java Web service as parameters for the method
invocation.

In addition to supporting this two-stage (de)serialization framework for
invocation of a Java Web service, the JAXB runtime provides the
javax.xml.bind.* APIs giving programmers access to the following capa-
bilities (among others):

■ Marshalling: Application-level programs can marshal between
JAXB-annotated class instances and various XML infoset forms.

■ Object factories and constructors: Factories and constructors are
provided for creating instances of JAXB-annotated classes. This pro-
vides programmers with a convenient method for creating instances
of XML schema components: Create an instance of the correspond-
ing JAXB-annotated class using the object factory or constructor. Set
the Java properties as needed. Then, marshal the instance to get the
XML.

From my perspective, JAXB 2.0 surpasses JAXB 1.0 and other schema
compilation frameworks (e.g., XmlBeans [XMLBEANS]) for Java/XML bind-
ing primarily because it provides for marshalling to/from POJOs and not just
schema-derived program elements. This capability is central to the “Start from
Java” development mode for creating and deploying Web services.

Figure 2–4 JWS serialization—from wire to Web service.

MIME Package

SOAP Envelope

Binary MTOM
Encoded Data

XML Infoset

SOAP Envelope

JAXB-annotated
Class Instances

JAX-WS 2.0

JAXB MTOM
Processing

JAXB 2.0

“On the Wire”
(Serialized Form)

Handler View
(Infoset Form)

Web Service View
(Deserialized Form)

2.4 JAXB 2.0 69

My biggest criticism has nothing to do with the JAXB runtime per se,
but rather the fact that it is the only Java/XML binding framework sup-
ported within JWS. As illustrated in Figure 2–4, there are two distinct
components to the serialization process: (1) creating the XML infoset; and
(2) marshalling between the infoset and the Java objects that implement
the Web service.

It would not be difficult for the JWS specifications to accommodate
pluggable alternatives to the JAXB 2.0 run-time binding framework. Cur-
rently, the transition from the XML infoset view to the JAXB program ele-
ments occurs “behind the scenes.” This unmarshalling happens after the
request handlers have finished and before the invocation of the deployed
Java object. It is carried out by the JAX-WS 2.0 implementation and is not
part of the standard API—at least in this 2.0 release. It is easy to imagine
how a few more APIs could be exposed to allow the Web Services deploy-
ment system to specify the run-time binding framework.

2.4.6 Validation

Validation is a key component of the serialization subsystem. In order to
implement Web Services, you need to be able to control how invalid XML
gets handled. By invalid, I mean XML that is not valid with respect to the
WSDL/XML Schema that defines the Web service. Oftentimes, it is desir-
able to let some types of invalid XML get by. For example, whether or not a
particular attribute is set may have no bearing on the invocation of the Web
service that is the target of a particular SOAP message.

Unlike with JAXB 1.0, the unmarshalling of invalid XML is allowed by
JAXB 2.0—in fact, that is the default behavior. JAXB-annotated value
classes require the use of JAXB 2.0’s flexible unmarshalling mode that allows
certain invalid conditions (e.g., out-of-order elements, missing or unex-
pected elements) to get by the unmarshal validation process.

This is a big improvement because it allows flexibility in the handling
of invalid data. However, if validation is required, it can be turned on.
JAXB 2.0 validation during unmarshalling can be activated by providing
an instance of a JAXP 1.3 javax.xml.validation.Schema to the
Unmarshaller.setSchema () method.

When validation is enabled, the default behavior is to throw an
unchecked exception when the first error is encountered. However, one can
change this behavior by defining and setting a javax.xml.bind.Valida-
tionEventHandler using the Unmarshaller.setEventHandler () method.
Using this approach, when a validation error occurs, the event handler is
called. The event handler can be written so that it aggregates all the errors

70 An Overview of Java Web Services

reported during unmarshalling and reports them at once. Actually, a default
implementation for this type of validation is provided by javax.xml.bind
.util.ValidationEventCollector. This can be very useful for debugging.
It is also useful when there are certain types of errors you don’t want to have
thrown as unchecked exceptions.

JAXB 2.0 also supports fail-fast validation, although it is optional for
implementations of the 2.0 release. Presumably, in later releases it will
be required. When supported, fail-fast validation gives you run-time
checking of all manipulations to a Java content tree. Any manipulations
that result in the underlying XML infoset becoming invalid with respect
to the associated schema throw an exception. Fail-fast validation is
implemented using predicates. Predicates are code fragments that apply
schema validation rules to program element properties. When fail-fast
validation is supported, a JAXB value type’s property setters are gener-
ated with predicates that apply the validation rules specified in the
source schema.

In addition, you can still use the more rigid structural unmarshalling
mode that was the only approach available under JAXB 1.0. However, if you
choose to use this approach, you have to work with a JAXB Java content
interface rather than value classes. That means, for one thing, working with
object factories rather than constructors. The only reason I can see to use
the older JAXB 1.0 approach is if you want to map multiple occurrences of
an element name to different JAXB properties. This can be useful, for
example, if you have something like multiple street elements representing
multiple lines of an address, and you want to map them to Java properties
like street1, street2, and so on. However, I’ve never run into a situation
where this kind of capability was really required.

2.4.7 Portability

JAXB 2.0 portability is achieved using the mapping annotations
described in Section 2.4.3. The run-time marshaller from any JAXB
implementation must be able to serialize a JAXB-annotated class to an
instance of its target schema. Likewise, the run-time unmarshaller must
be able to deserialize a schema instance to an instance of the JAXB-
annotated class.

This is important because it means that one can deploy a Web service
built from JAXB-annotated classes to any JAXB 2.0 platform (e.g., SAP
Netweaver, JBoss, GlassFish) without having to recompile the schema
and/or refactor the Web service to use vendor-specific implementation
classes.

2.4 JAXB 2.0 71

2.4.8 Marshal Event Callbacks

Callbacks enable application-specific processing during serialization.29 You
can define processing to occur either before serialization (just after target
creation) or immediately after serialization. This is a useful feature for set-
ting properties outside of the serialization process.

One use case I’ve encountered involved unmarshalling XML into an
existing POJO that combines data from multiple sources. For example, you
could have a customer object that you annotate so that it can be unmar-
shalled from a SOAP message containing customer information. However,
if not all of the customer data (e.g., transaction history) is available in the
SOAP message, you may want to load the rest of the object’s data from
another source (e.g., SAP). In such situations, you can use an event callback
to load the SAP data after the unmarshalling is finished.

2.4.9 Partial Binding

The javax.xml.bind.Binder class supports partial binding of an XML
document. This enables one, for example, to create a JAXB binding of a
SOAP header without processing the body. Potentially, this capability
could be very useful from a performance perspective if you could harness
it to only update a particular SOAP header element when doing handler
processing.

Imagine, for example, that one wants to create a handler to mark a
SOAP header element named myapp:persisted as true to indicate that the
entire SOAP message has been persisted to permanent storage. The follow-
ing indicates how that might be accomplished with the partial binding
mechanism:

org.w3c.dom.Element persistedElt = ... // get from SOAP header
Binder<org.w3c.dom.Node> myBinder = jaxbContext.createBinder();
PersistedValueClass perVC = (PersistedValueClass)
myBinder.unmarshal(persistedElt);
perVC.setPersisted(true);
myBinder.updateXML(perVC); // updates the XML infoset

Manipulating the SOAP header infoset inside handlers is much easier
this way because you don’t have to deal with navigating and updating via the

29. The term serialization here is used to mean either serialization or deserialization. This is
how it is used throughout the book.

72 An Overview of Java Web Services

DOM interface. It is also less error-prone. If you have ever spent hours
debugging DOM code that introduces bad data into an XML infoset, you
will appreciate the improved rigor provided with this type of partial binding
approach. If fail-fast validation (see Section 2.4.6) is supported by the
underlying JAXB implementation, and it is turned on, the validity of the
XML after handler processing is guaranteed.

2.4.10 Binary Data Encoding (MTOM or WS-I)

The JWS programming model supports the optimization of binary data
transmission with SOAP messages. Such optimization involves encoding
binary data (e.g., an image file as xsd:base64Binary), moving it out of the
SOAP envelope, attaching a compressed version to the MIME package,
and placing references to the encoded parts in the SOAP envelope. Binary
optimization support, part of the serialization subsystem, is provided by
the JAXB run-time implementation. JAXB provides the services that
“unpackage” the binary data prior to unmarshalling (see Figure 2–4) and
“package” it after marshalling as part of serializing a SOAP message onto
the wire. JAXB 2.0 supports two types of binary data encoding: MTOM/
XOP and WSIAP.

MTOM is the W3C standard titled “SOAP Message Transmission Opti-
mization Mechanism” (see www.w3.org/TR/soap12-mtom/). It describes a
standard procedure for taking content out of the XML infoset, compressing
it, packaging it as a MIME attachment, and replacing it with a reference in
the infoset. The packaging encoding used with MTOM is XOP, another
W3C recommendation titled “XML-binary Optimized Packaging” [XOP].
XOP replaces base64-encoded content with a xop:include element that
references the respective MIME part encoded as a binary octet stream. If
data is already available as a binary octet stream, it can be placed directly in
an XOP package.

WSIAP is the WS-I Attachments Profile Version 1.0 [WSIAP]. WSIAP
clarifies SOAP Messages with Attachments (SwA) [SwA]. SwA was the
industry’s first attempt to standardize an approach to treating binary data as
SOAP message attachments. Support for WSIAP is built into a number of
products, so it is important for JWS to support it. However, the industry
now seems to be converging on MTOM/XOP as the primary standard.

JAXB uses annotations to specify which Java properties in a class should
be serialized using MTOM or WSIAP. For MTOM, the @XmlMimeType
annotation lets you specify how a binary (e.g., java.awt.Image) Java prop-
erty gets bound to a schema element decorated with the xmime:content-
Type attribute. The xmime:contentType attribute [XMIME] is used to

2.5 WS-Metadata 2.0 73

indicate the content type of an XML element with type xs:base64Binary
or xs:hexBinary. For WSIAP, the @XmlAttachmentRef annotation plays the
same role.

When working with a JAXB implementation, the MTOM and WSIAP sup-
port is provided by extending the abstract classes AttachmentMarshaller and
AttachmentUnmarshaller. For example, a JAX-WS implementation provides
general MIME processing. However, to handle MTOM or WSIAP packaging,
it plugs into the JAXB implementation at runtime. This is accomplished by hav-
ing the JAX-WS runtime register its AttachmentMarshaller and Attachment-
Unmarshaller using the Marshaller.setAttachmentMarshaller and
Unmarshaller.setAttachmentUnmarshaller methods.

MTOM processing is an important component of a Web Services plat-
form. Given the structure of JWS, with MIME processing handled by JAX-
WS and attachment unmarshalling handled by JAXB, it is clear that
attempting to use the MTOM capabilities while substituting a non-JAXB
serialization subsystem would require some workarounds. The reason for
caring about that problem is, again, handling the “Start from WSDL and
Java” development mode that doesn’t get addressed very well by JAXB. The
situation with MTOM is similar to that with SOAP fault processing (see
Section 2.3.11). I like the JWS SOAP fault mechanism, but would like to be
able to use it without necessarily buying into the entire JWS programming
model. The same is true with MTOM. It would be nice to be able to access
the MTOM processing services without using the whole JWS architecture.

2.5 WS-Metadata 2.0

Section 2.4 provided a high-level tour of the JAXB 2.0 specification, focus-
ing particularly on the features relevant to SOA development and deploy-
ment. JAXB 2.0 is covered in detail in Chapter 5 where numerous
programming examples are provided that illustrate how to handle SOA
challenges using JAXB. Taken together, JAX-WS and JAXB provide most of
the JWS framework for invocation and serialization.

In this section, the focus is on deployment, and particularly, how
JWS uses annotations to facilitate the deployment of Java classes as Web
services. WS-Metadata 2.0 defines the standard annotations that are
used to develop and deploy Web Services using Java SE 6 and within a
Java EE 5 run-time container. A primary goal of this specification is
“ease of use”—making it easier to write, deploy, and consume a Web ser-
vice. This goal is part of the larger “ease-of-use” goal for Java EE 5.

74 An Overview of Java Web Services

Annotations are at the center of the “ease-of-use” features that permeate
Java EE 5. For example, annotations are also used heavily in EJB 3.0 as a
mechanism to reduce or eliminate the need for deployment descriptors
and add functionality such as dependency injection (see Section 2.7.1)
for stateless session beans.

I agree that annotations make it much easier to develop and deploy a
Web service when you are starting from a Java class. The bias of WS-Meta-
data is the “Start from Java” development mode. As demonstrated in the
code examples from Chapter 8, you need to do a lot less work to deploy a
Web service using Java EE 5 than J2EE 1.4.

In general, I think the WS-Metadata annotations are a huge step for-
ward. However, there is one area where I think it may be possible to come
up with something better—the “Start from WSDL and Java” development
mode. For “Start from WSDL and Java,” the impact of annotations is
mixed. To get you thinking about the impact of annotations on the full life
cycle of a “Start from WSDL and Java” application, consider this example.

Suppose you have a PurchaseOrder class and you want to deploy the
createPurchaseOrder() method as a Web service operation. Furthermore,
suppose your organization needs to publish this Web service using a stan-
dard WSDL interface your business partners all use to front-end their pur-
chasing processes. In this scenario, you have an existing operation,
ns:createPO, and you need to use that operation, including the standard
ns:PurchaseOrder element defined by the XML schema your business
partners have agreed on.

To use WS-Metadata, you are going to have to edit your PurchaseOrder
class to include the necessary annotations. That may or may not be possible,
depending on whether you have access to the source code (e.g., there are
licensing issues if it is third-party software). Even if you have the source
code, it might be part of a large application and you may not have the
authority within your organization, for this project, to recompile and rede-
ploy the application with your annotations.

But for the sake of argument, assume you can add the necessary annota-
tions and recompile/redeploy the application. Then, you still have the issue
of mapping the PurchaseOrder program elements to the ns:PurchaseOr-
der element using the JAXB annotations (see Section 2.4.3). It may be
impossible to get JAXB to implement this mapping30—even with extensive
mapping customizations.

30. Many Java/XML mappings are impossible to implement using JAXB annotations. See
Section 2.4 and Chapter 5 for details.

2.5 WS-Metadata 2.0 75

Again, for the sake of argument, assume there is a mapping that can be
expressed using annotations. How do you find this mapping? You have to
make some annotations, run the WSDL/schema generator, and look at the
resulting WSDL to see whether it matches the standard WSDL agreed on by
your business partners. That process is kind of like trying to do assembly lan-
guage programming by writing C code, compiling it, and looking at the bytes
to see whether it produced what you want. Not a very efficient process!

But, again, for the sake of argument, assume you have persevered
and were able to come up with annotations that generate the necessary
WSDL. Now, what happens if your business partners make a change to
the WSDL? In this case, you are back at square one, editing the annota-
tions, running the WSDL/schema generator, and trying to get things
lined up again. Once you have the correct annotations figured out
(assuming it’s even possible), again, you have to recompile and redeploy
the code with the new annotations.

Hopefully, this example has convinced you that annotations may have
some limitations with respect to the “Start from WSDL and Java” develop-
ment mode. Faced with these issues, most programmers will choose to cre-
ate a wrapper for the PurchaseOrder class. This can best be accomplished
by running the WSDL/schema compiler on your business partners’ stan-
dard WSDL. You can take the resulting Java classes and turn them into
wrappers that invoke your real classes. Annotations let you delimit your
modification to the generated classes, so you can “refresh” them if the
WSDL changes and not lose the modifications you put in to invoke your
existing PurchaseOrder.createPurchaseOrder() method.

In this overview of WS-Metadata, I take the point of view of a program-
mer who is using this wrapper-based integration approach to “Start from
WSDL and Java” development mode. That is not to say that I believe the
wrapper-based integration approach is the best way to approach the “Start
from WSDL and Java” development mode. It may be, but I think it is worth
exploring some other possibilities. For example, in Chapter 11, I use SOA-J
to demonstrate a different approach to “Start from WSDL and Java” and
SOA-style systems integration. But at this point, I am reviewing the JWS
programming model, where wrapper-based integration is probably the best
approach to “Start from WSDL and Java” development.

As shown in Table 2–3, the WS-Metadata features discussed here are all
related to Web Services deployment. The remainder of this section provides
an overview of these features. Chapter 8 examines WS-Metadata and
WSEE (JSR-109) in detail and provides many deployment examples.

Before looking at each of these features one by one, examine Figure 2–5,
which shows how WS-Metadata can be used to shape the deployment of a Web

76 An Overview of Java Web Services

service. The code and WSDL in Figure 2–5 illustrate a variety of WS-
Metadata annotations working together. This example is taken from the
WS-Metadata 2.0 specification—Section 4.7.3 (Example 3—the document/
literal wrapped example).

The WS-Metadata annotations are numbered 1–8 and the red lines
show where, in the WSDL, the annotation has its effect. The following
items give you a general idea of what these annotations are doing without a
lot of the detail. I discuss these annotations in detail in Chapter 8. The vari-
ous styles of WSDL are described in Chapter 4.

1. @WebService marks this Java class as a Web service so that the JWS
implementation will understand that it is to be deployed.

2. @SOAPBinding indicates that this Web service uses the SOAP pro-
tocol.

3. The @SOAPBinding.style element indicates that this Web service
should be deployed using the document style. This annotation sets
the WSDL soap:binding element’s style attribute as shown.

4. The @SOAPBinding.use element indicates that the messages for this
Web service should be sent using the literal format (as opposed to
encoded). This annotation affects the soap:body element’s use
attribute as shown.

5. The @SOAPBinding.parameterStyle element indicates that the
messages for this Web service should use wrapped parameters. As a
result, the element name of the parameter wrapper becomes “Sub-
mitPO”—the same as the operation name of the Web service.

Table 2–3 WS-Metadata 2.0 Feature Map

Invocation Serialization Deployment

WSDL Mapping
Annotations

SOAP Binding
Annotations

Handler Annotations

Service Implementation
Bean

Start from WSDL and
Java

Automatic Deployment

2.5 WS-Metadata 2.0 77

6. The @WebMethod.operationName element specifies that the WSDL
operation name should be “SubmitPO.”

Figure 2–5 WS-Metadata annotations control the shape of the WSDL.

<definitions ...>
 <types><s:schema ...>
 <s:element name="SubmitPO">
 <complexType>
 <sequence>
 <element name="PurchaseOrder"
 type="tns:PurchaseOrder"/>
 ...
 </s:element>
 <s:element name="SubmitPOResponse">
 ...
 </s:element>
 </s:schema></types>

 <message name="SubmitPO">
 <part name="parameters"
 element="tns:SubmitPO"/></message>
 <message name="SubmitPOResponse">
 <part name="parameters"
 type="tns:SubmitPOResponse"/>
 </message>

 <portType name="DocWrappedService">
 <operation name="SubmitPO">
 <input message="tns:SubmitPO"/>
 <output
 message="tns:SubmitPOResponse"/>
 </operation
 </portType>

 <binding name="ExampleServiceHttpSoap"
 type="ExampleService">
 <soap:binding style="document" .../>
 <operation name="SubmitPO">
 <soap:operation ... />
 <input>
 <soap:body parts="parameters"
 use="literal"/>
 </input>
 <output>
 <soap:body parts="parameters"
 use="literal"/>
 </output>
 </binding>
 ...
</definitions>

@WebService
@SOAPBinding(
 style =
 SOAPBinding.Style.DOCUMENT,
 use = SOAPBinding.Use.LITERAL,
 parameterStyle =
 SOAPBinding.
 ParameterStyle.WRAPPED)
public class DocWrappedService {

 @WebMethod(operationName =
 "SubmitPO")
 @WebResult(name =
 "PurchaseOrderAck")
 public PurchaseOrderAck submitPO(
 @WebParam(name="PurchaseOrder")
 PurchaseOrder purchaseOrder) {
 }
}

1

2
3

4

5

6

7

8

78 An Overview of Java Web Services

7. The @WebResult.name element specifies that the response message
should be an element named “PurchaseOrderAck.” Note that this
element is not shown here, but would be enclosed in the response
wrapper named “SubmitPOResponse.”

8. The @WebParam.name element specifies that the name for the
request parameter mapping to the Java parameter purchaseOrder
be named “PurchaseOrder.” Like the response, this element is also
enclosed in a wrapper.

In this example from Figure 2–5, you can also see the impact of the
JAX-WS default WSDL/Java mapping. For example, the portType’s name,
DocWrappedService, is the same as the Java class name.

2.5.1 WSDL Mapping Annotations

The WS-Metadata 2.0 WSDL mapping annotations, belonging to the
javax.jws package, enable you to shape the WSDL/Java mapping by speci-
fying information such as the WSDL operation name assigned to a particu-
lar Java method. These annotations enable you to customize the default
WSDL/Java mapping discussed in Section 2.3.1. In Figure 2–5, the follow-
ing annotations are classified as WSDL Mapping Annotations: @WebSer-
vice, @WebMethod, @WebResult, and @WebParam.

If you are doing “Start from WSDL” or “Start from WSDL and Java,”
the WebService.wsdlLocation element is essential. It enables you to spec-
ify the location of your predefined WSDL.

2.5.2 SOAP Binding Annotations

The WS-Metadata 2.0 SOAP binding annotations, belonging to the
javax.jws.soap package, give you the power to customize the SOAP
binding style, use, and parameter style. These annotations are used to
customize the default JAX-WS SOAP binding described in Section 2.3.9.
The JAX-WS default for the binding style/use/parameter is document/lit-
eral wrapped. However, using the javax.jws.SOAPBinding annotation,
you can specify other possibilities such as rpc/literal and document/lit-
eral bare. SOAP binding style and parameter wrapping has been a source
of much confusion and interoperability problems. In this area, WS-
Metadata and JAX-WS shine, making it easy and intuitive for Java devel-
opers to understand and shape the SOAP bindings of their Web services.
SOAP binding style and parameter wrapping is described in detail in
Chapter 4, Section 4.3.

2.5 WS-Metadata 2.0 79

2.5.3 Handler Annotations

The deployment of handlers, as discussed in Section 2.3.7, is specified using
WS-Metadata annotations. The javax.jws.HandlerChain annotation is
used to associate a Web service with an externally defined handler chain
defined in a file referenced by the @HandlerChain.file member value.

The javax.jws.soap.SOAPMessageHandlers annotation described in
WS-Metadata 2.0 has been deprecated, for JAX-WS endpoints cannot be
used as a mechanism for deploying SOAP handlers when using JAX-WS.

2.5.4 Service Implementation Bean

WS-Metadata 2.0 (Section 3.1) defines the requirements for deploying a
Java class as a Web service. Classes that meet these requirements are called
service implementation beans (SIBs). While JAX-RPC required services to
be implemented using service endpoint interfaces (SEIs) that had to extend
java.rmi.Remote, that requirement no longer applies with JAX-WS and
WS-Metadata. In addition, both POJOs and EJBs that conform to the ser-
vice implementation bean requirements can be deployed as Web services.
This is a big improvement over J2EE 1.4, which has two different bean
specifications—one for EJB deployment (which requires a Web service to
be implemented with the stateless session bean interfaces) and one for Web
container (servlet) deployment.

The JSR-181 processor (see Section 2.5.5) creates different artifacts
depending on the target container—including EJB 2.1 interfaces if the tar-
get is a J2EE 1.4 EJB container. However, annotations enable the developer
to work at a higher level of abstraction and avoid being sucked into the time-
consuming and tedious details of container-specific deployment. The artifacts
that are generated by the JSR-181 processor are defined by WSEE 1.2, which
describes the portability requirements for Java Web Services.

2.5.5 Start from WSDL and Java

The “Start from WSDL and Java” development mode is supported by using
annotations to map constructs on an existing Java class or interface to con-
structs on a WSDL document. For example, the @WebMethod.operation-
Name annotation can be used to associate a method with a predefined
wsdl:operation. The pros and cons of this approach are discussed in the
introduction to this discussion of WS-Metadata (see Section 2.5).

Some of the problems pointed out in that discussion are addressed by the
specification’s requirement that implementations of JSR-181 that support

80 An Overview of Java Web Services

“Start with WSDL and Java” must provide feedback indicating when the Web
service implementation diverges from the WSDL contract. You can imagine
that a well-implemented tool would guide you through the process of anno-
tating an existing Java source file to conform it to an existing WSDL with a
GUI to highlight areas of nonconformance and suggested annotations. You
can also imagine a bad tool that just runs the JSR-181 processor and gives you
batch output consisting of a series of nonconformance errors.

In any event, the intention of such a feedback mechanism is to help the
developer keep his Java code in line with potential changes in the WSDL.
This is an important feature.

2.5.6 Automatic Deployment

Automatic deployment, a “drag-and-drop” deployment model, similar to
that used by Java Server Pages (JSPs), is envisioned by the WS-Metadata
specification (see Section 2.4 of [JSR 181]), but is not required. In such a
model, the run-time deployment of a Web service is entirely dependent on
its annotations. A vendor-specific deployment tool is not required.

GlassFish—the Java EE 5 implementation used for the examples in this
book—provides such a “drag-and-drop” deployment capability.31 Program-
ming examples are provided in Chapter 8.

2.6 WSEE 1.2

Whereas WS-Metadata 2.0, discussed in the preceding section, defines an
annotation-based programming model for creating Java Web services, the
WSEE 1.2 specification defines a service architecture and packaging to
ensure portability of Web services across Java EE application server imple-
mentations.

Many of the complaints related to Web Services in J2EE 1.4 center on
the complexity of deployment using WSEE 1.0. This deployment complex-
ity has been greatly reduced through the use of annotations as described in
Section 2.5, together with the simplified architecture and packaging
described here.

As shown in Table 2–4, the WSEE 1.2 features discussed here are all
deployment-related. The remainder of this section provides a brief dis-
cussion of these features. Chapter 8 examines WSEE 1.2 [JSR 109] in

31. See Appendix B for more details on GlassFish. Also see [GLASSFISH].

2.6 WSEE 1.2 81

detail, along with MS-Metadata [JSR 181], and provides many deploy-
ment examples.

2.6.1 Port Component

A port component is what gets packaged and deployed to the container to
implement a Web service. Defined by WSEE, a port component is an addi-
tion to the Java EE platform and can be considered the Web Services coun-
terpart to other familiar deployable components such as servlets and JSPs
(Web container) or EJBs (EJB container).

A port component defines the programming model artifacts that make
up portable Web service applications, including the service implementation
bean (SIB) (see Section 2.5.4). The SIB is the only required artifact—unlike
with J2EE, the webservices.xml descriptor is not required.

The port component, as defined in WSEE 1.2, is a welcome simplification
of the J2EE 1.4 model. In J2EE 1.4, the other artifacts required for deploy-
ment include the service endpoint interface (SEI), the Web Services deploy-
ment descriptor (webservices.xml), and the JAX-RPC mapping deployment
descriptor. In WSEE 1.2, the following artifacts may optionally be included in
a port component: WSDL document, SEI, and webservices.xml. When pro-
vided, the webservices.xml deployment descriptor overrides any conflicting
deployment information provided by annotations.

2.6.2 Servlet Endpoints

WSEE 1.2 specifies that a POJO, as long as it meets the requirement
spelled out in WS-Metadata for a SIB, can be used to implement a Web ser-
vice deployed to the Web container. This is commonly referred to as a serv-
let endpoint.

Table 2–4 WSEE 1.2 Feature Map

Invocation Serialization Deployment

Port Component

Servlet Endpoints

EJB Endpoints

Simplified Packaging

Handler Programming
Model

82 An Overview of Java Web Services

2.6.3 EJB Endpoints

WSEE 1.2 specifies that a stateless session bean can be used to implement a
Web service to be deployed in the EJB container. This is commonly
referred to as an EJB endpoint. The requirements for creating a SIB from a
stateless session bean are spelled out in detail in Section 5 of WSEE.

2.6.4 Simplified Packaging

For many common deployment scenarios, no deployment descriptors are
required. Furthermore, when they are required, they are much simpler
than their counterparts in J2EE 1.4. Detailed examples of various packag-
ing options are provided in Chapter 8.

2.6.5 Handler Programming Model

Handler annotations are defined by WS-Metadata 2.0 (see Section 2.5.3).
The programming and run-time model for handlers in Java EE 5 is
described in WSEE 1.2. The WS-Metadata @HandlerChain annotation
associates a handler chain with a port component. WSEE defines the struc-
ture of the handler chain deployment descriptor. WSEE also specified such
run-time behavior as the capability of handlers to access <env-entry>
parameters via resource injection. Chapter 7, Section 7.6, and Chapter 8,
Section 8.3, provide examples of how to use handlers.

2.7 Impact of Other Java EE 5 Annotation Capabilities

The idea of using WS-Metadata 2.0 annotations (described in Section 2.5)
to simplify development and deployment is one example of the broad use of
annotations introduced throughout the Java EE 5 specifications. This sec-
tion briefly mentions a few of the other exciting new annotation capabilities
built into the Java EE 5 platform that developers can use when developing
Web services applications.

2.7.1 Dependency Injection

Java EE 5 introduces dependency injection mechanisms that simplify the pro-
cess of instantiating context within various containers. Dependency injection is
used to acquire references to resources (e.g., database connections) or other
objects (e.g., Web Services clients) when an object is created by the container.
Different containers support different types of dependency injection. The Java

2.7 Impact of Other Java EE 5 Annotation Capabilities 83

EE 5 specification identifies injection support within the EJB, Web, and appli-
cation client (i.e., main class) containers.

Certain dependency injection patterns for supporting Web Services
have been built into the JAX-WS 2.0 specification. For example, the @Web-
ServiceRef annotation specifies the injection of a reference to a specific
Web service. After such a reference is instantiated, it can be used as a client
to invoke the referenced Web service. Likewise, the JAX-WS 2.0
javax.xml.ws.WebServiceContext can be obtained, inside of a Web ser-
vice implementation, but using the @Resource annotation for dependency
injection. Examples of dependency injection being used in this way are pro-
vided in Chapters 6 and 7 where JAX-WS is discussed in detail.

2.7.2 Interceptors

An interceptor is a method that intercepts another method’s invocation.
This is the Java EE 5 implementation of the Aspect Oriented Programming
(AOP) interceptor concept. For example, you might have a submitPur-
chaseOrder(PurchaseOrder po) method where you want to validate the
incoming po before invoking the method. Such validation could be imple-
mented as an interceptor that is associated with the submitPurchaseOrder
method using the javax.interceptor.Interceptors annotation.

Interceptors make it easier to add additional services to methods when
they are deployed as Web Services. Validation, as described previously, is
one example. Another is security. Imagine a scenario where a user’s creden-
tials are supplied in the SOAP header. You may want to restrict access to
individual methods on a wsdl:port based on the caller’s credentials.
Instead of trying to figure out, in a request handler, which method is going
to be invoked and applying the security constraint in the handler, it is much
easier to store the credentials in the message context. Then, define an inter-
ceptor on each method that applies the security rule based on the user’s cre-
dentials stored in the message context.

2.7.3 POJO Support in EJB 3.0

The EJB 3.0 specification is exciting because it removes a lot of the com-
plexity associated with creating and deploying Enterprise JavaBeans. It is
outside the scope of this book to discuss EJB 3.0 in detail, but I would like
to point out the impact of POJO support on Web Services.

EJB 3.0 enables developers to deploy POJOs as stateless session beans
simply by adding the @Stateless annotation. You no longer need to provide
an EJBObject, EJBLocalObject, or java.rmi.Remote interface. Nor do you
need to provide a home interface.

84 An Overview of Java Web Services

This makes it much easier to deploy existing POJOs to implement Web
services within the EJB container. Using the J2EE 1.4 model (EJB 2.1 and
JAX-RPC 1.1), if you wanted to deploy an existing POJO as a Web service via
the EJB container, you needed to create a stateless session bean wrapper that
implemented the necessary interfaces. Lifting this requirement has removed
one roadblock to the “Start from WSDL and Java” development approach.

2.8 Conclusions

This chapter provided an overview of the Web Services capabilities provided
by JWS. It started at the 10,000-foot level looking at a generic SOA applica-
tion and describing where Web Services fit in. Then, it descended to the 100-
foot level to describe some of the run-time implementation details of Web
Services within Java EE 5 and Java SE 6. Then, Sections 2.3–2.7 continued at
that 100-foot level to review the development and deployment features of
JAX-WS 2.0, JAXB 2.0, WS-Metadata 2.0, WSEE 1.2, and some other specifi-
cations related to Web Services. If you have managed to get through all of
this, you’ve had a good overview of Java Web Services. You’ve also heard some
of my thoughts on the pros and cons of JWS as a platform for SOA develop-
ment. If you just skimmed this chapter, that is also fine. You can come back to
it anytime you want a break from the programming examples in the rest of
this book and you need to get back to the “big picture.”

Chapters 3–8 take you down to the 10-foot level, and provide detailed
examples of how to program with Java Web Services. Chapter 3 starts with
the REST model for Web services. I start with REST because it is simple
and helps you get your feet wet if you are not that familiar with WSDL and/
or SOAP. If you are not interested in REST, or want to jump right into
WSDL and SOAP, please feel free to skip ahead to Chapter 4.

2.8.1 Configuring Your Environment to Build and Run the
Software Examples

The remaining chapters contain lots of programming examples. I highly
recommend that you download, examine, and run these examples as you
work through the book. You will learn a lot more from such “hands-on”
experience than you will from just reading the text.

Running the code requires that you to set up a build environment. See
Appendix B for instructions on setting up that environment and download-
ing the source code for the examples.

85

C H A P T E R 3

Basic SOA Using REST

In this chapter, I describe the basic tools and techniques for implementing
SOA components using the REST paradigm. REST stands for Representa-
tional State Transfer. It was first introduced by Roy Fielding1 in his 2000
doctoral dissertation [Fielding]. For the past several years, a great debate
has been going on about the merits of the REST versus SOAP architectural
styles for Web Services. It is not my intention, in this book, to weigh in on
either side of that debate. My feeling is that both approaches are useful for
implementing SOA components. For simple applications, REST is an easy
way to get started.

If you are an advanced Java programmer, you might find the first half of
this chapter to be very basic. I have intentionally started out with simplistic
examples, using only HTTP and servlets, so that readers who are not
advanced in Java can come up the learning curve and get a sense of the
basics before introducing the Java Web Services (JWS) APIs. If you have a
good grounding in HTTP and Java servlets, please feel free to skip the
introductory material and focus on the sections dealing with JAX-WS.

3.1 Why REST?

Some readers may wonder why this book starts with REST before discuss-
ing SOAP and WSDL-based Web Services. The reason is that REST is easy
to understand. By starting with REST, I can describe some of the basic SOA
Web Services concepts without getting into the complexities of SOAP and
WSDL. Also, the limitations of REST provide the motivation for introduc-
ing SOAP and WSDL in Chapter 4. If you are not interested in REST, feel
free to skip ahead to Chapter 4.

1. Fielding is one of the principal authors of the HTTP specification and a co-founder of the
Apache HTTP Server project.

86 Basic SOA Using REST

3.1.1 What Is REST?

REST-style services (i.e., RESTful services) adhere to a set of constraints
and architectural principles that include the following:

■ RESTful services are stateless. As Fielding writes in Section 5.1.3 of
his thesis, “each request from client to server must contain all the
information necessary to understand the request, and cannot take
advantage of any stored context on the server.”

■ RESTful services have a uniform interface. This constraint is usually
taken to mean that the only allowed operations are the HTTP opera-
tions: GET, POST, PUT, and DELETE.

■ REST-based architectures are built from resources (pieces of infor-
mation) that are uniquely identified by URIs. For example, in a
RESTful purchasing system, each purchase order has a unique URI.

■ REST components manipulate resources by exchanging representa-
tions of the resources. For example, a purchase order resource can
be represented by an XML document. Within a RESTful purchasing
system, a purchase order might be updated by posting an XML doc-
ument containing the changed purchase order to its URI.

Fielding writes that “REST-based architectures communicate primarily
through the transfer of representations of resources” (Section 5.3.3). This is
fundamentally different from the Remote Procedure Call (RPC) approach
that encapsulates the notion of invoking a procedure on the remote server.
Hence, RPC messages typically contain information about the procedure to
be invoked or action to be taken. This information is referred to as a verb in
a Web service request. In the REST model, the only verbs allowed are
GET, POST, PUT, and DELETE. In the RPC approach, typically many
operations are invoked at the same URI. This is to be contrasted with the
REST approach of having a unique URI for each resource.

These are the basic principles behind REST. However, when people
talk about the benefits of RESTful systems today, they usually are not
strictly applying these principles. For example, among REST advocates,
keeping shopping cart data on the server and maintaining a session related
to the shopping process that is using the cart is acceptable.2 In fact, the
XML/HTTP Binding provided by JAX-WS for implementing RESTful

2. Storing session information or shopping cart data on the server is a clear violation of
Fielding’s original REST concept since it violates the requirement that a service be stateless.

3.1 Why REST? 87

services provides for session management capabilities using cookies, URL
rewriting, and SSL session IDs.

More significant deviations from Fielding’s definition of REST involve
getting around the “uniform interface” constraint by embedding verbs and
parameters inside URLs. The Amazom.com REST interface, for example,
includes verbs in query strings and doesn’t have unique URIs for each
resource. Systems like this, although labeled as RESTful, are really starting
to look very much like RPC using XML over HTTP without SOAP.

For the purposes of this book, I am not going to wade into a debate on
what is or isn’t RESTful. I simply define RESTful Web Services in contrast
to SOAP Web Services. Table 3–1 illustrates the principal differences.

This is consistent with common usage in the REST versus SOAP debates.
REST uses simple XML over HTTP without a WSDL interface definition.

3.1.2 Topics Covered in This Chapter

In addition to introducing RESTful Web Services, this chapter introduces
and reviews some basic techniques for integrating Enterprise Information
Systems (EISs) using XML, XSLT, HTTP, and Java. For each example, I
demonstrate how to implement it with and without JWS. The versions of
the examples without JWS use basic Java HTTP and XML techniques. Both
approaches are provided to give you a sense of what is really happening,
under the covers, when a Web service is consumed or deployed using JWS.
This should give you a better understanding of the mechanisms underlying
JWS and when to use them. For simple Web services, often it is easier to

Table 3–1 RESTful Web Services versus SOAP Web Services

REST SOAP

Message Format XML XML inside a SOAP Envelope
Interface Definition noneaa

a. Some would argue that XML Schema could be used as an interface definition for REST-
ful services. Not only is that approach possible, but it is used in many practical cases. How-
ever, it is not a complete interface solution because many, if not most, RESTful services
incorporate HTTP parameters (e.g., URL query strings) in addition to XML as part of their
invocation interface. Chapter 9 looks at the Yahoo! Shopping RESTful interface, which uses
HTTP parameters in this manner.

WSDL
Transport HTTP HTTP, FTP, MIME, JMS, SMTP, etc.

88 Basic SOA Using REST

work with the basic Java tools than to pull out all the power of JWS. On the
other hand, you will see from these examples how things can quickly get
complicated and require the power of the JWS technologies.

Since one focus of this book is on SOA-style development for the enter-
prise, many of the examples deal with EIS—the basic infrastructure of most
corporate computing environments. This chapter describes

■ Structuring EIS Records as XML documents
■ Getting EIS records from a REST service (with and without JWS)
■ Posting EIS records to a REST service (with and without JWS)
■ Basic SOA-style integration of REST services using XSLT for data

transformation
■ Deploying a REST service to be used for getting EIS records—in

other words, an HTTP GET service (with and without JWS)
■ Deploying a REST service to be used for posting EIS records—in

other words, an HTTP POST service (with and without JWS)

3.2 XML Documents and Schema for EIS Records

The first step toward implementing an SOA component that consumes
or provides EIS records involves formatting the EIS records that need to
be exchanged as XML documents. This process is formalized by creating
an XML Schema to represent the structure of an XML document for a
particular EIS record. This section introduces some simple examples
that are used throughout this chapter to illustrate the role of XML and
XML Schema in SOA-style applications development based on Web Ser-
vices. Understanding these examples requires a basic knowledge of XML
and XML Schema. If you are new to XML, you should get an introduc-
tory text such as Beginning XML by David Hunter et al. [Hunter]. For
the necessary background on XML Schema, I suggest Definitive XML
Schema by Priscilla Walmsley [Walmsley]. Alternatively, if you know
basic XML, but need to brush up on XML Schema, you can probably
find all you need to know for this book by reading through the W3C’s
“XML Schema Part 0: Primer” [XSD Part 0].

To illustrate how XML is used, I employ an example based on the ficti-
tious XYZ Corporation. The example illustrates real SOA challenges faced
by many companies. XYZ Corporation has an Order Management System
(OMS) that needs to be integrated with a Customer Service System (CSS).
The OMS should be thought of as an EIS, such as SAP, for taking customer

3.2 XML Documents and Schema for EIS Records 89

orders and tracking them through delivery. The CSS should be thought of
as an EIS, such as Oracle’s Siebel Customer Relationship Management
Applications, that is used by customer service employees as a tool for han-
dling customer inquiries.

XYZ Corporation would like to build an SOA application bridging the
OMS and the CSS. Every time a new order is entered in the OMS (or an
existing order is updated), the new SOA application should transfer that
information to the CSS and add it to the relevant customer’s history log.
The purpose of this SOA application is to ensure that customer service rep-
resentatives have fast access, through the CSS, to basic customer order
information. If customer service representatives need access to more
detailed order information from the OMS, the CSS will contain the keys
within the customer history log (updated via the SOA application) to query
the OMS and access that detailed information.

Figure 3–1 illustrates what an OMS order record looks like as it might
appear on a user interface.

Figure 3–1 An OMS order record as it appears in the user interface.

Order

Order Number ENT1234567

Header Sales Organization: NE
 Purchase Date: 2001-12-09
 Customer Number: ENT0072123
 Payment Method: PO
 Purchase Order: PO-72123-0007
 Guaranteed Delivery: 2001-12-16

Order Items Item Number: 012345
 Storage Location: NE02
 Target Quantity: 50
 Unit of Measure: CNT
 Price per UOM: 7.95
 Description: 7 mm Teflon Gasket

 Item Number: 543210
 Target Quantity: 5
 Unit of Measure: KG
 Price per UOM: 12.58
 Description: Lithium grease with PTFE/Teflon

Other Information This order is a rush.

90 Basic SOA Using REST

The structure displayed in the user interface provides a guide to con-
structing an XML document for the EIS order record. Note that the record
is divided into four sections that contain data: Order Number, Order
Header, Order Items, and Other Information. Example 3–1 illustrates how
this record can be represented as an XML document.

Example 3–1 An XML Representation of the Order Record Appearing in Figure 3–1

 4 <Order xmlns="http://www.example.com/oms"
 5 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 6 xsi:schemaLocation="http://www.example.com/oms
 7 http://soabook.com/example/oms/orders.xsd">
 8 <OrderKey>ENT1234567</OrderKey>
 9 <OrderHeader>
 10 <SALES_ORG>NE</SALES_ORG>
 11 <PURCH_DATE>2005-12-09</PURCH_DATE>
 12 <CUST_NO>ENT0072123</CUST_NO>
 13 <PYMT_METH>PO</PYMT_METH>
 14 <PURCH_ORD_NO>PO-72123-0007</PURCH_ORD_NO>
 15 <WAR_DEL_DATE>2005-12-16</WAR_DEL_DATE>
 16 </OrderHeader>
 17 <OrderItems>
 18 <item>
 19 <ITM_NUMBER>012345</ITM_NUMBER>
 20 <STORAGE_LOC>NE02</STORAGE_LOC>
 21 <TARGET_QTY>50</TARGET_QTY>
 22 <TARGET_UOM>CNT</TARGET_UOM>
 23 <PRICE_PER_UOM>7.95</PRICE_PER_UOM>
 24 <SHORT_TEXT>7 mm Teflon Gasket</SHORT_TEXT>
 25 </item>
 26 <item>
 27 <ITM_NUMBER>543210</ITM_NUMBER>
 28 <TARGET_QTY>5</TARGET_QTY>
 29 <TARGET_UOM>KG</TARGET_UOM>
 30 <PRICE_PER_UOM>12.58</PRICE_PER_UOM>
 31 <SHORT_TEXT>Lithium grease with PTFE/Teflon</SHORT_TEXT>
 32 </item>
 33 </OrderItems>
 34 <OrderText>This order is a rush.</OrderText>
 35 </Order>

book-code/chap03/eisrecords/src/xml/order.xml

3.2 XML Documents and Schema for EIS Records 91

Note the use of namespaces in this example. The Order element is from
the namespace http://www.example.com/oms. Note that http://www.exam-
ple.com is the URL used by XYZ Corporation as the base part of its corporate
namespaces. The /oms indicates, more specifically, the namespace associated
with the OMS. When developing SOA systems with XML, it is important to
use namespaces, because documents originating from different systems may
use the same tags (e.g., “item”), and it is important to interpret the tag in the
proper context. For more information on namespaces and how they are used,
see the World Wide Web Consortium’s (W3C) Recommendation
[Namespaces in XML].

In addition to namespaces, when developing SOA systems based on
XML, it is important to employ XML Schema to validate documents. Just as
a relational database management system allows you to impose constraints
on data values and format within the database schema, so XML Schema can
be used to validate the integrity of XML documents. XML Schema is
important for maintaining data quality and integrity when sharing informa-
tion among multiple systems.

Notice that the Order element of order.xml contains the attribute:

xsi:schemaLocation="http://www.example.com/oms
http://soabook.com/example/oms/orders.xsd"

This attribute associates order.xml with an XML Schema and contains
two references. First, http://www.example.com/oms gives the namespace
to be used for interpreting the schema. Second, http://soabook.com/
example/oms/orders.xsd is a location where the schema can be found.

Example 3–2 shows just a fragment3 of the schema used to validate
order.xml. As indicated by the file reference printed at the bottom of the
example, the entire schema document can be found at com/javector/
chap4/eisrecords/order.xsd. This schema (order.xsd) and its instance
document (the order.xml file) are simplified examples of the SAP XML
interface for the business object SalesOrder within the Logistics Module.

Although this example is simplified, it illustrates the major issues faced
when creating an SOA application that accesses SAP or another EIS.

3. Because fragments published in this book correspond directly to the source files in the
accompanying download package, sometimes—for XML documents—the closing tags get
cut off. Although that can sometimes make the structure look confusing or “off balance,” I
decided that was better than including the entire XML file in cases where the length could
run on for several pages.

92 Basic SOA Using REST

Example 3–2 A Fragment of the XML Schema for Validating an Order Document

 4 <schema targetNamespace="http://www.example.com/oms"
 5 xmlns="http://www.w3.org/2001/XMLSchema"
 6 xmlns:oms="http://www.example.com/oms" version="1.0"
 7 elementFormDefault="qualified">
 8 <element name="Orders" type="oms:OrdersType"/>
 9 <element name="Order" type="oms:OrderType"/>
 10 <complexType name="OrdersType">
 11 <sequence>
 12 <element ref="oms:Order" maxOccurs="unbounded"/>
 13 </sequence>
 14 </complexType>
 15 <complexType name="OrderType">
 16 <annotation>
 17 <documentation>A Customer Order</documentation>
 18 </annotation>
 19 <sequence>
 20 <element name="OrderKey">
 21 <annotation>
 22 <documentation>
 23 Unique Sales Document Identifier
 24 </documentation>
 25 </annotation>
 26 <simpleType>
 27 <restriction base="string">
 28 <maxLength value="10"/>
 29 </restriction>
 30 </simpleType>
 31 </element>
 32 <element name="OrderHeader" type="oms:BUSOBJ_HEADER">
 33 <annotation>
 34 <documentation>
 35 Order Header referencing customer, payment, sale organization information.
 36 </documentation>
 37 </annotation>
 38 </element>
 39 <element name="OrderItems">
 40 <annotation>
 41 <documentation>Items in the Order</documentation>
 42 </annotation>
 43 <complexType>
 44 <sequence>
 45 <element name="item" type="oms:BUSOBJ_ITEM"

3.2 XML Documents and Schema for EIS Records 93

 46 maxOccurs="unbounded"/>
 47 </sequence>
 48 </complexType>
 49 </element>

book-code/chap03/eisrecords/src/xml/orders.xsd

Notice that schemas allow you to restrict values and specify formats for
data. For example, the element OrderKey, that is the unique identifier for
sales documents, is restricted to being, at most, 10 characters in length. The
restriction is accomplished using the restriction element in the simple type
definition of OrderKey. Restrictions on simple types like this are known as
facets. For further explanation of simple type facets, see [XSD Part 0]. Fac-
ets are an important data quality management tool in an SOA environment
because they enable you to ensure that the data being shared across systems
is properly formatted and can be interpreted by the receiving system.

Next, Figure 3–2 shows the Customer History Record from the Cus-
tomer Service System (CSS). Consider how it relates to orders and how it is
used within the CSS.

The simple SOA application described in this chapter is responsible for
linking the OMS to the CSS to ensure that each time an order is created or
modified in the OMS, a corresponding Customer History Record is sent
and entered in the Customer History Log within the CSS. The Customer
History Log is a record of all transactions the customer has had with XYZ
Corporation. It is important to note that not all of the order information is
stored in the Customer History Log within the CSS. Only enough is stored
so that if a customer calls with a question about an order, the customer service

Figure 3–2 A Customer History Record as it appears on a CSS form.

Customer Number ENT0072123

Order Lookup
Information

 Order Number: ENT1234567
 PO Number: PO-72123-0007
 Item Number: 012345
 Item Number: 543210
 Other Information: This order is a rush.

Customer History Record

94 Basic SOA Using REST

representative can pull up the History Log and drill down to individual
order records stored in the OMS to answer the customer’s questions. Indi-
vidual, detailed order records are retrieved from the OMS in real time
using the keys stored in the CSS.

The architecture is designed this way to avoid storing lots of redundant data
in the CSS and OMS. The problem with redundant data is that it takes up
unnecessary disk space, and tends to get out of sync with the original data, cre-
ating data quality problems that can be quite difficult to debug and clean up.

The form in Figure 3–2 shows the minimal set of information that
needs to be moved from the OMS to the CSS. Example 3–3 shows how that
information is structured as an XML record. The OMS sends this type of
XML to the CSS each time there is a new order.

Example 3–3 XML Representation of the Screen Pictured in Figure 3–2

 4 <css:CustomerHistoryEntry xmlns:css="http://www.example.com/css"
 5 xmlns="http://www.example.com/css"
 6 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 7 xsi:schemaLocation="http://www.example.com/css
 8 http://soabook.com/example/css/custhistentries.xsd">
 9 <CustomerNumber>ENT0072123</CustomerNumber>
 10 <OrderLookupInfo>
 11 <OrderNumber>ENT1234567</OrderNumber>
 12 <PURCH_ORD_NO>PO-72123-0007</PURCH_ORD_NO>
 13 <ITM_NUMBER>012345</ITM_NUMBER>
 14 <ITM_NUMBER>543210</ITM_NUMBER>
 15 <OrderText>This order is a rush.</OrderText>
 16 </OrderLookupInfo>
 17 </css:CustomerHistoryEntry>

book-code/chap03/eisrecords/src/xml/custhistentry.xml

In this example, the CustomerNumber element uniquely identifies the
customer and is referenced by the CUST_NO element, inside the Order-
Header element illustrated in Figure 3–1. Likewise, the OrderNumber ele-
ment inside the OrderLookupInfo element referenced the OrderKey
element illustrated in Figure 3–1. These constraints could be enforced
within the schema by using the unique, key, and keyref XML Schema Ele-
ments (see Section 5 of [XSD Part 0]). However, for simplicity, those types
of constraints are left out for now.

3.2 XML Documents and Schema for EIS Records 95

Example 3–4 shows a fragment of the schema for validating the Cus-
tomer History Record. This schema is important for validating the quality of
the data being reformatted and exchanged by the SOA application bridge.

Example 3–4 XML Schema for an Entry in the CSS Customer History Log

 4 <schema targetNamespace="http://www.example.com/css"
 5 xmlns="http://www.w3.org/2001/XMLSchema"
 6 xmlns:css="http://www.example.com/css" version="1.0"
 7 elementFormDefault="qualified">
 8 <element name="CustomerHistoryEntries"
 type="css:CustomerHistoryEntriesType"/>
9 <element name="CustomerHistoryEntry" type="css:CustomerHistoryEntryType"/>

 10 <complexType name="CustomerHistoryEntriesType">
 11 <sequence>
 12 <element ref="css:CustomerHistoryEntry" maxOccurs="unbounded"/>
 13 </sequence>
 14 </complexType>
 15 <complexType name="CustomerHistoryEntryType">
 16 <sequence>
 17 <element name="CustomerNumber">
 18 <annotation>
 19 <documentation>Unique Customer Identifier</documentation>
 20 </annotation>
 21 <simpleType>
 22 <restriction base="string">
 23 <maxLength value="10"/>
 24 </restriction>
 25 </simpleType>
 26 </element>
 27 <element name="OrderLookupInfo">
 28 <annotation>
29 <documentation>Keys and searchable text that can be used to look

 30 up additional order information from the OMS</documentation>
 31 </annotation>
 32 <complexType>
 33 <sequence>
 34 <element name="OrderNumber">
 35 <annotation>
 36 <documentation>Unique Sales Order Identifier - Key for CSS
 37 lookup of order records</documentation>
 38 </annotation>
 39 <simpleType>

96 Basic SOA Using REST

 40 <restriction base="string">
 41 <maxLength value="10"/>
 42 </restriction>
 43 </simpleType>
 44 </element>

book-code/chap03/eisrecords/src/xml/custhistentries.xsd

As in Example 3–2, you can see the facets are used to restrict the values
for CustomerNumber and OrderNumber. Notice that schemas allow us to
restrict values and specify formats for data. For example, the element
OrderKey, that is the unique identifier for sales documents, is restricted to
being, at most, 10 characters in length. The restriction is accomplished
using the restriction element in the simple type definition of OrderKey.

3.2.1 No WSDL Doesn’t Necessarily Mean No Interfaces

The previous examples show how XML Schema can be used to define
structure for XML documents. That structure is critical for defining how
applications interact with each other in an SOA-style Web Services infra-
structure. It is a fundamental principle of systems integration design that
applications must interact across well-defined interfaces. Even in this
simple example, as illustrated in Example 3–4, you can see how XML
Schema can be used to define the structure of an update record to the
CSS Customer History Log. The Customer History schema defines the
interface to the Customer History Log. In this manner, any system that
needs to update the CSS with customer activity can map whatever form
their data is in to the custhistentry.xsd schema and send it as a mes-
sage to the CSS. The following two concepts, illustrated by the simple
examples in this section, provide the foundation for SOA-style integra-
tion using Web Services:

1. XML documents are used to exchange messages between applications.
2. XML Schema documents define the application interfaces.

Point (2) is important to bear in mind. It tells you that, even when using
RESTful services (without WSDL and SOAP), the schema of the XML doc-
uments being exchanged between SOA components can be used to define
interfaces for the services. Unfortunately, this use of XML Schema to for-
malize interfaces for RESTful services is not universally accepted as part of

3.3 REST Clients with and without JWS 97

the REST framework.4 If you plan to use REST for your SOA applications,
however, I strongly encourage you to provide XML Schema to define the
message structure interface for each service.

This section gave you a quick introduction to how EIS records can be rep-
resented as XML documents. In the next section, we begin to look at the basics
of messaging—sending XML over the Hypertext Transfer Protocol (HTTP).

3.3 REST Clients with and without JWS

A basic capability you often need when implementing an SOA Web service
is easily downloading and uploading XML files from/to an HTTP server. For
example, suppose that the OMS runs a nightly batch job and writes all new
and changed orders from the previous day to a set of XML documents that
can be accessed using a Web service named NewOrders. The CSS can then,
each morning, retrieve those files and update its Customer History. This is a
simple, but common and highly practical, form of SOA-style loosely cou-
pled integration.

The next few sections focus on uploading/downloading XML docu-
ments with bare-bones RESTful Web Services. I show how to write cli-
ents for RESTful services with and without JWS. This material may seem
very basic to advanced Java programmers, but it is always good to review
the basics before diving into a complex subject like SOA with Java Web
Services.

It is a common misconception that implementing Web Services with
Java requires lots of heavy machinery like JAX-WS. This is not the case, as
even J2SE 1.4 provides powerful tools for HTTP communication and XML
processing that enable you to build and consume RESTful Web services.
JAX-WS and the other JWS tools provide many advantages, of course,
which we discuss later in this section and throughout the rest of this book.

Doing REST without JWS gives you a hands-on appreciation for what
HTTP can and cannot do. It quickly becomes clear that, although it is easy
to do simple things without the JWS machinery, as you get more ambitious,
you start to need some more powerful tools to handle invocation, serializa-
tion, and the other components of an SOA Web Services infrastructure.

Since this is a book about Java, I start with the assumption that the EISs
have Java APIs for accessing the needed records. The challenge addressed

4. Perhaps this is because such interface definitions complicate the REST model, and REST
proponents like to position it as simpler than SOAP.

98 Basic SOA Using REST

in the next few sections is to deploy a Java API as a Web service or to invoke
a Web service using Java.

3.3.1 Getting EIS Records from a REST Service without
Using JWS

This section briefly examines how to get an XML document from a REST-
ful Web service. In this example, the Web service is accessed with an HTTP
GET request. The client application needs to issue the HTTP GET, and
process the HTTP response stream that contains the XML document.
Instead of using the JWS APIs (e.g., JAX-WS), I simply use the
javax.net.HttpURLConnection class to handle most of the work related to
generating the HTTP GET and processing the response.

Figure 3–3 illustrates the XML transfer process from the client’s side.
Note that the client is implemented as the class GetNewOrders and that it
uses instances of the classes URL and HttpURLConnection. The following

Figure 3–3 The client uses the HttpURLConnection class to make an HTTP
GET request and receive an HTTP response.

Web ServiceClient

HTTP “GET”
request to
download XML
document

HTTP response
containing XML
document

GetNewOrders

3

HttpURLConnection

connect(...)

URL

openConnection(...)

1

2

InputStream

read(...)

4

SenderReceiver
XML Message

3.3 REST Clients with and without JWS 99

steps show how these classes work together to implement the XML docu-
ment download protocol.

1. The client uses the URL.openConnection() method to create an
instance of HttpURLConnection representing a connection to the
Web service’s URL.

2. HttpURLConnection.connect() sends the HTTP GET request that
has been configured using the Web service’s URL.

3. The Web service processes the request and writes the appropriate
XML document to the HTTP response stream.

4. The HttpURLConnection’s InputStream is used to read the HTTP
response’s XML document.

In the implementation of this example, the client simply writes the
XML document to the console. You will see it print out on your console
when you run it (instructions follow). In a real SOA-style loosely coupled
application, the document might be parsed, transformed, and sent to
another component of the distributed application. An example of such pro-
cessing is provided in Section 3.4.

Example 3–5 shows the client-side code for issuing the HTTP GET
request and receiving the XML document via the HTTP response. Notice
that the String used to construct the URL instance is passed to the client as
args[0]. The HttpULRConnection—con—doesn’t send the HTTP request
until its connect() method gets invoked. Before this happens, the setRe-
questMethod() is invoked to specify that a GET request should be sent.

Example 3–5 Implementing a Java Client to Download an XML Document from
a RESTful Web Service

 27 public static void main(String[] args) throws Exception {
 28
 29 if (args.length != 1) {
 30 System.err.println
 31 ("Usage: java GetNewOrders <Web Service URL>");
 32 System.exit(1);
 33 }
 34 // Create the HTTP connection to the URL
 35 URL url = new URL(args[0]);
 36 HttpURLConnection con =
 37 (HttpURLConnection) url.openConnection();
 38 con.setRequestMethod("GET");
 39 con.connect();

100 Basic SOA Using REST

 40 // write the XML from the input stream to standard out
 41 InputStream in = con.getInputStream();
 42 byte[] b = new byte[1024]; // 1K buffer
 43 int result = in.read(b);
 44 while (result != -1) {
 45 System.out.write(b,0,result);
 46 result =in.read(b);
 47 }
 48 in.close();
 49 con.disconnect();
 50 }

book-code/chap03/rest-get/client-http/src/java/samples/GetNewOrders.java

To run this example, do the following:

1. Start GlassFish (if it is not already running).
2. Go to <book-code>/chap03/rest-get/endpoint-servlet.
3. To build and deploy the Web service enter:

 mvn install 5

... and when that command finishes, enter:
 ant deploy

4. Go to <book-code>/chap03/rest-get/client-http.
5. To run the client enter:

 mvn install

6. To undeploy the Web service, go back to <book-code>/chap03/rest-
get/endpoint-servlet and enter:
 ant undeploy

In this example, the HttpURLConnection class does all the work. It sends
the HTTP GET request to the Web service URL6 and provides access to the
response as an InputStream. Now, let’s look at how this is done using JWS.

5. mvn is the command to run Maven, the build tool used throughout this book. See Appen-
dix B, Software Configuration Guide, for details about installing and running the examples in
this book.
6. In this example, the URL where the RESTful service deployed is http://localhost:8080/
rest-get-servlet/NewOrders (assuming your Java EE Web container is running on local-
host:8080). You can always see what parameters are used to invoke code in the examples by
examining the build.xml file from the directory where you are running the example.

3.3 REST Clients with and without JWS 101

3.3.2 Getting EIS Records from a REST Service with JWS

When using the JAX-WS 2.0 API to create a client that consumes a REST-
ful Web service, the javax.xml.ws.Dispatch<T>7 interface does most of
the work—performing a role similar to HttpURLConnection.

Figure 3–4 shows how the JAX-WS-based client works. This time, the
class GetNewOrders is implemented using the javax.ws.xml.Service
class. Service is an abstraction that provides a client interface to a Web
service. First introduced in JAX-RPC 1.0, Service is designed to repre-
sent a WSDL defined service. Since RESTful services do not have WSDL

7. A detailed discussion of the javax.xml.ws.Dispatch<T> interface is provided in
Chapter 6, Section 6.2, where the JAX-WS client API is explained in depth.

Figure 3–4 The JAX-WS-based client uses an instance of Dispatch<Source>
to make an HTTP GET request and receive an HTTP response.

Web ServiceClient

HTTP GET
request to
download XML
document

HTTP response
containing XML
document

GetNewOrders

4

Dispatch<Source>

invoke(...)

Service

createDispatch(...)

addPort(...)

2

1

3

Source
5

SenderReceiver
XML Message

102 Basic SOA Using REST

representations, the Service API is a little awkward for our purposes here
(as you can see in the discussion of the code). However, that is how the
JAX-WS API is designed.

In this example, Service is used to create an instance of
javax.xml.ws.Dispatch<Source>, which enables XML message-level
interaction with the target Web service. Dispatch is the low-level JAX-WS
2.0 API that requires clients to construct messages by working directly with
the XML, rather than with a higher-level binding such as JAXB 2.0 schema-
derived program elements. For many REST proponents, however, this is
exactly the programming paradigm they want—direct access to the XML
request and response messages.

The following steps trace the execution of the JAX-WS version of the
GetNewOrders client illustrated in Figure 3–4.

1. The client uses the Service.addPort() method to create a port
within the Service instance that can be used to access the RESTful
Web service.

2. Next, the Service.createDispatch() method is invoked to create
an instance of Dispatch<Source>—a Dispatch instance that enables
you to work with XML request/response messages as instances of
javax.xml.transform.Source.

3. The Dispatch.invoke() method then packages the XML
request—per the JAX-WS 2.0 HTTP Binding—and sends it to the
RESTful service. The invoke() method waits for the response
before returning.

4. The service processes the HTTP GET and sends an HTTP response
that includes the XML.

5. The invoke() method returns the response XML message as an
instance of Source.

Example 3–6 shows the code used to implement the JAX-WS version of
GetNewOrders. Browsing through this code, you can see some of the awk-
wardness that comes from applying the WSDL-oriented Service API in a
REST context. First, notice that you have to create QName instances for the
Service instance and the “port” that corresponds to the RESTful Web ser-
vice. In a SOAP scenario, these qualified names would correspond to the
WSDL definitions for the wsdl:service and wsdl:port. Since there is no
WSDL when invoking a RESTful service, these QName instances are gratu-
itous in this example. They are required by the API, but not used to invoke
the RESTful service.

3.3 REST Clients with and without JWS 103

Example 3–6 The GetNewOrders Client As Implemented with JAX-WS

 35 public static void main(String[] args) throws Exception {
 36 if (args.length != 1) {
 37 System.err.println
 38 ("Usage: java GetNewOrders <Web Service URL>");
 39 System.exit(1);
 40 }
 41 QName svcQName = new QName("http://sample", "svc");
 42 QName portQName = new QName("http://sample", "port");
 43 Service svc = Service.create(svcQName);
 44 svc.addPort(portQName, HTTPBinding.HTTP_BINDING, args[0]);
 45 Dispatch<Source> dis =
 46 svc.createDispatch(portQName, Source.class, Service.Mode.PAYLOAD);
 47 Map<String, Object> requestContext = dis.getRequestContext();
 48 requestContext.put(MessageContext.HTTP_REQUEST_METHOD, "GET");
 49 Source result = dis.invoke(null);
 50 try {
 51 TransformerFactory.newInstance().newTransformer()
 52 .transform(result, new StreamResult(System.out));
 53 } catch (Exception e) {
 54 throw new IOException(e.getMessage());
 55 }
 56 }

book-code/chap03/rest-get/client-jaxws/src/java/samples/GetNewOrders.java

To run this example, do the following:

1. Start GlassFish (if it is not already running).
2. Go to <book-code>/chap03/rest-get/endpoint-servlet.
3. To build and deploy the Web service enter:

 mvn install

... and when that command finishes, then enter:
 ant deploy

4. Go to <book-code>/chap03/rest-get/client-jaxws.
5. To run the client enter:

 mvn install

6. To undeploy the Web service, go back to <book-code>/chap03/
rest-get/endpoint-servlet and enter:
 ant undeploy

104 Basic SOA Using REST

Looking at the code in Example 3–6, you can also see that the
addPort() method takes a URI parameter that defines the transport bind-
ing. The default is SOAP over HTTP, but in this case, the HTTPBind-
ing.HTTP_BINDING URI is used to specify the JAX-WS 2.0 HTTP Binding.
The final parameter passed to the addPort() method is the URL of the
RESTful Web service—in this case, args[0].

Once the port for the RESTful service has been added by the
addPort() method, it can be used to create an instance of Dis-
patch<Source>. The type parameter—in this case, Source—is passed as a
parameter to the createDispatch() method. The type of payload is speci-
fied as well. Here, I have specified Service.Mode.PAYLOAD (as opposed to
Service.Mode.MESSAGE). When working with SOAP, the MESSAGE mode
indicates that you want to work with the entire SOAP envelope as opposed
to just the SOAP body (or payload). In the REST scenario, there is no enve-
lope, so PAYLOAD is the option that makes sense.

Besides Source, the other valid type parameters for Dispatch are JAXB
objects, java.xml.soap.SOAPMessage, and javax.activation.Data-

Source. In Chapter 6,8 I look at examples using JAXB and SOAPMessage.
DataSource enables clients to work with MIME-typed messages—a sce-
nario I don’t cover in this book.

How does this implementation compare with the HttpURLConnection
version illustrated in Example 3–5? Table 3–2 illustrates some similarities
and differences.

As you can see, the JAX-WS version gives us a much richer interface,
although in a simple REST scenario like this, it is not always that useful. A
URL is an adequate representation of a RESTful service since there is no

8. Chapter 6 is a detailed overview of the JAX-WS client-side API.

Table 3–2 HttpURLConnection versus JAX-WS

HttpURLConnection
Version JAX-WS Version

Representation of the
RESTful Web service

java.net.URL javax.xml.ws.Service

Invocation Object java.net.
HttpURLConnection

javax.xml.ws.Dispatch

Message Form java.io.InputStream javax.xml.transform.Source

3.3 REST Clients with and without JWS 105

associated WSDL to provide further definition anyway. About the only
other information that is needed is whether to use HTTP POST or HTTP
GET. As we have seen, Service is really designed to be a Java representa-
tion of WSDL, so it’s not particularly helpful here.

The Dispatch interface, on the other hand, is better suited for working
with XML request/response than HttpURLConnection. First, its invoke()
method captures the request/response semantics of the HTTP Binding bet-
ter than the HttpURLConnection.connect() method. Second, rather than
reading and writing streams, the Dispatch interface enables us to work
directly with XML representations such as Source. This is much more natu-
ral, as we will see when we start linking RESTful services together and
using XSLT for data transformation (Section 3.4).

Having looked at clients that get XML from a RESTful Web service, the
next two sections show how to send XML to such a service. These sections
also demonstrate how to pass parameters to the RESTful service as part of
the URL.

3.3.3 Sending EIS Records to a REST Service without
Using JWS

In Section 3.3.1, I used HttpURLConnection to implement a “pull” architecture
for XML document messaging—in other words, the document is “pulled” by
the client from the Web service. In a “pull” architecture, the receiver of the
XML document initiates the transfer. In the code example provided, we used
the HTTP GET method to serve as the request mechanism.

Sending XML to a RESTful Web service is not much different from
getting XML. The main differences for the “push” architecture are that the
sender initiates the transfer and the HTTP POST method is used. This
architecture is used, for example, when the OMS wants to upload all new
and changed orders to the CSS on a regular basis. To implement such an
upload process, the CSS would need to provide a Web service where the
OMS could post XML documents.

In this example, I implement a “push” architecture using HttpURLCon-
nection.

Figure 3–5 illustrates push messaging. As you can see, it is similar to
the previous example, except that the client is now the sender of mes-
sages and the Web service is the receiver. The following steps are illus-
trated in the figure:

1. The client uses the URL.openConnection() method to create an
instance of HttpURLConnection representing a connection to the

106 Basic SOA Using REST

RESTful Web service’s URL. In this example, the URL has a parame-
ter: SourceSystem=OMS. This parameter indicates that the XML doc-
ument being sent comes from the “OMS” system.

2. HttpURLConnection.connect() begins the HTTP POST request to
the Web service’s URL.

3. The client writes the XML document to the HTTP request stream,
essentially appending it to the POST request that has been started.

4. The RESTful service processes the HTTP POST.
5. The response—a simple “200 OK”—is sent back to the client indi-

cating that the document has been received.

Example 3–7 shows the client-side code for implementing the HTTP
POST with an HttpULRConnection. Notice that we use setRequest-
Method("POST") to configure the HTTP request as a POST. After that, the
connect() method initiates the HTTP request, and the remaining code writes
the XML document (specified by the filename args[0]) to the output stream.

Figure 3–5 Push messaging with HTTP POST.

Web Service

establish HTTP POST connection to
http://<somepath>?SourceSystem=OMS

appending the XML document
to the POST request

receiving the HTTP response code

Client

PostCustomerHistory

4

HttpURLConnection

connect(...)

URL

openConnection(...)

getResponseCode(...)

1

5

OutputStream

write(...)

3

2

Sender Receiver
XML Message

3.3 REST Clients with and without JWS 107

Example 3–7 Client Uses POST to Upload an XML Document to the Web Service

 28 public static void main(String[] args) throws Exception {
 29 if (args.length != 2) {
 30 System.err.println
 31 ("Usage: java PostCustomerHistory <XML file name> "
 32 + "<Web Service URL>");
 33 System.exit(1);
 34 }
 35 FileInputStream in = new FileInputStream(args[0]);
 36 URL url = new URL(args[1]);
 37 HttpURLConnection con =
 38 (HttpURLConnection) url.openConnection();
 39 con.setDoOutput(true);
 40 con.setRequestMethod("POST");
 41 con.connect();
 42 OutputStream out = con.getOutputStream();
 43 // write the XML doc from file to the HTTP connection
 44 byte[] b = new byte[1024]; // 1K buffer
 45 int result = in.read(b);
 46 while (result != -1) {
 47 out.write(b,0,result);
 48 result = in.read(b);
 49 }
 50 out.close();
 51 in.close();
 52 // write HTTP response to console
 53 System.out.println(con.getResponseCode() +
 54 " " + con.getResponseMessage());
 55 }

book-code/chap03/rest-post/client-http/src/java/samples/
PostCustomerHistory.java

To run this example, do the following:

1. Start GlassFish (if it is not already running).
2. Go to <book-code>/chap03/rest-post/endpoint-servlet.
3. To build and deploy the Web service enter:

 mvn install

... and when that command finishes, then enter:
 ant deploy

108 Basic SOA Using REST

4. Go to <book-code>/chap03/rest-post/client-http.
5. To run the client enter:

 mvn install

6. To undeploy the Web service, go back to <book-code>/chap03/
rest-post/endpoint-servlet and enter:
 ant undeploy

What you can’t see here is the form of the URL that is passed in as
args[1]. To see the URL being used, you can look at the <book-code>/
chap03/rest-post/endpoint-servlet/build.xml file containing the goal used to
invoke this service. You will see that the URL has the form:

http://<somepath>?SourceSystem=OMS

The parameter SourceSystem specifies where the XML document (i.e.,
the customer history entry) is coming from. In this example, the only value for
SourceSystem that the RESTful Web service accepts is “OMS.” Try changing
the URL inside build.xml to specify SourceSystem=XYZ and see what hap-
pens. You will get an error message indicating the source is not supported yet.

The URL parameter SourceSystem is a parameter of the RESTful Web
service. That is one way parameters are passed to RESTful services. Chapter
4 discusses how SOAP services get parameters—they are embedded in the
SOAP message itself. You can also design a RESTful service that receives
parameters in the XML document, but this is kind of like reinventing SOAP.

The REST approach of using URL parameter passing is simple, but it
also has drawbacks. The primary drawback is that there is no interface
description of a RESTful service, so there is no way to determine—without
some other form of documentation—what URL parameters are required.
Some REST purists handle that objection by pointing out that URL parame-
ters are not needed for proper REST systems where resources are uniquely
defined by URIs. In this example, the URL could instead have the form:

http://<somepath>/OMS

In this case, the convention is that you post customer histories from the
OMS to the .../OMS URI, and customer histories from the XYZ system to
the .../XYZ URI, and so on.

Other REST advocates, who are slightly less purist, argue that URL
parameters are fine as long as they are nouns rather than verbs. An example
of a verb parameter would be something like:

3.3 REST Clients with and without JWS 109

http://<somepath>/ShoppingCart?action=clear

In this case, the action parameter specifies an operation to be carried
out on the resource—clearing the shopping cart. Specifying verbs like this is
a big REST no-no, but you can still find lots of so-called RESTful services
out there that are implemented this way.

My perspective on this debate is that, even if we follow the REST pur-
ists and do away with URL parameters, we have just changed the syntax, not
the semantics. The underlying semantics (and therefore the implementa-
tion) defines a resource (Customer History System) that can receive
updates from various sources (e.g., OMS, XYZ), and needs to know what
the source is.

If you implement that semantics by embedding parameters in the URL
path—rather than by using URL parameters—you have only made the sys-
tem’s interface even harder to understand. For example, when you use the
URL parameter form (e.g., http://<somepath>?SourceSystem=OMS), at
least you can tell that the OMS is a parameter designating the source sys-
tem. However, when you use the normalized version without parameters
(e.g., http://<somepath>/OMS), you don’t get any clues as to the meaning
of the “OMS.”

But, in either case, REST still provides you with no way to document
your interface—in other words, no WSDL. In my opinion, this is the pri-
mary reason why SOAP is more appropriate than REST for SOA-style
systems integration. Doing systems integration is all about defining the
interfaces between systems. If you don’t have a language in which to
express the interfaces (i.e., no WSDL), it is very hard to be rigorous
about defining the interfaces. As indicated in Section 3.2.1, you can try
to work around this REST limitation by using XML Schema to define the
interface. That approach works, but in addition to not being standard
practice, it has other limitations. For example, in the case just discussed,
the parameter (SourceSystem=OMS) is not part of the XML message
received by the RESTful service. So, to define an interface that specifies
this parameter, you would have to refactor the RESTful service to accept
a parameter inside the XML message that indicates the source system.
The basic problem here is that URL parameters, since they are not part
of the XML message, cannot be specified in an XML Schema-based
interface definition.

This example has shown how to develop an HttpURLConnection-based
client for sending XML documents to a RESTful service that requires URL
parameters. The next section shows you how to do the same thing using
JAX-WS 2.0.

110 Basic SOA Using REST

3.3.4 Sending EIS Records to a REST Service with JWS

As in Section 3.3.2, the client in this section uses javax.xml.ws.Service
and javax.xml.ws.Dispatch rather than java.net.URL and HttpURLCon-
nection. The major difference from that section is that here, the XML doc-
ument is being pushed to the service. To do that, the XML document needs
to be stored as an instance of a Java class that can be used by the Dis-
patch<Source> instance. In this case, the type parameter is Source, so a
Source instance must be created from the XML document that is to be sent
to the RESTful service.

This example also illustrates how to get HTTP-related information from
the Dispatch object by accessing its response context. As demonstrated
here, a bit more work is needed to get the HTTP status code than with the
simple HttpURLConnection.getResponseCode() method used in the previ-
ous example.

Figure 3–6 illustrates push messaging as implemented with JAX-WS
2.0. There is a little more detail here than shown in the HttpURLConnection
example from Figure 3–5. The steps are as follows:

1. The client uses the Service.addPort() method to create a port
within the Service instance that can be used to access the RESTful
Web service.

2. Next, the Service.createDispatch() method is invoked to create
an instance of Dispatch<Source>—a Dispatch instance that enables
you to work with XML request/response messages as instances of
javax.xml.transform.Source.

3. The XML file to be posted to the RESTful service is wrapped in an
instance of javax.xml.transform.stream.StreamSource. Stream-
Source implements the Source type parameter required by Dis-
patch<Source>.

4. The Dispatch.invoke() method then packages the XML document
into an HTTP POST request—per the JAX-WS 2.0 HTTP Bind-
ing—and sends it to the RESTful service. The invoke() method
waits for the response before returning.

5. The service processes the HTTP POST and sends an HTTP
response that includes an HTTP response code.

6. Because the HTTP response code is part of the HTTP message
(transport level), and not part of the XML payload, to examine it the
client invokes Dispatch.getResponseContext() to get the HTTP
context for the response.

3.3 REST Clients with and without JWS 111

7. The HTTP context is represented as a Map<String, Object> instance.
This map provides access to the HTTP headers and other information
that is outside the XML payload. Here, it is used to access the HTTP
response code (i.e., 200 for “OK,” 500 for “Server Failure,” etc.).

Example 3–8 shows the implementation of PostCustomerHistory using
JAX-WS. It is similar to Example 3–6, and you should review the discussion
of REST and JAX-WS given there.

Figure 3–6 Push messaging with HTTP POST and JAX-WS 2.0.

XML File
(customer

history
entry)

HTTP
Response

Code

Web Service

establish HTTP POST connection to
http://<somepath>?SourceSystem=OMS

appending the XML document
to the POST request

receiving the HTTP response code

Client

PostCustomerHistory

5

Dispatch<Source>

Service

createDispatch(...)

addPort(...)

getResponseContext(...)

2

6

invoke(...) 4

1

3

7

Sender Receiver
XML Message

StreamSource

Map<String, Object>

112 Basic SOA Using REST

The main difference here from the HttpURLConnection version
(Example 3–7) is that the Dispach.invoke() method is invoked with a
StreamSource parameter that is constructed from the XML file being
posted to the RESTful Web service. Notice that there is no need to write
the XML out to a stream as in the HttpURLConnection example. The Dis-
patch<Source> instance lets you deal with the XML request and response
payloads as instances of Source.

Example 3–8 The PostCustomerHistory Client as Implemented with JAX-WS

 33 public static void main(String[] args) throws Exception {
 34 if (args.length != 2) {
 35 System.err.println
 36 ("Usage: java XMLUploadSender <XML file name> "
 37 + "<Web Service URL>");
 38 System.exit(1);
 39 }
 40 QName svcQName = new QName("http://sample", "svc");
 41 QName portQName = new QName("http://sample", "port");
 42 Service svc = Service.create(svcQName);
 43 svc.addPort(portQName, HTTPBinding.HTTP_BINDING, args[1]);
 44 Dispatch<Source> dis =
45 svc.createDispatch(portQName, Source.class, Service.Mode.PAYLOAD);

 46 dis.invoke(new StreamSource(new File(args[0])));
 47 Map<String, Object> respContext = dis.getResponseContext();
 48 Integer respCode =
 49 (Integer) respContext.get(MessageContext.HTTP_RESPONSE_CODE);
 50 System.out.println("HTTP Response Code: "+respCode);
 51 }

book-code/chap03/rest-post/client-jaxws/src/java/samples/PostCustomerHistory.java

To run this example, do the following. After the example is run, the
results (customer history entries) are written by the application to a tempo-
rary file of the form ${user.home}/tmp/soabook*.xml. So, you can look to
your ${user.home}/tmp directory to verify that the example ran properly.

1. Start GlassFish (if it is not already running).
2. Go to <book-code>/chap03/rest-post/endpoint-servlet.
3. To build and deploy the Web service enter:

3.3 REST Clients with and without JWS 113

 mvn install

... and when that command finishes, then enter:
 ant deploy

4. Go to <book-code>/chap03/rest-post/client-jaxws.
5. To run the client enter:

 mvn install

6. To undeploy the Web service, go back to <book-code>/chap03/
rest-post/endpoint-servlet and enter:
 ant undeploy

As you can see from this example, getting the HTTP response code
from the Dispatch instance is a little awkward. First, you need to request
the response context. That is because Dispatch is not an HTTP-specific
interface. So, it doesn’t make sense for Dispatch to have a convenience
method like HttpURLConnection.getResponseCode(). The JAX-WS
Expert Group envisions scenarios where Dispatch is used with non-HTTP
bindings. So, the way it works is that the Dispatch.getResponseContext()
method provides an instance of Map<String, Object> that contains context
information about the underlying protocol.

The getResponseContext method is inherited from the
javax.xml.ws.BindingProvider interface (of which Dispatch is a sub-
interface). BindingProvider provides a representation of the underlying
protocol binding (e.g., XML/HTTP or SOAP/HTTP) being used for Web
Services communication. When a BindingProvider does a request/
response, the request and response messages are embedded in a context
that is binding-specific. The message and its context move through a chain
of handlers during the invocation process. All this is beyond the scope of
our simple discussion here, but it is useful background (see Chapter 6 for a
detailed discussion of JAX-WS client-side handlers). The response context
represents the final state of the message context after the invocation is com-
pleted. So, access to the response context is provided through the JAX-WS
handler framework APIs.

The way this handler framework manifests itself here is that the keys
that are used to look up information in the response context are provided
by javax.ws.handler.MessageContext. As shown in the code, Message-
Context.HTTP_RESPONSE_CODE is the key used to access the HTTP
response code.

In the HttpURLConnection case, there is no distinction between the
message and its context. One works directly with the HTTP requests and
responses. So, the processing model is simpler. However, the drawback

114 Basic SOA Using REST

is that you have to create your own code to extract the XML messaging
from the HTTP communications. In these simple examples, that doesn’t
seem like a big deal. The only manifestation of that extraction process so
far has been reading and writing XML to the HTTP input and output
streams. However, as the complexity of the processing increases, dealing
with messages rather than streams becomes a valuable additional layer of
abstraction. For example, when you want to introduce handlers to do
Java/XML binding or reliable messaging, you don’t want to have to cre-
ate your own handler framework for pre- and post-processing of the
HTTP streams.

That wraps up our basic discussion about how to invoke RESTful Web
services. Next, the discussion turns to XSLT—the XML data transformation
language—and how it can be used to implement basic SOA-style loosely
coupled integration of multiple Web services.

3.4 SOA-Style Integration Using XSLT and JAXP for Data
Transformation

Some readers may be wondering why a book about SOA with Java Web Ser-
vices would include a section on XSLT. The reason is that XLST provides a
powerful and efficient data transformation engine that can be used to trans-
late messages from one format to another. When building SOA applications,
developers commonly encounter problems where they need to integrate
systems that require the same message type (e.g., purchase order) in differ-
ent formats. XSLT provides a standard mechanism for translating between
message formats when messages are represented as XML documents.

The perceding section introduced two Web services:

■ The OMS “NewOrders” Web service that provides access to the new
orders that have come in during the past day

■ The CSS “CustomerHistory” Web service that receives updates to
the customer history database

This section shows how to build a simple SOA application that links
these two Web services together. I am going to walk through an example
that gets the new orders, transforms them into customer history entries, and
posts those entries to the CSS. This example introduces data transformation
using XSLT—a cornerstone of SOA-style loosely coupled integration.

3.4 SOA-Style Integration Using XSLT and JAXP for Data Transformation 115

3.4.1 How and Why to Use XSLT for Data Transformation

A core component of any SOA system is its capability to transform data
from one format to another. Often referred to as data transformation, this
capability is most naturally addressed within the Web Services context using
eXtensible Stylesheet Language Transformations (XSLT). We assume the
reader is familiar with the basics of XSLT. Our focus is on the application of
XSLT to SOA-style loosely coupled integration. To brush up on XSLT, see
the W3C’s Web site at www.w3.org/Style/XSL/. In addition to the specifica-
tion (the examples in this book use Version 1.0—see [XSLT 1.0]), the site
has links to a variety of helpful tutorials. Another good refresher can be
found in Sun’s Java/XML Tutorial (http://java.sun.com/webservices/jaxp/
dist/1.1/docs/tutorial/xslt/index.html). Sun’s tutorial is especially useful
because it discusses the JAXP APIs along with XSLT.

Because XSLT is a sophisticated data transformation language, it can
take a long time to learn in depth. Fortunately, the data transformations
required by most SOA applications need to use only a small part of the
XSLT language that does not take a long time to learn. If you are struggling
to understand this section of the book, you should have no trouble once you
review the Sun tutorial. There is no need to study XSLT in great depth at
this point!

XSLT makes sense as the transformation tool of choice within SOA
integration frameworks, because it is a universally accepted standard and
the transformation engines that interpret XSLT to perform data transforma-
tions keep getting better and faster. Although it may be expedient to write
some quick and dirty code to perform a simple transformation here and
there, it does not make sense to leave the data transformation language and
processing unstandardized when developing a framework for SOA integra-
tion that will be used across an organization.

To demonstrate how XSLT can be used for data transformation, we con-
sider a scenario where the new orders, accessed from the OMS, are used to
create customer history records that update the CSS customer history data-
base. The business reason for doing this is so that users of the CSS have fast
access to an up-to-date record of the transactions a customer has made with
the company. Such information needs to be available nearly instantly when
handling customer care telephone calls, for example. If the customer care
representative needs to examine the details of any transaction in the customer
history, the information stored there from the OMS provides important keys,
such as OrderKey and ITM_NUMBER, that will enable detailed information to be
retrieved from the OMS rapidly.

116 Basic SOA Using REST

Figure 3–7 illustrates the data mapping that transforms an OMS order
record into a CSS customer history record. The order record and customer
history record are introduced in Figure 3–1 and Figure 3–2, respectively.

Figure 3–7 A data mapping for the transformation from a sales order to a customer his-
tory record.

Customer Number ENT0072123

Order Lookup
Information

 Order Number: ENT1234567
 PO Number: PO-72123-0007
 Item Number: 012345
 Item Number: 543210
 Other Information: This order is a rush.

Customer History Record

Order

Order Number ENT1234567

Header Sales Organization: NE
 Purchase Date: 2001-12-09
 Customer Number: ENT0072123
 Payment Method: PO
 Purchase Order: PO-72123-0007
 Guaranteed Delivery: 2001-12-16

Order Items Item Number: 012345
 Storage Location: NE02
 Target Quantity: 50
 Unit of Measure: CNT
 Price per UOM: 7.95
 Description: 7 mm Teflon Gasket

 Item Number: 543210
 Target Quantity: 5
 Unit of Measure: KG
 Price per UOM: 12.58
 Description: Lithium grease with PTFE/Teflon

Other Information This order is a rush.

3.4 SOA-Style Integration Using XSLT and JAXP for Data Transformation 117

As illustrated in Figure 3–7, the Customer Number in the Order
becomes a foreign key in the Customer History Record, which links it back
to other information about the customer. Order Number, PO Number, and
Item Number are mapped over because having them in the CSS will enable
additional SOA components to be built that provide quick lookups from a
customer history record to detailed order, purchase order, and item infor-
mation in the OMS and other systems. Note that there may be multiple
instances of an item number in a customer history record, if an order
includes more than one type of item.

The following examples review the XSLT for transforming a set of OMS
orders into a set of CSS customer history entries. The set of orders is for-
matted as an oms:Orders element in the schema http://soabook.com/
example/oms/orders.xsd (Example 3–2). The set of customer histories is
formatted as a css:CustomerHistoryEntries element in the schema
http://soabook.com/example/css/custhistentries.xsd (Example 3–
4). The XSL transformation from an order to a customer history is repre-
sented pictorially in Figure 3–7.

The XSLT language is declarative. It defines transformations of source
documents to target documents. An XSL transformation comprises a set of
template rules—represented by instances of the xsl:template element—
that are children of the root xsl:stylesheet element. Hence, an XSLT
document is often referred to as a stylesheet. The template elements in the
stylesheet define the structure of the target document that is created from
the source.

XSLT uses the XPath language (see [XPath]) to identify chunks of data
in the source document (e.g., OrderKey). Together with the template rules,
the XPath expressions determine where to place the chunks of data in the
target document.

Example 3–9 illustrates a stylesheet for transforming orders to cus-
tomer histories. This discussion breaks the stylesheet into bite-size chunks.
The example shows the beginning of the XSLT document, including the
xsl:stylesheet namespace declarations and xsl:output element.

Example 3–9 XSLT for Customer History—Namespaces and Output Elements

 4 <xsl:stylesheet version="1.0"
 5 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 6 xmlns:oms="http://www.example.com/oms">
 7 <xsl:output method="xml" version="1.0" encoding="UTF-8"/>

book-code/chap03/xslt/etc/order_to_history.xslt

118 Basic SOA Using REST

As you can see, the prefix oms is used to denote the Order Management
System namespace: http://www.example.com/oms. The xsl:output ele-
ment controls the format of the stylesheet output. The attribute
method="xml" indicates that the result should be output as XML. Note that
this stylesheet does not specify that the output should be indented (i.e., it
does not include the attribute indent="yes"). You should avoid specifying
visual formatting such as indentation in the base-level transformation. I rec-
ommend using a separate XSLT stylesheet to format XML for human-read-
able output when necessary. Note that the encoding is specified
(encoding="UTF-8"), as it is throughout this book, as UTF-8.

The next portion of the XSLT, shown in Example 3–10, provides the
rules for processing the oms:Orders element.

Example 3–10 XSLT for Customer History—Creating the Customer History Entry

 11 <xsl:template match="oms:Orders">
 12 <CustomerHistoryEntries xmlns="http://www.example.com/css"
 13 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 14 xsi:schemaLocation="http://www.example.com/css
 15 http://soabook.com/example/css/custhistentries.xsd">
 16 <xsl:apply-templates/>
 17 </CustomerHistoryEntries>
 18 </xsl:template>
 19 <xsl:template match="oms:Order">
 20 <CustomerHistoryEntry xmlns="http://www.example.com/css">
 21 <CustomerNumber>
 22 <xsl:apply-templates select="./oms:OrderHeader/oms:CUST_NO"/>
 23 </CustomerNumber>
 24 <OrderLookupInfo>
 25 <xsl:apply-templates select="./oms:OrderKey"/>
 26 <xsl:apply-templates
 27 select="./oms:OrderHeader/oms:PURCH_ORD_NO"/>
 28 <xsl:apply-templates
 29 select="./oms:OrderItems/oms:item/oms:ITM_NUMBER"/>
 30 <xsl:apply-templates select="./oms:OrderText"/>
 31 </OrderLookupInfo>
 32 </CustomerHistoryEntry>
 33 </xsl:template>

book-code/chap03/xslt/etc/order_to_history.xslt

3.4 SOA-Style Integration Using XSLT and JAXP for Data Transformation 119

At the beginning of the block, you see a template being defined to
match the pattern “oms:Orders”—in other words, it matches the
oms:Orders element in the source document. Inside this template, you see
the definition of a CustomerHistoryEntries element. The contents
appearing inside the template form the output for the target document. So,
this template provides the rules for transforming an oms:Orders element
into a css:CustomerHistoryEntries element.

Now, notice that this template has the instruction <xsl:apply-tem-
plates/> inside it. Inside a template, XML in the xsl namespace is inter-
preted as instructions and not as content to be output to the target
document. This particular instruction tells the XSLT processor to apply the
other templates in the stylesheet to the children of the oms:Orders node
and insert the results into the target document. So, that is how the
css:CustomerHistoryEntries element gets constructed in the target doc-
ument. Its opening and closing tags are specified in this template. Its chil-
dren are defined by the results of the <xsl:apply-templates> instruction
and are inserted between the opening and closing tags.

Continuing to examine Example 3–10, you can see that the bottom
half defines another template matching the oms:Order element. So, if
any children of oms:Orders are instances of oms:Order, these children
will be processed by this template and the results will be inserted the
CustomerHistoryEntries tags. Looking inside this template for
oms:Order, you can see that it contains the contents for an element, Cus-
tomerHistoryEntry, and the two top-level elements CustomerNumber
and OrderLookupInfo. Now, look inside the tags for CustomerNumber and
you see another xsl:apply-templates instruction. However, this one
has the attribute:

select="./oms:OrderHeader/oms:CUST_NO"

This template is providing the instructions for filling in the contents of
the CustomerNumber element. And the XPath expression ./oms:Order-
Header/oms:CUST_NO restricts the children of oms:Order that this template
is applied to. That XPath expression tells the XSLT processor to only apply
templates to oms:CUST_NO elements that are children of oms:OrderHeader.
In this manner, the XPath expression reaches into the source document,
pulls out the oms:CUST_NO element, processes it, and inserts the results
inside the CustomerNumber tags. That is how oms:CUST_NO gets transformed
into css:CustomerNumber and inserted into the right place in the target
document.

120 Basic SOA Using REST

Looking at some of the other xsl:apply-templates instructions occur-
ring in Example 3–10, you can see that the <OrderLookupInfo> element is
populated from the source elements specified by the XPath expressions:
./oms:OrderKey, ./oms:OrderHeader/PURCH_ORD_NO, ./oms:OrderItems/
item/ITM_NUMBER, and ./oms:OrderText. Notice that these XPath expres-
sions correspond to the dotted line mappings in Figure 3–7.

Continuing to review this stylesheet, now have a look at Example 3–11,
which shows the templates that match these XPath expressions.

Example 3–11 XSLT for Customer History—Detail-Level Templates

 37 <xsl:template match="oms:CUST_NO">
 38 <xsl:value-of select="."/>
 39 </xsl:template>
 40 <xsl:template match="oms:OrderKey">
 41 <OrderNumber xmlns="http://www.example.com/css">
 42 <xsl:value-of select="."/>
 43 </OrderNumber>
 44 </xsl:template>
 45 <xsl:template match="oms:PURCH_ORD_NO">
 46 <PURCH_ORD_NO xmlns="http://www.example.com/css">
 47 <xsl:value-of select="."/>
 48 </PURCH_ORD_NO>
 49 </xsl:template>
 50 <xsl:template match="oms:ITM_NUMBER">
 51 <ITM_NUMBER xmlns="http://www.example.com/css">
 52 <xsl:value-of select="."/>
 53 </ITM_NUMBER>
 54 </xsl:template>
 55 <xsl:template match="oms:OrderText">
 56 <OrderText xmlns="http://www.example.com/css">
 57 <xsl:value-of select="."/>
 58 </OrderText>
 59 </xsl:template>

book-code/chap03/xslt/etc/order_to_history.xslt

Here you can see, for example, that the template matching
oms:OrderKey simply returns the value of that element (the instruction
<xsl:value-of select="."/> returns the string value of the current
node). The net result is that this stylesheet maps the value of

3.4 SOA-Style Integration Using XSLT and JAXP for Data Transformation 121

oms:OrderKey to a subelement in the target document named OrderNum-
ber that is a child of CustomerHistoryEntry.

Having walked through an example of an XSLT, the next section looks
at how such transformations are applied using Java.

3.4.2 XSLT Processing Using JAXP

XSLT processing in Java is accomplished using the Java API of XML Pro-
cessing (JAXP) [JSR 206]. Specifically, the JAXP javax.xml.trans-
form.Transformer class can be used to convert a source document to a
target document according to the rules specified in a stylesheet. JAXP pro-
vides the foundation from which all Java XML processing is built.

Figure 3–8 shows a simplified architecture diagram illustrating the role
of the JAXP API. A variety of different types of Java applications can use the
JAXP API, including servlets, JSPs, and EJBs. All of these use JAXP to
access the various capabilities that are included in any JAXP implementa-
tion, such as a SAX parser, a DOM implementation, and an XSL processor
that supports XSLT. The package javax.xml.parsers provides a common
factory interface to access different implementations of SAX and DOM
(e.g., Xerces) as well as XSLT (e.g., Xalan). The interfaces for SAX and
DOM are found in the org.xml.sax and org.w3c.dom packages, respec-
tively. The XSLT APIs are found in the javax.xml.transform packages.

As shown in Figure 3–8, JAXP isolates a Java application (e.g., client,
servlets, JSP, EJB) from the implementation of the XSLT transformer, and
the SAX and DOM parsers. JAXP defines factory classes that instantiate
wrapper objects on the transformer and parser implementations. The trans-
former/parser implementation classes that are used at runtime are deter-
mined by system property and/or classpath settings.

JAXP is an important enabling standard making it feasible to use Java and
Web Services for constructing SOA-style systems integration applications. Not
only does it integrate the XML parsing and transformation standards with Java,
but also it isolates the SOA application components from the SAX, DOM, and
XSLT implementations. This is important, because as better and faster imple-
mentations come to market, SOA components will be able to take advantage of
them to improve the performance without needing to be rewritten.

By using the JAXP architecture and XML for messaging, most of the
data transformation work involved in integrating SOA components with
Java boils down to writing XSLT. The example used to demonstrate this is
illustrated in Figure 3–9. This application reads orders from an OMS Web
service, transforms them into customer history updates, and writes these
updates to a CSS Web service.

122 Basic SOA Using REST

This example is constructed by tying together the examples from Sections
3.3.2 and 3.3.4 and using XSLT in the middle to transform the orders into
customer histories. The steps in the process illustrated in Figure 3–9 are:

1. A Service instance is used to create two Dispatch<Source>
instances—one to invoke the OMS Web service, and the other to
invoke the CSS Web service.

2. The first Dispatch<Source> instance’s invoke method is used to get
the orders from the OMS Web service.

3. The orders (an XML document) are returned from invoke() as a
Source instance.

4. The XSLT stylesheet file (order_to_history.xslt) is used, by a
TransformerFactory, to construct a Transformer instance based on
the stylesheet.

5. The Transfomer.transform() method is invoked to apply the
stylesheet rules to the Source instance (orders). The resulting cus-

Figure 3–8 Architecture of the Java API for XML Processing (JAXP).

Web
ServerJava CE

Client

Java API for XML Processing (JAXP)

JSP

Java EE 5 Application Server

Java
Servlet

EJB
Container

Enterprise
JavaBean

SAX Parser
(e.g., Xerces)

DOM Parser
(e.g., Xerces)

XSLT Transformer
(e.g., Xalan)

Java
Applications

JAXP
Implementation

3.4 SOA-Style Integration Using XSLT and JAXP for Data Transformation 123

tomer histories (an XML document—see Example 3–3) are written to a
Result instance that has been created.

6. In this case, the Result instance is created as a wrapper from a
ByteArrayInputStream. So, the XML is extracted from the underly-
ing array and wrapped in a StreamSource object that can be con-
sumed by the second Dispatch instance.

7. Lastly, as in Figure 3–6, the Dispatch.invoke() method is used to
post the customer histories XML to the CSS Web service.

The code in Example 3–12 shows how the steps from Figure 3–9 are
implemented. The Java used to create and invoke the Dispatch instances
(to get and send the XML to the RESTful Web services) is the same as in

Figure 3–9 SOA-style integration with XSLT for data transformation.

Client

OrderToCustHist Dispatch<Source>

Service

addPort(...)
2invoke(...)

createDispatch(...)

Source

4

Dispatch<Source>

invoke(...)

3

StreamSource

7

Transformer

Stylesheet
order_to_history.xslt

TransformerFactory

newTransformer(...) transform(...)

Result

ByteArrayInputStream

Customer
Service System
(CSS)
Web Service

Customer
Histories
(XML
Message)

Order
Management
System (OMS)
Web Service

Orders
(XML
Message)

5

6

1

124 Basic SOA Using REST

Example 3–6 and Example 3–8—please see those discussions for an over-
view of how Dispatch works in this scenario.

Example 3–12 Java Code That Applies the XSLT for Customer History

51 // Get the new orders
52 Service svc = Service.create(svcQName);
53 svc.addPort(orderQName, HTTPBinding.HTTP_BINDING, newOrdersUrl);
54 Dispatch<Source> getOrdersDispatch =
55 svc.createDispatch(orderQName, Source.class, Service.Mode.PAYLOAD);
56 Source newOrdersSource =
57 getOrdersDispatch.invoke(new StreamSource(new StringReader("<empty/>")));
58 // Instantiate a Transformer using our XSLT file
59 Transformer transformer =
60 TransformerFactory.newInstance().newTransformer
61 (new StreamSource(new File(xsltFile)));
62 // Transform the new orders into history entry files
63 ByteArrayOutputStream ba = new ByteArrayOutputStream();
64 transformer.transform(newOrdersSource, new StreamResult(ba));
65 // Update the customer histories
66 svc.addPort(histQName, HTTPBinding.HTTP_BINDING, addCustHistUrl);
67 Dispatch<Source> postCustomerHistoryDispatch =
68 svc.createDispatch(histQName, Source.class, Service.Mode.PAYLOAD);
69 postCustomerHistoryDispatch
70 .invoke(new StreamSource(new StringReader(ba.toString())));

book-code/chap03/xslt/src/java/samples/OrderToCustHist.java

To see how the XSLT is implemented, look to the middle of the exam-
ple code where an instance of the default TransformerFactory is obtained
using TransformerFactory.newInstance(). Using this factory, a Trans-
former is created by passing the XSLT file (the one discussed previously
that implements the mapping illustrated in Figure 3–7) as a StreamSource
to the newTransformer() method. The resulting Transformer then applies
the XSLT to the Source instance obtained by invoking the getOrdersDis-
patch instance. As shown here, the second parameter used in the invoca-
tion of transformer.transform() is a StreamResult wrapping an
underlying ByteArrayOutputStream. In this manner, the results of the XSL
transformation are written to that byte array. The end of the example code
shows how that byte array is wrapped inside a StreamSource that can be
passed to the postCustomerHistoryDispatch.invoke() method to post
the customer histories to the CSS Web service.

3.5 RESTful Services with and without JWS 125

To run this example, do the following. After the example is run, the
results (customer history entries) are written by the application to a tempo-
rary file of the form ${user.home}/tmp/soabook*.xml. So, you can look to
your ${user.home}/tmp directory to verify that the example ran properly.

1. Start GlassFish (if it is not already running).
2. Go to <book-code>/chap03/rest-post/endpoint-servlet.
3. To build and deploy the Web service enter:

 mvn install

... and when that command finishes, then enter:
 ant deploy

4. Go to <book-code>/chap03/rest-get/endpoint-servlet.
5. To build and deploy the Web service enter:

 mvn install

... and when that command finishes, then enter:
 ant deploy

6. Go to <book-code>/chap03/xslt.
7. To run the client enter:

 mvn install

8. To undeploy the Web service, go back to <book-code>/chap03/
rest-get/endpoint-servlet and enter:
 ant undeploy

9. Do the same in the directory <book-code>/chap03/rest-post/end-
point-servlet.

That concludes this brief introduction to data transformation using
XSLT with JAXP. XML processing with JAXP is examined in more detail in
Chapter 5 where data binding is introduced and JAXB is compared with
SAX and DOM. The next two sections of this chapter look at how RESTful
services are deployed—with and without the JWS.

3.5 RESTful Services with and without JWS

The focus now switches from client-side consumption of RESTful Web
Services to development and deployment of such services themselves. As
in Section 3.3, this section examines how to deploy such services both
with and without JAX-WS. As before, the purpose here is to compare
and contrast the JWS approach with the bare-bones approach of simply

126 Basic SOA Using REST

working with Java’s HTTP servlet tools to build and deploy a simple
RESTful service.

Again, the example used to illustrate the concepts in this section is a basic
building block of SOA Web Services—the deployment of a simple download
service. In this case, it is the “New Orders” service discussed from the client
perspective in previous sections. This section examines how to deploy a Java
class that provides a getNewOrders() method both with and without JAX-WS.

3.5.1 Deploying a REST Service without Using JWS

This section provides the first example in the book of how to deploy a Java
method as a Web service. It is the simplest RESTful Web service imagin-
able—the service consumed by the client in Section 3.3.2. This service sim-
ply returns an XML document containing the “new orders.”

Example 3–13 shows a mock object implementation of the getNew-
Orders() method. This implementation of OrderManager is called a mock
object because it is a “mock-up” of a real OrderManager class. It is a stub
implementation of the server side. The getNewOrders() method returns
the contents of a hard-coded file (/orders.xml) instead of providing a live
interface to an Order Management System. Throughout this book, mock
objects like this are used to illustrate the Java classes that are deployed as
Web Services. This strategy provides realistic examples you can actually run,
without requiring you to have any actual back-end systems to provide Order
Management or Customer Service implementations.

Example 3–13 The OrderManager.getNewOrders(...) Method to Be Deployed As a
Web Service

 26 public class OrderManager {
 27
 28 public Source getNewOrders() throws FileNotFoundException {
 29 // get the resource that provides the new orders
 30 InputStream src = getClass().getResourceAsStream("/orders.xml");
 31 if (src == null) {
 32 throw new FileNotFoundException("/orders.xml");
 33 }
 34 return new StreamSource(src);
 35 }
 36
 37 }

book-code/chap03/rest-get/endpoint-servlet/src/java/samples/OrderManager.java

3.5 RESTful Services with and without JWS 127

Several questions arise when considering how to enable this method as
a Web service:

1. How is the class instantiated?
2. How is the Source instance returned by getNewOrders() converted

into an XML stream in an HTTP response message?
3. How is the class deployed as a Web service?

These three questions mirror the three components of a Web Services
Platform Architecture outlined in Chapter 1, Section 1.2. Question #1 is
about invocation—the first component of a Web Services Platform Architec-
ture. To invoke a Web service, you must be able to get an instance of its
implementation class. Question #2 is about serialization—the second compo-
nent of a Web Services Platform Architecture. The Java object that is
returned must be serialized to XML that can be written out “onto the wire.”
Question #3 is about deployment—the third component of a Web Services
Platform Architecture.

This section gives simple answers to these questions, as the example
shows how to deploy the Java method as a Web service using a dedicated
servlet. However, what is interesting to note is that, even in this simple case,
the solutions need to deal with all three of the Web Services Platform
Architecture components.

In this example, the Web service is accessed with an HTTP GET
request. The servlet needs to handle the HTTP GET request, instantiate
the Java class, invoke the getNewOrders() method, and write the results
out as XML in the HTTP GET response. Figure 3–10 shows the basic
architecture.

As illustrated here, this simple architecture deploys a RESTful Web ser-
vice using the java.servlet.http.HttpServlet class. The GetNewOrders-
Servlet class acts as a front-end to the OrderManager that mediates between
the HTTP request/response messages and invokes the Java method that
implements the Web service. The steps illustrated in the figure are:

1. The client sends an HTTP GET request to the appropriate URL (a
URL that has been associated, in the servlet container’s configura-
tion, with the GetNewOrders class).

2. The servlet container wraps the HTTP request stream in an instance
of HTTPServletRequest and passes it to the GetNewOrdersServlet’s
doGet() method.

3. The doGet() method creates an instance of the OrderManager class
and invokes the getNewOrders() method.

128 Basic SOA Using REST

4. The getNewOrders() method returns the new orders XML docu-
ment as an instance of javax.xml.transform.Source.

5. An instance of javax.xml.transform.Transformer is used to write
the new orders Source to the ServletOutputStream (wrapped in an
instance of java.xml.transform.stream.StreamResult).

6. The getNewOrders() method returns and the HTTP response con-
taining the new orders XML document is returned to the client.

Example 3–14 shows the code for the GetNewOrdersServlet’s doGet()
method. This code is straightforward, but there are a few items to notice
and think about. First, as you can see, the servlet has to instantiate the
OrderManager class. This assumes that OrderManager is available to the
class loader. In this example, I accomplish that by bundling the OrderMan-
ager class in the WAR that is deployed. This is the simplest way to get an
instance of a class that needs to be deployed as a Web service, but it is not
always feasible. For example, if the class is implemented as an EJB, you will
need to request its interface from the EJB container, instead of instantiat-
ing an instance. Furthermore, suppose the class requires other container

Figure 3–10 RESTful service deployed using HTTPServlet.

Servlet ContainerClient

HTTP GET request

HTTP response
containing the XML
new orders
document

GetNewOrdersServlet
(extends HTTPServlet)

doGet(...)
1

2
OrderManager

getNewOrders(...)

Source

(new orders)

Tranformer

transform()

StreamResult

ServletOutputStream

3

4

5

6

SenderReceiver
XML Message

3.5 RESTful Services with and without JWS 129

services (e.g., JNDI and a database connection). In the real world, it is not
so easy to just deploy a POJO by packaging its class definition into a WAR.
Even in this example, using a mock object, the returned data (orders.xml)
needs to be packaged into the WAR along with the deployed class. How you
get an instance of a class being deployed as a Web services is a topic I cover
in some detail when we explore the design of the SOA-J in Chapter 11.

Another item to notice is the use of the HttpServletResponse.setCon-
tentType("text/xml") method to set the content type of the HTTP response.
This is important, because many REST clients (including early versions of the
GlassFish implementation of Dispatch) will fail if the content type is not
"text/xml." You need to be doubly careful with this, because some of the
HttpServletResponse methods (e.g., sendError(int sc, String msg)), on
some servlet containers, change the content type to "text/xml" since their
error messages are implemented as HTML content.

Lastly, notice the use of the default instance of Transformer to simply
write XML from a Source to a Result. Unlike in Section 3.4, here I am not
doing any XSL transformation. I am just using the Transformer to write the
XML returned by the OrderManager to the ServletOutputStream.

Example 3–14 The GetNewOrdersServlet doGet(...) Method

 33 public void doGet(HttpServletRequest req,
 34 HttpServletResponse res)
 35 throws IOException, ServletException {
 36 // invoke the Java method
 37 OrderManager om = new OrderManager();
 38 Source src = om.getNewOrders();
 39 // write the file to the HTTP response stream
 40 ServletOutputStream out = res.getOutputStream();
 41 res.setContentType("text/xml");
 42 StreamResult strRes = new StreamResult(out);
 43 try {
 44 TransformerFactory.newInstance().newTransformer()
 45 .transform(src, strRes);
 46 } catch (Exception e) {
 47 throw new IOException(e.getMessage());
 48 }
 49 out.close();
 50 }

book-code/chap03/rest-get/endpoint-servlet/src/java/samples
/GetNewOrdersServlet.java

130 Basic SOA Using REST

The instructions for deploying and invoking this servlet are included
with Example 3–6.

Example 3–15 shows the deployment descriptor for the Web service
implemented by the GetNewOrdersServlet class (together with OrderMan-
ager). This is the standard web.xml file, which is placed into the WEB-INF
subdirectory of the WAR package used to deploy this Web service.

Example 3–15 The web.xml Deployment Descriptor Bundled in the
GetNewOrdersServlet WAR

 9 <web-app>
 10 <servlet>
 11 <servlet-name>GetNewOrdersServlet</servlet-name>
 12 <servlet-class> samples.GetNewOrdersServlet </servlet-class>
 13 </servlet>
 14 <servlet-mapping>
 15 <servlet-name>GetNewOrdersServlet</servlet-name>
 16 <url-pattern>/NewOrders</url-pattern>
 17 </servlet-mapping>
 18 </web-app>

book-code/chap03/rest-get/endpoint-servlet/src/webapp/WEB-INF/web.xml

Notice in Example 3–15 that the servlet GetNewOrdersServlet is
mapped to the URL pattern /NewOrders. The deployment tool you use to
deploy the WAR determines the context root for the Web application. In
this case, the GlassFish default is being used—and it takes the context root
from the name of the WAR file (chap03-rest-get-endpoint-servlet-
1.0.war). And the base URL for the servlet container is http://local-
host:8080 (unless you have customized the profile section of the <book-
code>/pom.xml file when you installed the code example—see Appendix B,
Section B.5). So, the URL for this Web service becomes:

http://localhost:8080/chap03-rest-get-endpoint-servlet-1.0/NewOrders

That pretty much wraps up the “how-to” discussion for creating and
deploying a simple REST Web service using a servlet to invoke a Java
method. As you can see, it is not hard to use servlets for deployment of basic
RESTful Web services. The three questions posed at the beginning of the
section have been answered as follows:

3.5 RESTful Services with and without JWS 131

1. The Web service implementation class (i.e., OrderManager) is instan-
tiated using the no-arg default constructor. This assumes that such a
constructor exists and that the class definition is on the classpath. It
also assumes that all resources required by the class are available.

2. The object returned by getNewOrders() is converted into an XML
stream using a Transformer. This is a very simple scenario where the
method being deployed returns a result that is already represented
as an XML infoset. In most cases, the result will be a Java object that
is not an XML infoset representation and requires serialization.

3. The class is deployed by bundling it with a dedicated servlet.

Problems are encountered, however, when you want to deploy multiple
services. Using the architecture described in this section, you need to have a
servlet for each Web service. That quickly becomes cumbersome and ineffi-
cient. What is needed is an invocation subsystem so that a single servlet can be
used to invoke more than one service. However, to do that requires a method
of mapping URLs to services at a finer granularity than provided by the
web.xml file. As you can see in Example 3–15, the web.xml mapping is from a
single URL to a single servlet. So, for a single servlet to handle multiple URLs
(and multiple Web services), additional deployment meta-data must be added
to this simple architecture that falls outside of the servlet processing model.
One way to do this might be to map all base URLs of the form http://exam-
ple.com/services/* to the servlet. Then, local paths such as /getNewOrder,
/addCustomerHistory, and so on are mapped to individual Web services.

In fact, this approach is used by a variety of Web Services engines,
including Apache Axis [AXIS] and the SOA-J engine introduced in Chapter
11. JWS also offers a variation on this approach, which I examine in detail in
Chapter 7. For now, I’m going to defer further discussion of deployment
issues and move on to the nuts and bolts of how to deploy this “New
Orders” example Web service using JAX-WS and JSR-181 annotations.

3.5.2 Deploying a RESTful Service with JWS

This section illustrates how a Web service is deployed using JWS. This is the
same service that was deployed in Section 3.5.1. However, the operation of
the service—as deployed using JWS—is very different.

The primary difference here is that instead of using a servlet as in
Example 3–14, the JWS version uses an instance of Provider<Source> to
implement the RESTful service. Example 3–16 shows how it is imple-
mented. The @WebServiceProvider annotation used in this example is
defined by the JAX-WS 2.0 specification. It is used to declare a reference

132 Basic SOA Using REST

to a Web Service that implements a Provider<Source> interface. The
@WebServiceProvider annotation is required for deploying a RESTful
Web service and is discussed in more detail in Chapter 7, which covers
JAX-WS server-side development and deployment.

The Provider<Source> interface is basically the server-side version of
Dispatch<Source> discussed in Section 3.3.2. It enables you to create a
Web service that works directly with the XML message as an instance of
javax.xml.transform.Source—rather than a JAXB 2.0 representation of
the XML message. Along with @WebServiceProvider, the
javax.xml.ws.Provider interface is explained in greater detail in Chapter
7. In this section, my goal is just to give you a quick example of how a
RESTful service can be created and deployed with JAX-WS.

The @BindingType annotation (javax.xml.ws.BindingType) used in
Example 3–16 is also defined by the JAX-WS 2.0 specification and is used to
specify the binding that should be employed when publishing an endpoint.
The property value indicates the actual binding. In this case, you can see
that the value is specified as follow:

value=HTTPBinding.HTTP_BINDING

This indicates that the XML/HTTP binding should be used, rather than
the default SOAP 1.1/HTTP. This is how REST endpoints are specified in
JAX-WS 2.0—by setting the @BindingType. If one were to leave the @Bind-
ingType annotation off this example, the Java EE 5 container would deploy
it as a service that expects to receive a SOAP envelope, rather than straight
XML over HTTP (i.e., REST).

Example 3–16 GetNewOrdersProvider Implements Provider<Source> to
Create a RESTful Web Service

 21 import javax.xml.transform.Source;
 22 import javax.xml.ws.BindingType;
 23 import javax.xml.ws.Provider;
 24 import javax.xml.ws.WebServiceProvider;
 25 import javax.xml.ws.http.HTTPBinding;
 26 import javax.xml.ws.http.HTTPException;
 27
 28 @WebServiceProvider
 29 @BindingType(value=HTTPBinding.HTTP_BINDING)
 30 public class GetNewOrdersProvider implements Provider<Source> {
 31

3.5 RESTful Services with and without JWS 133

 32 public Source invoke(Source xml) {
 33 OrderManager om = new OrderManager();
 34 try {
 35 return om.getNewOrders();
 36 } catch (Throwable t) {
 37 t.printStackTrace();
 38 throw new HTTPException(500);
 39 }
 40 }
 41
 42 }

book-code/chap03/rest-get/endpoint-jaxws/src/java/samples
/GetNewOrdersProvider.java

The Provider<Source> interface specifies the invoke() method, which
receives and returns an instance of Source. As shown in this example, inside
the invoke() message, the OrderManager class gets instantiated and the
OrderManager.getNewOrders() method is invoked to implement the Web
service functionality. So, instead of wrapping the OrderManager inside an
HttpServlet.doGet() method, as in Example 3–14, this example wraps the
service implementation class inside a Provider.invoke() method.

At this point, it is worth asking the same questions posed in Section 3.5.1.
In particular:

1. How is the class instantiated?
2. How is the Source instance returned by getNewOrders() converted

into an XML stream in an HTTP response message?
3. How is the class deployed as a Web service?

As you can see from the code, some of these questions get very different
answers when a RESTful Web service is implemented as a Provider<Source>
than when it is implemented using an HttpServlet. These differences serve to
contrast the JAX-WS 2.0 approach to Web Services deployment with the
straightforward servlet implementation of the preceding section.

The answer to the first question is the same in both cases—the class is
instantiated each time the service is invoked. However, the answer to the sec-
ond question is different in this case. Here, the Source instance can be
returned directly. It does not need to be converted into a stream and written
out to the HTTP response message. These details related to the binding of

134 Basic SOA Using REST

the service to the HTTP transport are handled by the JAX-WS run-time
implementation. Lastly, the answer to the third question is also very different.
Java EE 5 supports many options for deploying Web services—these are all
discussed in Chapter 8. A web.xml deployment descriptor can be used (even
though this is not a servlet!), but is not required. In fact, it is possible to
deploy a JWS Web service without any deployment descriptors. The Java EE
5 container can often deploy a service based entirely on its annotations.

Figure 3–11 shows the architecture supporting the RESTful Web ser-
vice created and deployed here using JAX-WS 2.0.

As illustrated here, this JWS architecture deploys the RESTful Web ser-
vice using the java.servlet.http.Provider<Source> class. The GetNew-
OrdersProvider class acts as a front-end to the OrderManager that mediates
between the XML request/response messages and invokes the Java method
that implements the Web service. The steps illustrated in the figure are:

1. The client sends an HTTP POST request to the appropriate URL (a
URL that is specified at deployment time—either in a deployment
descriptor or by a deployment tool). Notice that a POST request is used
here, rather than a GET request. That is because early implementations
of JAX-WS allowed RESTful Web services only to accept POST
requests. Recent versions support both POST and GET requests.

Figure 3–11 RESTful service deployed using Provider<Source>.

Java EE 5 ContainerClient

HTTP POST request

HTTP response
containing the XML
new orders
document

GetNewOrdersProvider
(Provider<Source>)

invoke(...)
1

2
OrderManager

getNewOrders(...)

Source

(new orders)

3

4

5

SenderReceiver
XML Message

3.5 RESTful Services with and without JWS 135

2. The JWS container extracts the XML message from the HTTP
POST request and passes it to the GetNewOrders.invoke() method.
This functionality is provided by the JAX-WS runtime.

3. The invoke() method creates an instance of the OrderManager class
and invokes the getNewOrders() method.

4. The getNewOrders() method returns the new orders XML docu-
ment as an instance of javax.xml.transform.Source.

5. The instance of Source—the Web service’s return XML mes-
sage—is inserted into the HTTP response message and returned
to the caller. This functionality (i.e., wrapping the XML response
message inside the HTTP response message) is provided by the
JAX-WS runtime.

In some ways, the JWS implementation of this RESTful Web service is
simpler than its servlet-based counterpart discussed in Section 3.5.1. The
simplification comes from not having to translate between HTTP request/
response messages and the XML request/response messages. JAX-WS han-
dles that translation so that the developer can work directly with the XML
messages. In other ways, however, the JWS implementation shown here
seems more cumbersome. Two annotations are required—@WebService-
Provider and @BindingType. If you are not used to annotations, these can
make the example seem confusing.

To deploy and invoke this RESTful Web service example, do the following:

1. Start GlassFish (if it is not already running).
2. Go to <book-code>/chap03/rest-get/endpoint-jaxws.
3. To build and deploy the Web service enter:

 mvn install

... and when that command finishes, then enter:
 ant deploy

4. Go to <book-code>/chap03/rest-get/client-jaxws.
5. To run the client enter:

 ant run-jaxws

6. To undeploy the Web service, go back to <book-code>/chap03/
rest-post/endpoint-jaxws and enter:
 ant undeploy

136 Basic SOA Using REST

3.6 Conclusions

In this chapter, I provided a broad introduction to consuming, creating,
and deploying RESTful Web Services—using standard java.net.*
classes and servlets, as well as the JAX-WS 2.0 APIs and annotations. A
primary goal of this chapter was to highlight the similarities and differ-
ences between traditional Java techniques and the JAX-WS 2.0 approach
to Web Services. Another goal was to provide a grounding in some of the
basic XML processing techniques used to implement SOA-style integra-
tion of RESTful Web services.

In the next chapter, I look at the Java/XML data binding problem
and how it can be addressed using traditional JAXP approaches, as well
as using JAXB. As I did in this chapter, I compare and contrast the
approaches so that you can see the power available to you from the JAXB
machinery, but also some of the drawbacks. I help you to determine in
which situation JAXB provides the most value and where you are better
off using other binding tools.

137

C H A P T E R 4

The Role of WSDL, SOAP,
and Java/XML Mapping
in SOA

This chapter describes how the core Web Services standards—WSDL and
SOAP—are used for implementing SOA in a Java environment. In particu-
lar, since a great many Java applications being developed need to integrate
with an existing or planned SOA framework, I examine WSDL and SOAP
from the perspective of SOA Integration. SOA Integration is an approach to
systems integration that involves deploying the applications to be integrated
as sets of SOA-style services. The integration is accomplished by aggregat-
ing the resulting services to create loosely coupled applications built from
the underlying services.

The key enabling technology for using WSDL and SOAP with Java is
Java/XML mapping. Java/XML mapping technology converts Java instances
to XML and vice versa. At the SOA level, systems are defined in terms of
XML messages and WSDL operations.1 Meanwhile, at the Java level, sys-
tems are defined in terms of objects and methods. So, to implement SOA
components in Java requires translation from Java objects to XML messages
and Java methods to WSDL operations.

This chapter is not a detailed introduction to WSDL, SOAP, or XML. I
assume you have some basic familiarity with those standards. If not, you
should brush up before reading this chapter. A good place to start is with the
SOAP and WSDL specifications themselves—see [SOAP 1.1] and [WSDL
1.1]. If you understand XML, these specifications are not difficult to read.

I start this chapter by providing an overview of WSDL and why it is
important for SOA. Next, I look at the role of SOAP in SOA and its advan-
tages to REST in this setting. After that, the topic of dispatching is discussed.

1. And, of course, WSDL is written in XML, so everything at the SOA level boils down to XML.

138 The Role of WSDL, SOAP, and Java/XML Mapping in SOA

In a Web Services Platform that is used for SOA, the dispatching mechanism
is used to determine which Java method to invoke for a given SOAP request. I
show how the dispatching process is governed by the structure of the SOAP
message and the style of WSDL used to deploy a Web service. I discuss how
JAX-WS 2.0 handles dispatching, some of its limitations, and how to work
around these limitations.

Toward the end of this chapter, I provide an introduction to the “Start
from WSDL and Java” approach to Java Web Services. This approach is
central to SOA. It involves starting with both an XML representation of a
service (WSDL) and a Java class. The challenge is to deploy a class/method
so that it implements a WSDL that is compliant with enterprise or eBusi-
ness community standards.

I describe why the key to this “Start from WSDL and Java” methodol-
ogy is a good Java/XML mapping toolset. Then, I look at how well JAXB 2.0
enables you to implement the kinds of Java/XML mappings needed for
“Start from WSDL and Java.” Lastly, I illustrate some of the techniques that
can be used with JAXB 2.0 to implement the kinds of Java/XML mappings
that are needed in practice.

To summarize, the material in this chapter describes:

■ Why WSDL is essential for SOA.
■ Why SOAP is required (i.e., because it is needed to implement

WSDL and SOA can’t be done without WSDL).
■ How dispatching works. Dispatching is a core component of a Web

Services Platform’s invocation subsystem and it depends heavily on
SOAP and WSDL.

■ The various JAX-WS 2.0 dispatching alternatives.
■ Some of the JAX-WS 2.0 dispatching limitations and how to work

around them.
■ Why the “Start from WSDL and Java” approach to creating Java

Web Services is central to doing SOA with Java.
■ How Java/XML mapping enables “Start from WSDL and Java.”
■ Some of the JAXB 2.0 limitations as a Java/XML mapping tool and

how to work around them.

4.1 The Role of WSDL in SOA

WSDL is the interface definition language (IDL) that defines the interac-
tions among SOA components. It provides a standard language for describing

4.1 The Role of WSDL in SOA 139

how to communicate with a component. Without a standard IDL, you must
resort to ad hoc documentation to communicate the interfaces for your
SOA components.

Enterprise Java developers are usually concerned with how well a tech-
nology can scale across enterprise boundaries. In the case of SOA, you must
ensure that Web services created in different departments (e.g., order pro-
cessing and customer service) can interoperate. Whenever you need to
design systems that scale and cross boundaries like that, one of the critical
success factors is good interface definitions. As a result, you cannot rely on
ad hoc documentation to define the interfaces. You must have a standard,
and the industry-accepted standard is WSDL 1.1 [WSDL 1.1].

One of the difficulties encountered when trying to use RESTful SOA
components on an enterprise scale is that there is no well-accepted industry
standard IDL for XML over HTTP without SOAP. WSDL 2.0 [WSDL 2.0],
which is in the works, provides support for XML over HTTP without SOAP
(see [WSDL 2.0 Part 2]). However, general industry acceptance of WSDL
2.0 is probably many years away.

Figure 4–1 shows the role of WSDL for SOA Integration as described
in this book. The figure provides a UML object diagram depicting the rela-
tionship of WSDL in an SOA Integration setting. First, notice the Web Ser-
vices Platform subsystem where deployment takes place. The top-level class
depicted in that subsystem is ServiceDeployment. Each instance of Ser-
viceDeployment corresponds to a Web service that is deployed on this plat-
form. Next, notice that ServiceDeployment contains both an operation
(taken from the WSDL interface description) and a Java method. In this
manner, you see that a Web service deployment defines a relationship
between a WSDL interface description and a Java implementation of that
description. More specifically, a Web service deployment defines relation-
ships between individual operations in a WSDL and the Java methods that
implement them in that particular deployment.

Figure 4–1 shows that a WSDL interface description contains a
types instance (i.e., the wsdl:types element). As you know, this is the
top-level element within the wsdl:definitions element that describes
the XML Schema types used in the WSDL. Here, you can also see that
this particular WSDL’s types instance contains the schema Orders.xsd
that is part of the XML Schema Library in an Enterprise System. It also
incorporates the schema Faults.xsd from the Web Services Infrastruc-
ture subsystem.

In this manner, SOA envisions that an enterprise maintains libraries of
reusable XML Schema definitions that are incorporated in the WSDL defi-
nitions used to deploy Web services. I call this concept reusable schema.

140 The Role of WSDL, SOAP, and Java/XML Mapping in SOA

Reusable schemas provide the foundation for an enterprise message model
that is a cornerstone of SOA. Standard schemas enable standard messages,
which in turn enable standard WSDL interfaces to be defined. As I’ve dis-
cussed, WSDL is essential to separation of concerns because clear interface
definitions are needed to separate applications into logical units or SOA
components. For all the users of the SOA infrastructure to understand
those WSDL interfaces, they have to be written in a common language. At
one level, XML supplies a common language—but that is just syntax. The
datatypes expressed in that language should also be standardized to the
extent possible. So, for commonly used types like Address, for example,
there should be standard corporate schema definitions that can be reused
across SOA components.

The Enterprise System in Figure 4–1 could be the OMS described in
Chapter 3, in which case, its schema library would include the Orders.xsd
schema described there. Other “infrastructure” libraries—like standard

Figure 4–1 The role of WSDL in SOA integration.

«subsystem»
Enterprise System

(e.g., Order Management)

ServiceDeployment

«subsystem»
Web Services Platform

«subsystem»
XML Schema Library

WSDL

«datatype»
typesOrders.xsd

Java Method«datatype»
binding

operation

«subsystem»
Web Services Infrastructure

«subsystem»
XML Schema Library

Faults.xsd

4.1 The Role of WSDL in SOA 141

schema for fault messages—are also envisioned as part of the SOA frame-
work deployed by an enterprise.

So, as described here, one role of WSDL in the SOA framework is to
assemble standard XML types into operations that describe Web services.
Another role is as a participant in a Web service’s deployment.

4.1.1 A WSDL Example

Figure 4–1 becomes clearer when you look at some actual WSDL. This sec-
tion provides a simple example to illustrate how WSDL 1.1 is used for SOA
Integration. It describes a Web service for getting the orders that have been
received during a particular date range.

Example 4–1 shows the wsdl:types element from the GetOrders-
Dates.wsdl sample. This WSDL describes a simple service that takes as
input a date range. As output, it provides the orders that were received
between those dates.

Example 4–1 The wsdl:types Element Integrates Existing Schemas

11 <wsdl:types>
12 <xs:schema targetNamespace="http://www.example.com/oms">
13 <xs:include schemaLocation="http://soabook.com/example/oms/orders.xsd"/>
14 </xs:schema>
15 <xs:schema targetNamespace="http://www.example.com/faults">
16 <xs:include schemaLocation="http://soabook.com/example/faults/faults.xsd"
17 />
18 </xs:schema>
19 <xs:schema elementFormDefault="qualified"
20 targetNamespace="http://www.example.com/getord">
21 <xs:element name="getOrdersDates">
22 <xs:complexType>
23 <xs:sequence>
24 <xs:element name="startDate" type="xs:date"/>
25 <xs:element name="endDate" type="xs:date"/>
26 </xs:sequence>
27 </xs:complexType>
28 </xs:element>
29 <xs:element name="getOrdersDatesResponse">
30 <xs:complexType>
31 <xs:sequence>
32 <xs:element name="orders" type="oms:OrdersType"/>
33 </xs:sequence>

142 The Role of WSDL, SOAP, and Java/XML Mapping in SOA

34 </xs:complexType>
35 </xs:element>
36 </xs:schema>
37 </wsdl:types>

book-code/chap04/wsdl/GetOrdersDates.wsdl

As you can see, within this wsdl:types element, there are xs:schema
definitions that consist solely of xs:include elements that pull in other
XML schema. One of these included schemas is located at http://soa-
book.com/example/oms/orders.xsd. This is the same orders.xsd as
described in Chapter 3, Section 3.2. This xs:include element is how the
relationship, described in Figure 4–1, between the WSDL and the
OMS’s schema library is implemented. There is another xs:include ele-
ment in Example 4–1—one that pulls in the faults.xsd schema that
provides the XML Schema definitions for the fault messages used in this
WSDL.

Another point to notice about this wsdl:types section is that it defines
the message elements getOrdersDates and getOrdersDatesResponse.
These are wrapper elements that are used in the document/literal wrapped
style of WSDL. WSDL styles are discussed in detail in Section 4.3.

Within the getOrdersDatesResponse element, you can see that an ele-
ment named orders is returned that has the type oms:OrdersType. This is
where the OMS’s imported schema gets used. The next example shows
where the imported faults get used.

Example 4–2 shows the wsdl:message elements and the wsdl:port-
Type element from the WSDL example.

Example 4–2 The wsdl:message and wsdl:portType Elements Describe the Message
Exchange Interface

41 <wsdl:message name="request">
42 <wsdl:part name="parameters" element="getord:getOrdersDates"/>
43 </wsdl:message>
44 <wsdl:message name="response">
45 <wsdl:part name="parameters" element="getord:getOrdersDatesResponse"/>
46 </wsdl:message>
47 <wsdl:message name="inputFault">
48 <wsdl:part name="parameters" element="faults:inputMessageValidationFault"/>
49 </wsdl:message>

4.1 The Role of WSDL in SOA 143

50 <wsdl:portType name="GetOrdersDatesPort">
51 <wsdl:operation name="getOrdersDates">
52 <wsdl:input message="getord:request"/>
53 <wsdl:output message="getord:response"/>
54 <wsdl:fault name="getOrdersInputFault" message="getord:inputFault"/>
55 </wsdl:operation>
56 </wsdl:portType>

book-code/chap04/wsdl/GetOrdersDates.wsdl

As you can see, the message named inputFault is defined in terms of
the element faults:inputMessageValidationFault. This is where the
faults.xsd schema from the Web Services infrastructure (pictured in Fig-
ure 4–1) gets used.

SOA is easier if the component Web services use a standard set of
faults such as the faults:inputMessageValidationFault used here.
That is because, when dealing with the Java classes that implement a
Web service (or consume it on the client side), JAX-WS 2.0 likes to map a
subclass of java.lang.Exception to each fault type. If the fault mes-
sages are standardized, you can also work with a standard set of excep-
tions on the Java side.

The schema for this fault message type is listed in Example 4–3.

Example 4–3 The Schema for faults:inputMessageValidationFault

 7 <xs:element name="inputMessageValidationFault"
 8 type="faults:InputMessageValidationFaultType"/>
 9 <xs:complexType name="InputMessageValidationFaultType">
 10 <xs:attribute name="msg" type="xs:string"/>
 11 </xs:complexType>

book-code/chap04/wsdl/faults.xsd

The next snippet from the sample WSDL, shown in Example 4–4, con-
tains the wsdl:binding element that defines the SOAP binding for the
GetOrdersDates Web service. There are a couple of interesting items to
point out here, which I explore in more depth in Section 4.3 where dis-
patching is discussed.

144 The Role of WSDL, SOAP, and Java/XML Mapping in SOA

Example 4–4 The wsdl:binding Element Describes the Transport Binding

 60 <wsdl:binding name="GetOrdersDatesSOAPBinding"
 61 type="getord:GetOrdersDatesPort">
 62 <soap:binding style="document"
 63 transport="http://schemas.xmlsoap.org/soap/http"/>
 64 <wsdl:operation name="getOrdersDates">
 65 <wsdl:input>
 66 <soap:body use="literal"/>
 67 </wsdl:input>
 68 <wsdl:output>
 69 <soap:body use="literal"/>
 70 </wsdl:output>
 71 <wsdl:fault name="getOrdersInputFault">
 72 <soap:fault name="getOrdersInputFault"/>
 73 </wsdl:fault>
 74 </wsdl:operation>
 75 </wsdl:binding>

book-code/chap04/wsdl/GetOrdersDates.wsdl

First, the wsdl:operation name attribute is getOrdersDates, which is
the same name used for the request message element. In this case, this is
not an accident, but a requirement of the “document/literal wrapped” style
discussed in Section 4.3.5. Second, the soap:binding style is “document”
and the soap:body use is “literal.” Again, this is a feature of the “document/
literal wrapped” style.

Lastly, Example 4–5 shows the wsdl:service element. This element
describes the endpoint and provides the URL as the soap:address loca-
tion attribute. The Web Services Platform (pictured in Figure 4–1) needs
to make sure that the URL provided in the WSDL is synchronized with the
address where the endpoint is actually deployed. For this reason, even
when doing “Start from WSDL and Java” development, the location
attribute is often not specified until deployment time, as it is determined by
whatever context gets associated with the Web service at that point.

Example 4–5 The wsdl:service Element Describes the Endpoint

79 <wsdl:service name="GetOrdersDatesService">
80 <wsdl:port name="GetOrdersDatesPort" binding="GetOrdersDatesSOAPBinding">
81 <soap:address location="http://localhost:8080/getorders/getordersdates"/>

4.2 The Role of SOAP in SOA 145

82 </wsdl:port>
83 </wsdl:service>

book-code/chap04/wsdl/GetOrdersDates.wsdl

4.2 The Role of SOAP in SOA

The preceding section discusses how SOA requires an interface definition
language (i.e., WSDL) to describe, in a standard way, how to invoke a Web
service component. The WSDL describes an abstract interface (i.e.,
wsdl:portType and wsdl:operation), and a concrete binding of that inter-
face (i.e., wsdl:binding). As shown in Example 4–2, a WSDL operation is
described in terms of abstract messages (i.e., wsdl:message elements).
SOAP provides a concrete implementation, or binding for the wsdl:mes-
sage elements, thereby defining the XML structure of the messages
exchanged among SOA components in a standard manner. In this book,
SOAP means SOAP Version 1.1 [SOAP 1.1] unless a specific reference is
made to SOAP Version 1.2 [SOAP 1.2].2

So, the role of SOAP in SOA is to provide a concrete implementation,
or binding, for the WSDL interfaces. Of course, other bindings are possi-
ble. The most popular alternative to SOAP is the REST approach discussed
in Chapter 3. REST proponents argue that it is simpler than SOAP because
it doesn’t add any header or body wrapper structure around the SOA mes-
sages. In a REST binding for a WSDL operation, the messages could con-
ceivably just be instances of the wsdl:types, transmitted over HTTP,
without any envelope. However, as mentioned previously, there is no stan-
dard REST binding for WSDL 1.1.

REST proponents also argue that REST is simpler than SOAP because
it does not concern itself with the semantics of SOAP nodes. Along with its
envelope structure, SOAP includes a processing model composed of SOAP
nodes that transmit and receive SOAP messages, and may relay them to
other SOAP nodes. SOAP even goes so far as to prescribe header attributes
such as env:mustUnderstand that are used to indicate whether processing
of a SOAP header block is mandatory or optional. Complexity creeps in this
way because if the ultimate receiver node of a SOAP message cannot pro-
cess a header block that is marked as env:mustUnderstand, it must reply

2. See Appendix A for more discussion on why SOAP 1.1 is used.

146 The Role of WSDL, SOAP, and Java/XML Mapping in SOA

with a SOAP fault. And the SOAP specification describes a standard enve-
lope structure for SOAP faults.

SOAP node semantics and the associated header processing attributes
give the REST advocates most of their ammunition for declaring that SOAP
is too complicated. I must admit that I have some sympathy for this point of
view. However, at this point, the lack of a standard IDL for REST makes it
impossible to work with as a standard for enterprise SOA.

In addition to its advantages with WSDL, there is great benefit to the
SOAP model of segmenting message data into header blocks and a body.
Generally speaking, headers contain information that is related to the
Quality of Service (QoS) provided by the messaging infrastructure—and
not the contents of the message being delivered to a particular Web ser-
vice. Information related to security and reliability, for example, belongs
in the header block.

If REST is to support the kind of message processing required by SOA,
it is going to have to evolve some kind of data model for separating meta-
data from message data (e.g., QoS information like guaranteed delivery
requirements). The natural way to do that is with headers (e.g., JMS has
headers). Likewise, if REST is to support well-defined system interfaces, it
must evolve an accepted interface definition language—like a WSDL bind-
ing. However, once you add headers and WSDL to REST, you might as well
be doing SOAP! The bottom line is that REST is suitable only for the most
primitive types of SOA components (like the GetNewOrders example illus-
trated in Chapter 3). To build powerful applications with SOA, a more pow-
erful messaging model, like SOAP, is required. So, in this book, for the most
part I stick to SOAP as the messaging standard for SOA.3

Example 4–6 shows an example of a SOAP message that could be used
to invoke the Web service GetOrdersDates described in Section 4.1.1.

Example 4–6 A SOAP Request Message for the GetOrdersDates Web Service

 4 <env1:Envelope xmlns:env1="http://schemas.xmlsoap.org/soap/envelope">
 5 <env1:Body>
6 <getord:getOrdersDates xmlns:getord="http://www.example.com/oms/getorders">
 7 <getord:startDate>2005-11-19</getord:startDate>
 8 <getord:endDate>2005-11-22</getord:endDate>
 9 </getord:getOrdersDates>

3. One interesting exception is in Chapters 9 and 10, where REST is used to integrate with
Yahoo! Shopping and to create an Ajax front-end to a JWS application.

4.2 The Role of SOAP in SOA 147

10 </env1:Body>
11 </env1:Envelope>

book-code/chap04/soap/GetOrdersDatesSOAPRequest.xml

You’ll notice that this SOAP request message has no headers. Headers are
not required, and at this point, I’m leaving them out because I want to focus
on the SOAP body and how it is constructed to fit into a framework for SOA.

The SOAP body in Example 4–6 has a single child elements
getord:getOrdersDates. This is compliant with the WSDL shown in Exam-
ple 4–1 (where the element getord:getOrdersDates is defined) and Example
4–2 (where the input message is defined). The getord:startDate and
getord:endDate elements provide the range of dates required by the
GetOrdersDates Web service. The service is expected to return a SOAP
response message that contains the orders received with oms:PURCH_DATE ele-
ments that have date values within that range.

Example 4–7 shows a snippet from the SOAP response generated by
the GetOrdersDates Web service.

Example 4–7 A SOAP Response Message Returned by the GetOrdersDates Web Service

 4 <env1:Envelope xmlns:env1="http://schemas.xmlsoap.org/soap/envelope">
 5 <env1:Body>
 6 <getord:getOrdersDatesResponse
 7 xmlns:getord="http://www.example.com/oms/getorders">
 8 <Orders xmlns="http://www.example.com/oms"
 9 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
10 xsi:schemaLocation="http://www.example.com/oms
11 http://soabook.com/example/oms/orders.xsd">
12 <Order>
13 <OrderKey>ENT1234567</OrderKey>
14 <OrderHeader>
15 <SALES_ORG>NE</SALES_ORG>
16 <PURCH_DATE>2005-11-20</PURCH_DATE>
17 <CUST_NO>ENT0072123</CUST_NO>
18 <PYMT_METH>PO</PYMT_METH>
19 <PURCH_ORD_NO>PO-72123-0007</PURCH_ORD_NO>
20 <WAR_DEL_DATE>2006-12-20</WAR_DEL_DATE>
21 </OrderHeader>

book-code/chap04/soap/GetOrdersDatesSOAPResponse.xml

148 The Role of WSDL, SOAP, and Java/XML Mapping in SOA

Like the request, the SOAP body in this response message has a sin-
gle child element. This one is named getord:getOrdersDatesResponse.
This is compliant with the WSDL shown in Example 4–1 (where the ele-
ment getord:getOrdersDatesResponse is defined) and Example 4–2
(where the output message is defined). Furthermore, the contents of the
getord:getOrdersDatesResponse element—a single child element,
oms:Orders—are defined in the schema http://soabook.com/example/
oms/orders.xsd, which is imported into the WSDL (see Example 4–1).
In this manner, the structure of the SOAP body is determined by both
the WSDL and the schema library from the OMS subsystem. That is a
common pattern in SOA Integration. You should try, as little as possible,
to define unique XML types in the WSDL. Rather, XML types should be
imported from the relevant subsystems. That is why the WSDL used in
these examples imports the schema for oms:Orders instead of reproduc-
ing it in the wsdl:types section. This is an application of the DRY princi-
ple (Don’t Repeat Yourself) that “Every piece of knowledge must have a
single, unambiguous, authoritative representation within a system.”
[Hunt] The reason for applying the DRY principle in this case is to stan-
dardize interfaces (thereby improving interoperability) and reduce main-
tenance.

Example 4–8 shows what the GetOrdersDates Web service returns if it
receives invalid input.

Example 4–8 SOAP 1.1 Fault Message Returned by the GetOrdersDates Web Service

 4 <env1:Envelope xmlns:env1="http://schemas.xmlsoap.org/soap/envelope/">
 5 <env1:Body>
 6 <env1:Fault xmlns:faults="http://www.example.com/faults">
 7 <faultcode>env1:Client</faultcode>
 8 <faultstring>Bad input message.</faultstring>
 9 <detail>
 10 <faults:inputMessageValidationFailure
 11 msg="The startDate is later than the endDate."/>
 12 </detail>
 13 </env1:Fault>
 14 </env1:Body>
 15 </env1:Envelope>

book-code/chap04/soap/GetOrdersDatesSOAPFault.xml

4.2 The Role of SOAP in SOA 149

This is an example of a SOAP 1.1 fault message. The structure of a
SOAP fault is largely determined by the SOAP 1.1 specification [SOAP 1.1].
That specification provides a mechanism to differentiate between the types
of faults—the faultcode element. As you can see, in this case, the fault-
code in this example has a value of env1:Client—a QName. The value a
faultcode instance can contain is restricted by the SOAP 1.1 specification
to four possibilities—see Section 4.4.1 of [SOAP 1.1] for more details. In
this case, the env1:Client value indicates that something is wrong with the
request message and it can’t be processed by the Web service.

Looking further down the SOAP fault, you see the detail element—
used to convey additional information about the nature of the error causing
the fault. The contents of the detail element are flexible. Here, you can see
that detail contains a child element, faults:inputMessageValidation-
Failure—using a QName in the namespace of the Faults subsystem of the
Web Services Infrastructure. So, the element contained in this detail is speci-
fied in the centralized schema library. This is another example of the DRY
principle discussed with respect to the SOAP response—that, as much as pos-
sible, XML types should not be defined directly in the WSDL, but imported
from schema library documents that are part of the SOA infrastructure.

Example 4–9 shows a SOAP 1.2 version of this same fault message. I
include it here just to give you some of the flavor of the differences between
SOAP 1.1 and SOAP 1.2.

Example 4–9 A SOAP 1.2 Version of a Fault Message from Example 4–8

 4 <env2:Envelope xmlns:env2="http://www.w3.org/2003/05/soap-envelope">
 5 <env2:Body>
 6 <env2:Fault xmlns:faults="http://www.example.com/faults">
 7 <env2:Code>
 8 <env2:Value>env2:Sender</env2:Value>
 9 <env2:Subcode>
 10 <env2:Value>faults:inputMessageValidationFault</env2:Value>
 11 </env2:Subcode>
 12 </env2:Code>
 13 <env2:Reason>
 14 <env2:Text xml:lang="en">Bad input message.</env2:Text>
 15 </env2:Reason>
 16 <env2:Detail>
 17 <faults:inputMessageValidationFailure
 18 msg="The startDate is later than the endDate."/>

150 The Role of WSDL, SOAP, and Java/XML Mapping in SOA

 19 </env2:Detail>
 20 </env2:Fault>
 21 </env2:Body>
 22 </env2:Envelope>

book-code/chap04/soap/GetOrdersDatesSOAPFault_SOAP12.xml

One difference from the SOAP 1.1 fault structure is that the type of
fault is specified in the env2:Code element, instead of using faultcode. As
you can see, in this case, the env2:Code has an env2:Value element with
the QName env2:Sender. The values an env2:Value instance can contain
are restricted by the SOAP 1.2 specification to five possibilities—see [SOAP
1.2] for more details. In this case, the env2:Sender value is roughly equiva-
lent to the SOAP 1.1 env1:Client value. The env2:Subcode element,
appearing immediately after env2:Value, provides more information about
the cause of the fault. The env2:Subcode is optional, and application-
specific. Here, it has the value faults:inputMessageValidationFault—a
QName in the namespace of the Faults subsystem of the Web Services Infra-
structure. This is another application of DRY—using the schema library to
define standard fault subcodes.

The env2:Reason is roughly equivalent to the SOAP 1.1 faultstring
element—although with more structure. Likewise, the env2:Detail corre-
sponds to the SOAP 1.1 detail element.

That concludes a quick tour of SOAP and WSDL within the context of
SOA. My goal has been to show you how WSDL and SOAP documents
should be constructed from reusable datatypes. A main theme in that
regard, related to the DRY principle, is separation of concerns—an impor-
tant concept whenever one is doing systems integration. In the SOA con-
text, one way in which separation of concerns is expressed is that you want
there to be as little overlap as possible across independent SOA compo-
nents. Since the interface for an SOA component is defined by WSDL, sep-
aration of concerns in this context means that the WSDL definitions should
overlap as little as possible. One way to accomplish this is to abstract out
from the WSDL as many of the type definitions as possible. In the past two
sections, I showed how the XML schemas for types—such as oms:Orders
and faults:inputMessageValidationFailure—that get used across an
enterprise, should be abstracted out of the SOA component WSDL and
placed in schema libraries. One benefit of applying the principle of separa-
tion of concerns to an SOA infrastructure comes into play with respect to

4.3 Dispatching: How JAX-WS 2.0 Maps WSDL/SOAP to Java Invocation 151

versioning. If the Orders.xsd schema changes, now you don’t need to
update all the WSDL instances that use oms:Orders.

Of course, in such a situation, the WSDL may be automatically
updated, but what about the underlying implementation of the SOA com-
ponent? The implementation is still going to be expecting the old version of
oms:Orders—regardless of what the WSDL says. If that is what you are
thinking, you are a few steps ahead of me at this point. It’s an important
issue, and I address it in Chapter 5 where I talk about how to maintain the
type mappings in our SOA infrastructure.

4.3 Dispatching: How JAX-WS 2.0 Maps WSDL/SOAP to
Java Invocation

The past two sections discussed how SOAP and WSDL are interrelated and
how they are integrated with schema libraries in an SOA infrastructure. In
this section, I start looking at how SOAP and WSDL are related to the
implementations of SOA components. One of the key concepts in that
regard is dispatching.

Dispatching is the mechanism by which a SOAP request message is dis-
patched to the appropriate Java implementation for execution. It is the
heart of the invocation subsystem for a Web Services Platform Architecture.
Since Java methods are used to implement WSDL operations, the first step
in dispatching is to determine which wsdl:operation a given SOAP mes-
sage should be associated with. That association is determined by the struc-
ture of the SOAP message and the style of the WSDL.

4.3.1 Determining the WSDL Port

As noted, the first step in the dispatching process involves associating the
SOAP request message with a WSDL operation. But first, you have to
know which port a SOAP request should be associated with. Right away,
you have problems, because the logical way to do that, based on the
WSDL, is to look up the wsdl:port based on the soap:address the SOAP
request was sent to. For example, in Example 4–5, you can see that the
address http://localhost:8080/getorders/getordersdates is associated with
the GetOrdersDates wsdl:port. From there, you get the binding—in
this case the GetOrdersDatesSOAPBinding. That binding implements a
port—the GetOrdersDatesPort. So, that is how you decode the port

152 The Role of WSDL, SOAP, and Java/XML Mapping in SOA

where the operation to be invoked is defined. There is only one problem
with that—and it’s a big one. The soap:address is not required to be
included anywhere in the SOAP message.

You might think that you can get the soap:address from the underlying
HTTP request. This might work, but it isn’t guaranteed because multiple
URLs might be pointing to the same IP address and context path where the
SOA component’s Web service is deployed. For example, the HTTP request
might be sent to http://myserver.javector.com:8080/getorders/getordersdates
instead of http://localhost:8080/getorders/getordersdates.

Web Services Addressing [WS-ADDRESSING 1.0 Core] is the W3C
standard designed to solve this problem. Using WS-Addressing, endpoints
are unambiguously defined using SOAP header blocks. Unfortunately,
wide-scale industry acceptance of WS-Addressing is years away, so this
approach cannot be followed as a practical solution for the dispatching
problem today.

In practice, a Web Services Platform Architecture typically does look at
the underlying HTTP request to identify the intended soap:address for a
given SOAP message. Usually, a Web service is deployed along with an end-
point listener. The endpoint listener associates the URL a request is sent to
with a particular soap:address. It is usually smart enough to deal with situ-
ations where multiple URLs point to the same soap:address, and resolves
all requests to a canonical representation of the soap:address. That canon-
ical representation, ideally, is used as the soap:address in the WSDL. So,
for example, if myhost.com and anotherhost.com both resolve to the same
IP address, the WSPA should choose one of these as the standard (canoni-
cal) representation for use in the WSDL soap:address. When a request is
received and the HTTP header indicates it was sent to anotherhost.com,
for the purposes of identifying the soap:address the canonical form—
myhost.com—will be used.

Once the dispatching process has determined the soap:address, and
therefore the wsdl:port, the wsdl:operation needs to be determined.
For this, you need to look at the SOAP body, and the interpretation of the
SOAP body’s contents depends on the style of WSDL being used.

When I say “the style of WSDL being used,” I mean the values of the
style (binding style) and use attributes. These style and use attributes
are defined by the SOAP Binding (see Section 3.2 of [WSDL 1.1]) exten-
sion to WSDL that describes how the Web service maps SOAP messages
to its operations. The binding style can either be “rpc” or “document”—
and the choice determines the structure of the SOAP env:Body as
described in the following sections. The use can either be “encoded” or

4.3 Dispatching: How JAX-WS 2.0 Maps WSDL/SOAP to Java Invocation 153

“literal”—and the choice determines how the data carried by the SOAP
message is serialized. When “literal” is specified, the SOAP message simply
carries data that conforms to the XML Schema constraints defined in the
WSDL’s types section. When “encoded” is specified, the data is serialized
according to the SOAP Encoding specified in Section 5 of [SOAP 1.1].

In addition to the style and use attributes, a third characteristic is used
to describe the WSDL style that describes how parameters are represented
in the SOAP body. In this book, as in the JAX-WS specification, this charac-
teristic is referred to as the parameter style and it can be either “wrapped”
or “unwrapped” (unwrapped is also called “bare”). Unlike style and use,
the parameter style does not correspond to any attribute specified in the
WSDL description of a Web service.

All this boils down to three alternatives for the style of WSDL being used:4

■ rpc/literal
■ document/literal (also called document/literal unwrapped)
■ document/literal wrapped

The parameter style wrapped versus unwrapped distinction refers to
how the parameters contained in a SOAP message appear under the SOAP
body element. If the parameters are direct children of env:Body, that is the
unwrapped parameter style. If the parameters appear grouped under a sin-
gle “wrapper” element, which is the only direct child of the env:Body, that
is the wrapped parameter style. The following examples should make this
clearer. If you get frustrated trying to understand all this, you have my sym-
pathy. It took a long time for this to sink in for me.

As a point of reference, the WSDL and SOAP examples from Sections
4.1.1 and 4.2 use the document/literal wrapped style. That is my preferred
style for SOA and the following discussion illustrates why.

4.3.2 The Role of the WS-I Basic Profile

The WS-I Basic Profile (WS-I BP) [WS-I BP 1.1] provides a set of stan-
dards related to SOAP, WSDL, and UDDI. It consists “of a set of nonpro-
prietary Web services specifications, along with clarifications, refinements,

4. This description of the differences in WSDL styles was derived from e-mail postings by
Ann Thomas Manes on the Axis users mailing list, and from a popular article from the IBM
developerWorks site titled “Which style of WSDL should I use?” by Russell Butek (www-
128.ibm.com/developerworks/webservices/library/ws-whichwsdl/?ca=dgr-devx-
WebServicesMVP03).

154 The Role of WSDL, SOAP, and Java/XML Mapping in SOA

interpretations, and amplifications of those specifications which promote
interoperability.”5 WS-I BP eliminates ambiguities and inconsistencies in
the SOAP and WSDL specifications that can cause interoperability prob-
lems. So, when organizations adhere to the WS-I BP, it is more likely that
their Web services will interoperate. Because of this, it is now considered a
best practice to require Web services to be WS-I BP-compliant.

Among the WSDL and SOAP message characteristics prohibited by the
WS-I Basic Profile 1.1 are the following:

■ The SOAP encoding is prohibited (i.e., the use attribute of the
wsdl:binding must have the value “literal” and never have the
value “encoded”). This is because it is very hard to validate a
SOAP-encoded message against a WSDL description. The value
of an interface definition (i.e., the WSDL) is greatly diminished if
one cannot determine whether messages are compliant with the
interface.

■ A SOAP request message targeting a document/literal style Web ser-
vice must have, at most, one child element of its env:Body.

Of course, there is much more in the WS-I BP specifications than those
bulleted items, but those items relate directly to the discussion in the next
few sections, so they are highlighted here.

4.3.3 RPC/Literal

The rpc/literal style is always wrapped. It is a style of WSDL that is allowed
by WS-I [WS-I BP 1.1]. Its WSDL is distinguished by the following charac-
teristics:

■ The input message may have multiple parts.
■ Parts are always defined using the type attribute (rather than the

element attribute used for the document binding style).
■ The full schema of the message payload is not defined in the

wsdl:types section. Rather, the types of the input parameters
(parts) are defined.

■ If a part’s type attribute specifies a complex type, it must be defined
in the wsdl:types section.

5. Quote from the introduction of [WS-I BP 1.1].

4.3 Dispatching: How JAX-WS 2.0 Maps WSDL/SOAP to Java Invocation 155

The SOAP message produced in compliance with the rpc/literal WSDL
style has the following characteristics:

■ The top-level element within the env:Body (the wrapper element)
has as its local name the wsdl:operation name.

■ The wrapper element is in the namespace specified by the namespace
attribute in the env:Body definition in the wsdl:binding.

■ The parameter elements (parts) appear directly underneath the
wrapper element and have local names that correspond to the name
attribute of the wsdl:part definition.

■ The parameter elements are never namespace-qualified.
■ The name of the response element is not defined and is not significant.

Example 4–10 shows how the wsdl:types and wsdl:message defini-
tions from Section 4.1.1 (Example 4–1 and Example 4–2) look when they
are rewritten in the rpc/literal style.

Example 4–10 The rpc/literal WSDL Style

 11 <wsdl:types>
 12 <xs:schema elementFormDefault="qualified"
 13 targetNamespace="http://www.example.com/getord">
 14 <xs:import schemaLocation="http://www.example.com/oms
 15 http://soabook.com/example/oms/orders.xsd"/>
 16 <xs:import schemaLocation="http://www.example.com/faults
 17 http://soabook.com/example/faults/faults.xsd"/>
 18 </xs:schema>
 19 </wsdl:types>
 20 <wsdl:message name="request">
 21 <wsdl:part name="startDate" type="xs:date"/>
 22 <wsdl:part name="endDate" type="xs:date"/>
 23 </wsdl:message>
 24 <wsdl:message name="response">
 25 <wsdl:part name="orders" element="oms:getOrdersType"/>
 26 </wsdl:message>

book-code/chap04/dispatch/GetOrdersDates_rpclit.wsdl

You’ll notice that the wsdl:types section is much shorter. That is
because when using rpc/literal, you don’t need to define the full schema of

156 The Role of WSDL, SOAP, and Java/XML Mapping in SOA

the message payload or the response wrapper. So, you don’t need the
schema definitions for getOrdersDates and getOrdersDatesResponse.
Also, you can see that in the wsdl:message definition for the request, there
are two parts. These parameters are no longer defined as children of a
wrapper element—although, as you will see, that is how they appear in the
SOAP request message.

Example 4–11 shows how the SOAP request message from Section 4.2
(Example 4–6) looks when rewritten for the rpc/literal style.

Example 4–11 An rpc/literal SOAP Request Message

4 <env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
 5 <env:Body>
 6 <getOrdersDates>
 7 <startDate>2005-11-19</startDate>
 8 <endDate>2005-11-22</endDate>
 9 </getOrdersDates>
 10 </env:Body>
 11 </env:Envelope>

book-code/chap04/dispatch/GetOrdersDatesSOAPRequest_rpclit.xml

The only difference here is that the namespaces have changed. However,
that is a big difference, because if you sent this SOAP message to a Web ser-
vice expecting the namespaces shown in Example 4–6, it would return a fault.

One benefit of the rpc/literal style of WSDL is that it is relatively easy to
read. The biggest drawback is that the contents of the SOAP body are not
defined by any XML schema. That is, the wrapper element is generated by
convention, and cannot easily be validated. The situation with the response
message is even worse—its wrapper element is not even defined by conven-
tion, much less a schema. As a result, application clients in an SOA frame-
work that need to consume an rpc/literal service may have trouble digesting
the response message. The response needs to be mapped to some Java type,
but it is hard to do that if the WSDL doesn’t tell you the exact XML repre-
sentation of the response to expect.

4.3.4 Document/Literal

The document/literal style is unwrapped. As a result, if there are multiple
parameters, you can end up with SOAP request messages where the

4.3 Dispatching: How JAX-WS 2.0 Maps WSDL/SOAP to Java Invocation 157

env:Body element has multiple children. This is prohibited by WS-I [WS-I
BP 1.1]. Hence, this WSDL style is really useful only for messaging—where
you don’t care about defining parameters.6 Its WSDL is distinguished by
the following characteristics:

■ The input message may have multiple parts.
■ Parts are always defined using the element attribute (rather than the

type attribute used for the rpc binding style).
■ The full schema of the message payload is defined in the wsdl:types

section. The part’s element attribute references an element defini-
tion in a schema contained in the wsdl:types section.

The SOAP message produced in compliance with the document/literal
WSDL style has the following characteristics:

■ The wsdl:operation name does not appear in the SOAP env:Body.
■ The parameter elements (parts) appear directly underneath the

env:Body and have local names as defined in their corresponding
schema found in the wsdl:types section.

■ The parameter elements are namespace-qualified as specified in
their corresponding schema found in the wsdl:types section.

■ There is no response wrapper element, as the response is unwrapped
just like the request.

Example 4–12 shows how the wsdl:types and wsdl:message defini-
tions from Section 4.1.1 (Example 4–1 and Example 4–2) look when they
are rewritten in the document/literal style.

Example 4–12 The document/literal WSDL Style

 11 <wsdl:types>
 12 <xs:schema elementFormDefault="qualified"
 13 targetNamespace="http://www.example.com/getord">
 14 <xs:import schemaLocation="http://www.example.com/oms
 15 http://soabook.com/example/oms/orders.xsd"/>

6. Some people interpret the WS-I prohibition on multiple env:Body children to mean that
the document/literal style must use a wrapper element when there are multiple parameters.
I find this usage confusing and prefer the usage described here, which may result in SOAP
messages that are not WS-I-compliant. My usage is consistent with the terminology in the
JAX-WS specification.

158 The Role of WSDL, SOAP, and Java/XML Mapping in SOA

 16 <xs:import schemaLocation="http://www.example.com/faults
 17 http://soabook.com/example/faults/faults.xsd"/>
 18 <xs:element name="startDate" type="xs:date"/>
 19 <xs:element name="endDate" type="xs:date"/>
 20 <xs:element name="orders" type="oms:OrdersType"/>
 21 </xs:schema>
 22 </wsdl:types>
 23 <wsdl:message name="request">
 24 <wsdl:part name="parameter1" element="getord:startDate"/>
 25 <wsdl:part name="parameter2" element="getord:endDate"/>
 26 </wsdl:message>
 27 <wsdl:message name="response">
 28 <wsdl:part name="parameter1" element="getord:orders"/>
 29 </wsdl:message>

book-code/chap04/dispatch/GetOrdersDates_doclitbare.wsdl

As you can see, the wsdl:types section has gotten a little longer than in
the rpc/literal case—but it’s still not as long as in Example 4–1. That is
because the schema now includes the element definitions of the request
and response payloads. However, it is not as long as Example 4–1 because
there are no wrappers, so you don’t need the schema definitions for
getOrdersDates and getOrdersDatesResponse. As in the rpc/literal case,
you can see that in the wsdl:message definition for the request, there are
two parts. This time, however, the parts use the element attribute to refer
to the global element definitions for the parameters found in the
wsdl:types section.

Example 4–13 shows how the SOAP request message from Section 4.2
(Example 4–6) looks when rewritten for the document/literal style.

Example 4–13 A document/literal SOAP Request Message

4 <env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
 5 <env:Body xmlns:getord="http://www.example.com/oms/getorders">
 6 <getord:startDate>2005-11-19</getord:startDate>
 7 <getord:endDate>2005-11-22</getord:endDate>
 8 </env:Body>
 9 </env:Envelope>

book-code/chap04/dispatch/GetOrdersDatesSOAPRequest_doclitbare.xml

4.3 Dispatching: How JAX-WS 2.0 Maps WSDL/SOAP to Java Invocation 159

The big difference here from the document/literal wrapped case illus-
trated in Section 4.2 is that there is no wrapper element. Because of this,
and the fact that there are two parameters, this SOAP message is not WS-I-
compliant.

An advantage of document/literal versus rpc/literal is that the SOAP
messages that get produced can be validated against the schemas in the
wsdl:types section. This is a big advantage because it greatly simplifies
real-time validation of messages.

One drawback of the document/literal style of WSDL as compared
the rpc/literal style is that it is harder to read because of the schema def-
initions required. This readability issue gets even worse for document/
literal wrapped where the schemas for the wrapper elements have to be
included.

The biggest drawback of document/literal is that it produces SOAP
messages that are not WS-I-compliant when used with multiple parameters.
This is not a surprise, as the original intention of the document/literal style
was that it should be used for messaging and not RPC style invocation. And
in messaging, there are no parameters.

This drawback is eliminated with the document/literal wrapped style of
WSDL discussed in the next section.

4.3.5 Document/Literal Wrapped

Document/literal wrapped is simply document/literal with wrapper ele-
ments. Even if you have only one parameter, you still use a wrapper ele-
ment. And the convention for naming the wrapper element is similar to rpc/
literal—the operation name is used as the local part of the wrapper name.
Document/literal wrapped style WSDL is distinguished by the following
characteristics:

■ The input message must have a single part.7

■ The single part is defined using the element attribute (rather than
the type attribute used for the rpc binding style).

■ That single part is a wrapper element. It is the entire message pay-
load and its full schema is defined in the wsdl:types section.

■ All parameters are immediate children of the wrapper element.

7. Actually, you can have additional header parts, but only one body part. Header parts are
confusing, however, and I don’t encourage their use.

160 The Role of WSDL, SOAP, and Java/XML Mapping in SOA

■ By convention, the local name of the wrapper element is the
wsdl:operation name the message is used to invoke.

■ A wrapper element is also defined for the output message. By con-
vention, the local name of this response wrapper element is the
wsdl:operation name suffixed with the string ‘Response’.

The SOAP message produced in compliance with the document/literal
wrapped WSDL style has the following characteristics:

■ The top-level element within the env:Body (the wrapper element)
has as its local name the wsdl:operation name.

■ The wrapper element is in the namespace specified in its schema,
found in the wsdl:types section.

■ The parameter elements appear directly underneath the wrapper
element. Unlike rpc/literal, their local names do not correspond to
the name attribute of the wsdl:part definition. Rather, they are spec-
ified by their schema found in the wsdl:types section.

■ The parameter elements are namespace-qualified as specified by
their schema found in the wsdl:types section.

The examples in Section 4.1.1 show WSDL using the document/lit-
eral wrapped style. The types section of that WSDL is reproduced in
Example 4–14.

Example 4–14 A document/literal wrapped Style WSDL Defines Wrapper Elements in the
types Section

11 <wsdl:types>
12 <xs:schema targetNamespace="http://www.example.com/oms">
13 <xs:include schemaLocation="http://soabook.com/example/oms/orders.xsd"/>
14 </xs:schema>
15 <xs:schema targetNamespace="http://www.example.com/faults">
16 <xs:include schemaLocation="http://soabook.com/example/faults/faults.xsd"
17 />
18 </xs:schema>
19 <xs:schema elementFormDefault="qualified"
20 targetNamespace="http://www.example.com/getord">
21 <xs:element name="getOrdersDates">
22 <xs:complexType>
23 <xs:sequence>
24 <xs:element name="startDate" type="xs:date"/>
25 <xs:element name="endDate" type="xs:date"/>

4.3 Dispatching: How JAX-WS 2.0 Maps WSDL/SOAP to Java Invocation 161

26 </xs:sequence>
27 </xs:complexType>
28 </xs:element>
29 <xs:element name="getOrdersDatesResponse">
30 <xs:complexType>
31 <xs:sequence>
32 <xs:element name="orders" type="oms:OrdersType"/>
33 </xs:sequence>
34 </xs:complexType>
35 </xs:element>
36 </xs:schema>
37 </wsdl:types>

book-code/chap04/wsdl/GetOrdersDates.wsdl

Note that the element getOrderDates has two children: startDate and
endDate. These children are parameters and getOrderDates is a wrapper
element. Likewise, the element getOrdersDatesResponse is a wrapper ele-
ment with a single child. Example 4–15 shows how these wrapper elements
are used to define the wsdl:messages used in the wsdl:operation.

Example 4–15 The Wrapper Elements Are the Single wsdl:part Defined for the Request
and Response Messages

41 <wsdl:message name="request">
42 <wsdl:part name="parameters" element="getord:getOrdersDates"/>
43 </wsdl:message>
44 <wsdl:message name="response">
45 <wsdl:part name="parameters" element="getord:getOrdersDatesResponse"/>
46 </wsdl:message>
47 <wsdl:message name="inputFault">
48 <wsdl:part name="parameters" element="faults:inputMessageValidationFault"/>
49 </wsdl:message>
50 <wsdl:portType name="GetOrdersDatesPort">
51 <wsdl:operation name="getOrdersDates">
52 <wsdl:input message="getord:request"/>
53 <wsdl:output message="getord:response"/>
54 <wsdl:fault name="getOrdersInputFault" message="getord:inputFault"/>
55 </wsdl:operation>
56 </wsdl:portType>

book-code/chap04/wsdl/GetOrdersDates.wsdl

162 The Role of WSDL, SOAP, and Java/XML Mapping in SOA

The request message is defined using the single wsdl:part defined by
the wrapper element getOrdersDates. Likewise, the response message is
defined by the wrapper element getOrdersDatesResponse.

A SOAP message corresponding to this document/literal wrapped
WSDL is discussed in Section 4.2 and reproduced in Example 4–16.

Example 4–16 SOAP Request Message for the getOrdersDates wsdl:operation

 4 <env1:Envelope xmlns:env1="http://schemas.xmlsoap.org/soap/envelope">
 5 <env1:Body>
6 <getord:getOrdersDates xmlns:getord="http://www.example.com/oms/getorders">
 7 <getord:startDate>2005-11-19</getord:startDate>
 8 <getord:endDate>2005-11-22</getord:endDate>
 9 </getord:getOrdersDates>
10 </env1:Body>
11 </env1:Envelope>

book-code/chap04/soap/GetOrdersDatesSOAPRequest.xml

Notice that the env:Body of this SOAP message contains a single ele-
ment. It is defined by the wrapper element getOrdersDates. The parameters
being sent to the Web service are children of getOrdersDates—startDate
and endDate.

This style has the advantages of document/literal (primarily the capabil-
ity to validate SOAP messages against schema), together with the operation
name being included as a wrapper element. This makes it a good choice for
most purposes.

I went through the other styles here because it is very important to
understand how the style of WSDL affects the structure of the SOAP mes-
sage. Even if you always use document/literal wrapped, you should still
understand how its WSDL is structured and what format SOAP messages it
produces. The best way to develop that level of understanding is to work
through all the various styles shown here.

4.3.6 Summary of the Dispatching Process

At this point, you might be wondering when I am going to get on with the
discussion of dispatching. All this talk about WSDL style leads up to that
because dispatching requires (in addition to identifying the wsdl:port)
identifying the wsdl:operation, the Java class and method associated with

4.3 Dispatching: How JAX-WS 2.0 Maps WSDL/SOAP to Java Invocation 163

that wsdl:operation, and how the input message maps to the parameters
of the method. So, the dispatching process involves the following steps:

1. Identify the SOAP message’s target soap:address.
2. From the soap:address, get the wsdl:port and wsdl:portType.
3. Identify its target wsdl:operation.
4. Look up the associated Java class and method.

In this manner, the dispatching process is seen to involve creating the
mapping from the SOAP request message to the Java method that will be
invoked to process that message. The actual serialization of the message
parts into the Java class instances of the respective parameters, and the
invocation of the method, are not considered part of the dispatching pro-
cess. Figure 4–2 illustrates steps 1–4 of this dispatching process.

As illustrated, in step 1, the endpoint listener gets the target URL of the
SOAP message from the underlying HTTP transmission. From a Web services
point of view, this is “cheating.” But, as discussed previously, there is really no
alternative unless you use WS-Addressing. This URL is matched against the
available WSDLs that have been deployed by the deployment subsystem.
Matching against the soap:address enables the wsdl:port to be identified.

Next, in step 2, the relationships in the WSDL are traced to get from
the wsdl:port, through the wsdl:binding, to the wsdl:portType.

Now, in step 3, the invocation subsystem looks at the wrapper element
(getOrdersDates) from the SOAP message and thereby identifies the
wsdl:operation of the same name within the wsdl:portType identified
in step 2.

Lastly, in step 4, the deployment subsystem, which maintains a mapping
table (of some kind) that correlates WSDL with Java, looks up the Java class
OrderManager and method getOrders(Date, Date) from the wsdl:opera-
tion—based on this correlation.

At this point, the invocation subsystem still needs to look inside the
SOAP message’s wrapper element and correlate (using information from
the deployment subsystem) the message parts with the method parameters.
I will talk more about that process in Section 4.5.1.

That wraps up my rather detailed discussion of the dispatching process and
WSDL styles contained in Sections 4.3.1–4.3.6. I find that going through it in
that level of detail really forces you to think through how a Web Services plat-
form works. Armed with this understanding, you are able to see what a given
implementation can and cannot do. In the next section, you are going to put
that understanding to use as you look at a specific example of a simple dispatch-
ing scenario that cannot be implemented using JAX-WS 2.0.

164 The Role of WSDL, SOAP, and Java/XML Mapping in SOA

Figure 4–2 Dispatching a SOAP message.

Web Services Platform

Endpoint Listener

Invocation Subsystem

Deployment Subsystem

WSDLJava

package com.soabook;

import com.soabook.oms.Order;
Import java.util.Date;

 public Order[]

public class OrderManager {

 ...

}

getOrders(Date start,
 Date end);

POST /getorders/getordersdates HTTP/1.1
Host: localhost:8080

...

<env:Envelope xmlns:env=
 "http://www.w3.org/2003/05/soap-envelope">
 <env:Body>
 <getord:getOrdersDates
 xmlns:getord=

 http://www.example.com/oms/getorders">
 <getord:startDate>2005-11-19
 </getord:startDate>
 <getord:endDate>2005-11-22
 </getord:endDate>
 </getord:getOrdersDates>
 </env:Body>
</env:Envelope>

...
<wsdl:portType name="GetOrdersDatesPort">
 <wsdl:operation name="getOrdersDates">
 <wsdl:input message="getord:request"/>
 <wsdl:output message="getord:response"/>
 <wsdl:fault name="getOrdersInputFault"
 message="getord:inputFault"/>
 </wsdl:operation>
</wsdl:portType>
<wsdl:binding name="GetOrdersDatesSOAPBinding"
 type="getord:GetOrdersDatesPort">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="getOrdersDates">
 <wsdl:input><soap:body use="literal"/>
 </wsdl:input>
 <wsdl:output><soap:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="getOrdersInputFault">
 <soap:fault name="getOrdersInputFault"/>
 </wsdl:fault>
 </wsdl:operation>
</wsdl:binding>
<wsdl:service name="GetOrdersDatesService">
 <wsdl:port name="GetOrdersDatesPort"
 binding="GetOrdersDatesSOAPBinding">
 <soap:address location="http://localhost:8080/
 getorders/getordersdates"/>
 </wsdl:port>
</wsdl:service>
...

SOAP Message (over HTTP)

2

3

4

1

4.3 Dispatching: How JAX-WS 2.0 Maps WSDL/SOAP to Java Invocation 165

4.3.7 Shortcomings of the JAX-WS 2.0 Dispatching for SOA
Integration

As discussed in the previous sections, one role of a Web Services Platform
Architecture is to implement a WSDL interface using Java classes and oper-
ations. You would assume that you should be able to assemble Java classes
and methods however you would like in order to implement the
wsdl:operation definitions contained in a particular WSDL.

With JAX-WS 2.0 (and its predecessor, JAX-RPC 1.1), it is not always
possible to implement a WSDL the way you would like, however. That is
because JAX-WS 2.0 uses a standard Java/WSDL mapping that correlates
wsdl:portType elements with Java classes or interfaces (see Chapter 2,
Section 2.2.2). Operations within a single wsdl:portType have to be
mapped to methods within a single class or interface.

Figure 4–3 This dispatching scenario is not supported by JAX-WS 2.0.

public class Customer {
...
 public Address getAddress(String custId) {
 ...
 }
...
}

<wsdl:portType name="CustomerInformationPort">

 <wsdl:operation name="getAddress">
 <wsdl:input .../>
 <wsdl:output .../>
 </wsdl:operation>

 <wsdl:operation name="getHistory">
 <wsdl:input .../>
 <wsdl:output .../>
 </wsdl:operation>

</wsdl:portType>

public class CustomerHistory {
...
 public History getCustomerHistory
 (String custId) {
 ...
 }
...
}

166 The Role of WSDL, SOAP, and Java/XML Mapping in SOA

Figure 4–3 shows an example of such a dispatching scenario that is not
supported by the JAX-WS 2.0 mapping. As you can see, the WSDL has a
wsdl:portType description that defines two operations: getAddress and
getHistory. As the diagram shows, I’d like to map them to Customer.getAd-
dress() and CustomerHistory.getCustomerHistory(), respectively.

But because those methods are in separate classes, JAX-WS 2.0 cannot
support such a mapping. Now, it is possible to create some wrapper code
that enables you to implement such a scenario. In the next section, I explore
how you can do that.

4.4 Working around Some JAX-WS 2.0 Dispatching
Limitations

In this section, I walk through a detailed example of how to work around
the dispatching difficulties posed by the JAX-WS 2.0 WSDL/Java mapping
described in Section 4.3.7. You will see that this example involves creating
wrapper code to work with the interfaces generated by the JAX-WS 2.0
WSDL to Java mapping tool provided with your Java EE 5 implementation.

In addition to discussing the workaround, I use this example to point
out how JAX-WS uses WS-Metadata annotations to implement the WSDL
to Java mapping. This is kind of a prelude to the topic of annotations, which
I discuss in depth in Chapter 5.

Example 4–17 shows more of the WSDL from which wsdl:portType
snippet in Figure 4–3 was taken. Here, I show you all of the WSDL except
the wsdl:binding and wsdl:service definitions. As discussed in the pre-
ceding section, I’d like to implement this WSDL by assigning each of the
two operations to methods from different classes. You should read through
this WSDL now—even though it is a little long—to get familiar with it. It
will help you understand the rest of the example.

Example 4–17 WSDL for the CustomerInformation Web Service

 4 <wsdl:definitions targetNamespace="http://www.example.com/css/custinfo"
 5 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 6 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 7 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 8 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 9 xmlns:custinfo="http://www.example.com/css/custinfo"
10 xmlns:css="http://www.example.com/css"

4.4 Working around Some JAX-WS 2.0 Dispatching Limitations 167

11 xmlns:corp="http://www.example.com/corp"
12 xsi:schemaLocation="http://schemas.xmlsoap.org/wsdl/
13 http://schemas.xmlsoap.org/wsdl/ http://schemas.xmlsoap.org/wsdl/soap/
14 http://schemas.xmlsoap.org/wsdl/soap/">
15 <wsdl:types>
16 <xs:schema elementFormDefault="qualified"
17 targetNamespace="http://www.example.com/css">
18 <xs:include
19 schemaLocation="http://soabook.com/example/css/custhistentries.xsd"/>
20 </xs:schema>
21 <xs:schema elementFormDefault="qualified"
22 targetNamespace="http://www.example.com/corp">
23 <xs:include
24 schemaLocation="http://soabook.com/example/corp/standardtypes.xsd"/>
25 </xs:schema>
26 <xs:schema elementFormDefault="qualified"
27 targetNamespace="http://www.example.com/css/custinfo">
28 <xs:import namespace="http://www.example.com/css"/>
29 <xs:import namespace="http://www.example.com/corp"/>
30 <xs:element name="getAddress">
31 <xs:complexType>
32 <xs:sequence>
33 <xs:element name="custId" type="xs:string"/>
34 </xs:sequence>
35 </xs:complexType>
36 </xs:element>
37 <xs:element name="getAddressResponse">
38 <xs:complexType>
39 <xs:sequence>
40 <xs:element name="address" type="corp:AddressType"/>
41 </xs:sequence>
42 </xs:complexType>
43 </xs:element>
44 <xs:element name="getCustomerHistory">
45 <xs:complexType>
46 <xs:sequence>
47 <xs:element name="custId" type="xs:string"/>
48 </xs:sequence>
49 </xs:complexType>
50 </xs:element>
51 <xs:element name="getCustomerHistoryResponse">
52 <xs:complexType>
53 <xs:sequence>
54 <xs:element name="history" type="css:CustomerHistoryEntriesType"/>

168 The Role of WSDL, SOAP, and Java/XML Mapping in SOA

55 </xs:sequence>
56 </xs:complexType>
57 </xs:element>
58 </xs:schema>
59 </wsdl:types>
60 <wsdl:message name="getAddressRequestMessage">
61 <wsdl:part name="parameters" element="custinfo:getAddress"/>
62 </wsdl:message>
63 <wsdl:message name="getAddressResponseMessage">
64 <wsdl:part name="parameters" element="custinfo:getAddressResponse"/>
65 </wsdl:message>
66 <wsdl:message name="getCustomerHistoryRequestMessage">
67 <wsdl:part name="parameters" element="custinfo:getCustomerHistory"/>
68 </wsdl:message>
69 <wsdl:message name="getCustomerHistoryResponseMessage">
70 <wsdl:part name="parameters" element="custinfo:getCustomerHistoryResponse"/>
71 </wsdl:message>
72 <wsdl:portType name="CustomerInformationPort">
73 <wsdl:operation name="getAddress">
74 <wsdl:input message="custinfo:getAddressRequestMessage"/>
75 <wsdl:output message="custinfo:getAddressResponseMessage"/>
76 </wsdl:operation>
77 <wsdl:operation name="getCustomerHistory">
78 <wsdl:input message="custinfo:getCustomerHistoryRequestMessage"/>
79 <wsdl:output message="custinfo:getCustomerHistoryResponseMessage"/>
80 </wsdl:operation>
81 </wsdl:portType>

book-code/chap04/jaxwsworkaround/src/xml/CustomerInformation.wsdl

Here are the salient points to notice about this WSDL:

■ It uses the document/literal wrapped style. You can tell that by the
presence of the wrapper elements (e.g., custinfo:getAddress and
custinfo:getCustomerHistory).

■ It includes external schema definitions for css:CustomerHistory-
EntriesType and corp:AddressType. The first of these XML
types you have seen before in Chapter 3, Section 3.1. The second
is the corporate standard schema used to represent addresses. This
is another example of the principle discussed in Section 4.1.1—
reusable schema.

4.4 Working around Some JAX-WS 2.0 Dispatching Limitations 169

■ The operation getAddress returns an instance of corp:AddressType—
the standard reusable schema for Address. Likewise, the operation
getCustomerHistory returns an instance of css:CustomerHistory-
EntriesType. Of course, both return types are represented as children
of their respective wrapper elements.

■ Both of the operations—getAddress and getCustomerHistory—are
included in the same wsdl:portType with the name CustomerIn-
formationPort.

Figure 4–4 illustrates the workaround for mapping this WSDL to
methods from two different classes. The wsdl:portType named Custom-
erInformationPort is first mapped to a Java interface named Customer-
InformationPort. In JAX-WS and WS-Metadata terminology, this is called
the service endpoint interface. It is generated using the standard JAX-WS
2.0 mapping. The two arrows going from the WSDL to the interface show
how the wsdl:operation definitions map to the method definitions.

Next, the single arrow from the CustomerInformationPort interface to
the CustomerInformation class (lower right-hand corner of Figure 4–4)
illustrates my implementation of that interface. In JAX-WS and WS-Meta-
data terminology, this implementation is called the service implementation
bean. The CustomerInformation class is not generated from the WSDL,
but rather is a custom implementation of the CustomerInformationPort
interface. Normally, the business logic implementing the wsdl:operation
definitions would go here. However, in this case, the business logic already
exists—it is contained in the two classes Customer and CustomerHistory.
As a result, the implementation of the CustomerInformation class is a
wrapper that is used to invoke the Customer and CustomerHistory classes
that contain the preexisting business logic.

Lastly, the arrows going from CustomerInformation to those two
classes illustrate how the wrapper is implemented. Each method, get-
Address and getCustomerHistory, uses references to instances of Cus-
tomer and CustomerHistory, respectively, to invoke their getAddress and
getCustomerHistory methods. Clearly, this approach works and it is not
too difficult to implement. It becomes a problem, however, when it comes
to maintenance. In addition to the WSDL and the business logic (i.e., the
Customer and CustomerHistory classes), you now need to maintain this
wrapper class.

Example 4–18 shows the code that is generated for the Customer-
InformationPort interface. All Java EE 5 implementations provide some
type of tool that can read WSDL, such as Example 4–17, and generate Java

170 The Role of WSDL, SOAP, and Java/XML Mapping in SOA

Figure 4–4 A workaround for the Section 4.3.7 dispatching scenario.

public class Customer {
...
 public Address getAddress(String custId) {
 ...
 }
...
}

<wsdl:portType name="CustomerInformationPort">

 <wsdl:operation name="getAddress">
 <wsdl:input .../>
 <wsdl:output .../>
 </wsdl:operation>

 <wsdl:operation name="getHistory">
 <wsdl:input .../>
 <wsdl:output .../>
 </wsdl:operation>

</wsdl:portType>

public class
 CustomerHistory {
...

 public History
 getCustomerHistory
 (String custId) {
 ...
 }
...
}

public interface CustomerInformationPort {

 public AddressType getAddress(String custId);

 public CustomerHistoryEntriesType
 getCustomerHistory(String custId);
}

public class CustomerInformation implements
 CustomerInformationPort {

 public AddressType getAddress(String custId) {
 Address addr = cust.getAddress(custId);
 AddressType addrType =
 convertAddressToAddressType(addr);
 return addrType;
 }

 public CustomerHistoryEntriesType
 getCustomerHistory(String custId) {
 History hist =
 custHist.getCustomerHistory(custId);
 CustomerHistoryEntriesType entries =
convertHistoryToCustomerHistoryEntriesType(hist);
 return entries;
 }
}

Service Endpoint Interface

Service Implementation Bean

4.4 Working around Some JAX-WS 2.0 Dispatching Limitations 171

artifacts that implement the JAX-WS 2.0 WSDL to Java mapping. For this
book, I am using the GlassFish implementation of Java EE 5, and the tool
provided with GlassFish is called wsimport. The code in Example 4–18 was
generated using the wsimport tool. Like all the examples in this book, you
can run this yourself using Maven and/or Ant and generate the code. To do
that, follow these steps:

1. Go to chap04/jaxwsworkaround.
2. To run the wsimport tool, enter ant gen-java.
3. The generated artifacts are written to the directory chap04/jaxws-

workaround/target/work/java.

Example 4–18 The JAX-WS-Generated Code for the CustomerInformation Web Service
(i.e., the Service Endpoint Interface)

 19 package com.example.css.custinfo;
 20
 21 import javax.jws.WebMethod;
 22 import javax.jws.WebParam;
 23 import javax.jws.WebResult;
 24 import javax.jws.WebService;
 25 import javax.xml.ws.RequestWrapper;
 26 import javax.xml.ws.ResponseWrapper;
 27 import com.example.corp.AddressType;
 28 import com.example.css.CustomerHistoryEntriesType;
 29 import com.example.css.custinfo.CustomerInformationPort;
 30
 31 @WebService(name = "CustomerInformationPort",
 32 targetNamespace = "http://www.example.com/css/custinfo",
 33 wsdlLocation = " ... /CustomerInformation.wsdl")
 34 public interface CustomerInformationPort {
 35
 36 @WebMethod
 37 @WebResult(name = "address",
 38 targetNamespace = "http://www.example.com/css/custinfo")
 39 @RequestWrapper(localName = "getAddress",
 40 targetNamespace = "http://www.example.com/css/custinfo",
 41 className = "com.example.css.custinfo.GetAddress")
 42 @ResponseWrapper(localName = "getAddressResponse",
 43 targetNamespace = "http://www.example.com/css/custinfo",
 44 className = "com.example.css.custinfo.GetAddressResponse")
 45 public AddressType getAddress(

172 The Role of WSDL, SOAP, and Java/XML Mapping in SOA

 46 @WebParam(name = "custId",
47 targetNamespace = "http://www.example.com/css/custinfo")

 48 String custId);
 49
 50 @WebMethod
 51 @WebResult(name = "history",
 52 targetNamespace = "http://www.example.com/css/custinfo")
 53 @RequestWrapper(localName = "getCustomerHistory",
 54 targetNamespace = "http://www.example.com/css/custinfo",
 55 className = "com.example.css.custinfo.GetCustomerHistory")
 56 @ResponseWrapper(localName = "getCustomerHistoryResponse",
 57 targetNamespace = "http://www.example.com/css/custinfo",
58 className = "com.example.css.custinfo.GetCustomerHistoryResponse")

 59 public CustomerHistoryEntriesType getCustomerHistory(
 60 @WebParam(name = "custId",
61 targetNamespace = "http://www.example.com/css/custinfo")

 62 String custId);
 63
 64 }

book-code/chap04/jaxwsworkaround/src/java/com/example/css/custinfo
/CustomerInformationPort.java

Looking at the code for this CustomerInformationPort interface, you
can see that it implements the two methods getAddress and getCustomer-
History as illustrated in Figure 4–4. What is most interesting, however, is
the return type classes and the annotations that the wsimport tool created
to implement the mapping from the WSDL.

The getAddress method, for example, has a return type of com.exam-
ple.corp.AddressType. This is a class that has also been generated by
wsimport from the schema definition for corp:AddressType. So, right
away, you can see that mapping from the interface to the business logic in
the two different classes, Customer and CustomerHistory, is not the only
mapping challenge you need to overcome to implement this example. You are
also going to have to translate between this generated AddressType class and
the return type samples.Address used by the Customer.getAddress()
method. I talk about this issue in detail in the next two sections. You’ll notice
that you have the same issue with the return type for getCustomer-
History()—com.example.css.CustomerHistoryEntriesType is also a gen-
erated class that has to be mapped to the business logic return type:
samples.History.

4.4 Working around Some JAX-WS 2.0 Dispatching Limitations 173

For a moment, let’s look at some of the annotations generated in
Example 4–18 and discuss what they do. Table 4–1 provides some explanation.

Continuing with this illustration, the code in Example 4–19 shows an
implementation of the auto-generated service endpoint interface. This is
the code that actually “splits” the wsdl:portType into two different classes.

Table 4–1 Descriptions of the Java Annotations Appearing in Example 4–18

Annotation Purpose Comments

@WebService Marks a Java class as
implementing a Web
service, or a Java inter-
face as defining a Web
service interface

The presence of the
wsdlLocation value in this
example indicates that the
interface’s service implemen-
tation bean is implementing a
predefined WSDL contract
(i.e., the “Start from WSDL”
development mode).

@WebMethod Indicates that a
method is exposed as a
Web service operation

The operation name defaults
to the method name. In this
case, you can see that these
are the same as the
wsdl:operation names.

@WebResult Provides the local
name and namespace
for the return type—
as defined in the
WSDL

Since I am using document/
literal wrapped, notice that
the value for this annotation
is the element defined in the
wsdl:types section that is
the child of the response
wrapper element.

@RequestWrapper Indicates the map-
ping between the
WSDL request wrap-
per element and the
JAXB-generated bean
that implements it as a
wrapper class

Notice that the wsimport
tool has generated (via JAXB)
a class named com.exam-
ple.cee.custinfo.GetAd
dress that maps to the
custinfo:getAddress
type defined in the WSDL.

@ResponseWrapper Same as @Request-
Wrapper but for
responses

Same as @RequestWrapper
but for responses.

174 The Role of WSDL, SOAP, and Java/XML Mapping in SOA

Notice that the code for the CustomerInformation class contains
@Resource annotations referencing two external resources—instances of
the Customer and CustomerHistory classes. The @Resource annotation is
defined in the Common Annotations specification [JSR-250]. When applied
to a field, as in these examples, the Java EE 5 container will inject an
instance of the requested resource (i.e., instances of Customer and Custom-
erHistory) when this service implementation bean is initialized. Of course,
for this to work a corresponding valid JNDI resource must be defined in the
application component environment where this service implementation
bean is deployed. See the sections on JNDI and dependency injection
found in the Java EE 5 specification [JSR-244] for more information on how
injection works.

Example 4–19 Workaround for the JAX-WS PortType Mapping (i.e., the Service Imple-
mentation Bean)

 28 @WebService(
 29 endpointInterface="com.example.css.custinfo.CustomerInformationPort",
 30 serviceName="CustomerInformationService")
 31 public class CustomerInformation implements CustomerInformationPort {
 32
 33 @Resource
 34 private Customer cust;
 35
 36 @Resource
 37 private CustomerHistory custHist;
 38
 39 public AddressType getAddress(String custId) {
 40 Address addr = cust.getAddress(custId);
 41 AddressType addrType = convertAddressToAddressType(addr);
 42 return addrType;
 43 }
 44
 45 public CustomerHistoryEntriesType getCustomerHistory(String custId) {
 46 History hist = custHist.getCustomerHistory(custId);
 47 CustomerHistoryEntriesType entries =
 48 convertHistoryToCustomerHistoryEntriesType(hist);
 49 return entries;
 50 }

book-code/chap04/jaxwsworkaround/src/java/samples/CustomerInformation.java

4.5 SOA Often Requires “Start from WSDL and Java” 175

Continuing to look down through the code in Example 4–19, you can see
that each method—getAddress() and getCustomerHistory()—uses the
injected instances of the classes—cust and hist, respectively—that imple-
ment the business logic. You can also see that the code uses the static methods
convertAddressToAddressType and convertHistoryToCustomerHistory-
EntriesType to translate between the wsimport-generated return type classes
and the classes used by the business implementation. This is the solution to the
problem discussed along with Example 4–18. Not only do you need to make
this service implementation bean a wrapper that splits the portType opera-
tions across two different classes, but you also need to translate between busi-
ness-defined return type classes and the JAXB-generated implementations of
the WSDL’s XML Schema-defined return types.

The fact that you need multiple levels of wrapper code to implement
this simple example is an indication that the JAX-WS 2.0 specification was
not really designed with “Start from WSDL and Java” problems in mind.
JAX-WS 2.0 and JAXB 2.0 are fine when you are doing “Start from Java”
development. You can get by when you are doing “Start from WSDL”
development. However, when you are doing “Start from WSDL and Java,”
the JWS specifications start to seem like they aren’t really designed for the
job. Strategies for handling “Start from WSDL and Java” are discussed in
Chapter 5 where JAXB 2.0 capabilities are explored in depth. As discussed
there, and in Chapters 6 and 7 where JAX-WS 2.0 is examined, the recom-
mended approach is to do the best you can to create JAXB representations
of the XML Schema types used in the WSDL that closely match your exist-
ing Java classes. That involves more work than simply running the schema
compiler against the target WSDL. It involves writing your own annotations
for your existing classes in an attempt to map them to the existing WSDL.
Doing this will minimize the amount and complexity of the wrapper code
required. Once you have created the JAXB classes to be deployed, you can
work with the JAX-WS annotations (described in Chapters 6 and 7) to shape
the generated WSDL to match the target.

4.5 SOA Often Requires “Start from WSDL and Java”

At this point, I think it is useful to pause for a moment and consider the
challenge that faces architects and developers tasked with SOA Integra-
tion for the enterprise. SOA-style applications for enterprise integration
typically include components from multiple systems. Each system has its
own API. If a system is internally developed, that API was designed and is

176 The Role of WSDL, SOAP, and Java/XML Mapping in SOA

maintained by a particular group within the enterprise. If the system was
purchased, the API is provided as part of the package. It may be customiz-
able or it may not be. If it can be customized, that responsibility lies with a
particular group within the enterprise.

Now consider the WSDL for the SOA components in an enterprise
integration application. Where do the XML Schema building blocks for the
WSDL come from? It is more than likely that for many of the common
XML types (e.g., address), the enterprise has developed standards. Interop-
erability concerns require that an enterprise not have 15 different versions
of the address type, for example. Similarly, if the SOA application is being
used to integrate with external entities (e.g., suppliers or customers), it is
likely that those entities have their own XML standards the SOA applica-
tion must adhere. Perhaps an industry standard such as ebXML or Rosetta-
Net is being used.

Even if, at one time, a firm had coherent information systems, it is likely
that, as it grew, new departments and organizations were added and systems
evolved in different directions. Now, as the firm struggles to consolidate sys-
tems and bring order so that its interfaces can be opened for Internet com-
munication via Web services (either across departments or with external
suppliers and customers), the need for adherence to standard schema is
critical. As a result, it is likely that programmers implementing Web Ser-
vices on top of existing applications will need to map such applications to
standard WSDL and XML Schema interfaces. This is why the “Start from
WSDL and Java” problem arises so frequently during the SOA application
design process.

Figure 4–5 illustrates the typical situation for the SOA application
designer. There are several source systems with APIs and several external
standards for XML schema to be considered.

The important concept to grasp in considering Figure 4–5 is that none
of the external inputs (APIs or Schema standards) is controlled by the SOA
component designers. Nor are these external inputs likely to be controlled
by the individuals responsible for exposing the system APIs as Web services.

So, suppose you are responsible for designing a Web service to expose
part of System A’s Java API. Say that you would like to annotate the Java
classes/interfaces so that the WSDL generated by the Java EE 5 container
is compliant with the organization’s enterprise standards. For many reasons,
you may not be able to do this. First, System A might be a third-party package
that cannot be customized. Second, even if it can be customized, that
responsibility probably resides in another organization. Third, even if it is
an internally developed application, the customization process is probably
not in your control. So, even in the best case, you probably have to make a

4.5 SOA Often Requires “Start from WSDL and Java” 177

customization request and wait until it gets considered and implemented
by the group that is responsible. Anyone who has worked in a large enter-
prise knows that this process can take months. If you have a deadline, it
just isn’t feasible.

Furthermore, there are good reasons why the organization responsible
may not want to modify the API—even if it just involves some simple anno-
tations. Most enterprises require unit testing, system testing, and integra-
tion testing for any change to a production system. That can be a
showstopper right there. It might just be too much work or too expensive to
modify that API.

As you can see from this discussion, the “Start from WSDL and Java”
development mode is essential to SOA. Because the developers and archi-
tects who are deploying SOA components as Web services must work with
externally defined APIs and XML schema, they need tools that enable them
to map an existing API to a WSDL built from existing schemas.

The key to doing “Start from WSDL and Java” development is to have
flexible tools for mapping Java to XML schema. In the next section, I look at
this challenge in some more detail.

Figure 4–5 The SOA component/Web Services design process.

Enterprise Standards

XML Schema

External Standards

XML Schema

System A

Java API

System B

Java API

System C

Java API

SOA Component /
Web Service Design

and Deployment Process

178 The Role of WSDL, SOAP, and Java/XML Mapping in SOA

4.5.1 The Role of Java/XML Mapping in SOA

Java/XML mapping for SOA is accomplished by defining and implementing
type mappings. A type mapping is simply a relationship between a Java class
and an XML Schema type—for example, corp:AddressType and sam-
ples.Address. A type mapping is implemented by a serializer and a deseri-
alizer. The serializer converts instances of the Java class into XML instances
that conform to the schema. The deserializer does the reverse.

When doing “Start from WSDL and Java” development, a large portion
of the design process involves defining the type mappings and serializers.
For example, suppose you have a Java method such as:

public void updateAddress(String custId, Address addr)

And suppose the corporate standard schema for address is a complex
type: corp:AddressType. Then, the WSDL that is deployed to describe the
Web service for updateAddress needs to include corp:AddressType as a
message part. But furthermore, the serialization subsystem on the platform
where the Web service is deployed must be able to access the deserializer
for the type mapping <corp:AddressType, samples.Address>. When a
SOAP request for the Web service arrives, the deserializer is used to con-
vert the SOAP part to the Java method parameter. This process is illustrated
in Figure 4–6.

As discussed in Section 4.3, the dispatching of this SOAP message is
based on the wrapper element—custinfo:updateAddress. It gets mapped
to the updateAddress method as shown. Below this wrapper element are
the two message parts8—custinfo:custId and custinfo:address. These
are mapped to the parameters custId (String) and addr (Address),
respectively. This mapping, of the message parts to the method parameters,
is not defined in the WSDL. The WSDL contains no information about the
underlying Java implementation of the Web service. This property of the
WSDL is consistent with the separation of concerns concept discussed in
Section 4.2. After all, the consumer of the Web service shouldn’t have to be
concerned with such implementation details. All the consumer needs is the
information necessary to construct the SOAP message and send it to the
appropriate URL.

8. I refer to the children of the wrapper element as message “parts.” This might be a little bit
confusing, since these components of the SOAP message are not actually defined using the
wsdl:part definitions in the document/literal wrapped style of WSDL. Nevertheless, the
term “parts” seems to be the best characterization.

4.5 SOA Often Requires “Start from WSDL and Java” 179

So, the type mappings that link the SOAP/WSDL to the Java imple-
mentation are not defined in the WSDL, but rather are part of the inter-
nal—platform-specific—deployment information associated with the Web
service. In the JWS model, these type mappings are defined by the JAXB
standard mapping as customized by any annotations.

In Chapter 5, Sections 5.3 and 5.4, I look in detail at how to implement
type mappings using JAXB 2.0. At this point, I just want to point out that
the type mapping process is outside the scope of the WSDL and is a plat-
form-specific issue. Furthermore, you should understand that being able to
implement flexible type mappings is a key to the “Start from WSDL and
Java” development model needed for SOA. As illustrated in Figure 4–6, the
key to being able to deploy the updateAddress() method as a Web service
with the desired WSDL is to be able to implement the type mapping
<corp:AddressType, samples.Address>.

Figure 4–6 SOAP parts map to Java method parameters.

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
 <env:Body>
 <custinfo:updateAddress
 xmlns:custinfo="http://www.example.com/css/custinfo">
 <custinfo:custId>ENT0072123</custinfo:custId>
 <custinfo:address xmlns:corp="http://www.example.com/corp">
 <corp:addrLine1>27 Main Street</corp:addrLine1>
 <corp:addrLine2>Suite 2000</corp:addrLine2>
 <corp:city>New City</corp:city>
 <corp:state>OH</corp:state>
 <corp:zip>59101</corp:zip>
 <corp:phone>(758) 874-1221</corp:phone>
 </custinfo:address>
 </custinfo:updateAddress>
 </env:Body>
</env:Envelope>

 public class Customer {

 public void updateAddress(String custId, Address addr) {
 ...
 }

 public Address getAddress(String custId) {
 ...
 }

 }

180 The Role of WSDL, SOAP, and Java/XML Mapping in SOA

4.5.2 Limitations of JAXB 2.0 for Java/XML Mapping in SOA

JAXB 2.0 is a powerful tool for Java/XML binding, and Chapter 5 reviews its
capabilities in detail. At this point, however, I am going to point out some of
its limitations as a tool for doing “Start from WSDL and Java” development.
This is not so much a criticism of JAXB 2.0 as much as it is another illustra-
tion of the difficulties presented by the “Start from WSDL and Java” devel-
opment mode.

JAXB 2.0 defines a standard mapping from XML schema to Java. This
standard mapping associates XML Schema element definitions with
instances of java.xml.bind.JAXBElement<T>. At this point, I am not so
much concerned with the specifics of the JAXBElement<T> class, but rather
with pointing out that the one-to-one association of XML schema element
definitions with instances of this class makes it impossible to implement
type mappings that may split or merge elements to create Java instances.
Consider, for example, the type mapping <corp:AddressType, sam-
ples.Address> illustrated in Figure 4–7.

Notice here that the standard XML Schema type for address has two
elements—addrLine1 and addrLine2—that must map into the Address
variables streetNum and streetName. You can imagine a number of heuris-
tics for implementing such a mapping. Probably some of the heuristics even
fail for certain types of addresses (e.g., where do you put an apartment
number that might be on addrLine2?). However, such heuristics cannot be
easily implemented in JAXB 2.0.

Similarly, the phone number is represented in the standard XML
schema as a single instance of xs:string. However, in the Address class it
is an instance of Phone. As you can see in the diagram, the Phone class rep-
resents the phone number using three variables: area code, exchange, and
number. Clearly, you could write a simple script to parse the phone element
(xs:string) into these three variables. However, that type of mapping can-
not be implemented within the JAXB standard mapping. To implement
such a mapping within the JAXB framework, you need to implement your
mapping heuristics as a Java class extending the java.xml.bind.annota-
tions.adapters.XmlAdapter<ValueType, BoundType> class and annotate
the Address class with @XmlJavaTypeAdapter. I go through an example of
how to do this at the end of Chapter 5. As you will see there, it is a nontrivial
exercise.

4.5 SOA Often Requires “Start from WSDL and Java” 181

Figure 4–7 A type mapping for the Address XML Schema definition to the
Address Java class definition.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 targetNamespace="http://www.example.com/corp">
 <xs:complexType name="AddressType">
 <xs:sequence>
 <xs:element name="addrLine1" type="xs:string"/>
 <xs:element name="addrLine2" type="xs:string"/>
 <xs:element name="city" type="xs:string"/>
 <xs:element name="state" type="xs:string"/>
 <xs:element name="zip" type="xs:string"/>
 <xs:element name="phone" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

public class Address
implements
 java.io.Serializable {

 private int streetNum;
 private String streetName;
 private String city;
 private State state;
 private int zip;
 private Phone phoneNumber;
 ...
}

public class Phone implements
 java.io.Serializable {

 private int areaCode;
 private String exchange;
 private String number;
 ...
}

182 The Role of WSDL, SOAP, and Java/XML Mapping in SOA

4.6 Working around JAXB 2.0 Java/XML Mapping
Limitations

Figure 4–7 shows an example of a type mapping that, although it could eas-
ily arise in practice, is nontrivial to handle within the JAXB framework. In
this section, I show you a couple of practical alternatives for implementing
such a type mapping using JAXB. The first approach uses the JAXB schema
compiler and Java to map from the generated bean to the Address class.
The second approach uses the JAXB schema generator and XSLT to map
from corp:AddressType instances to the generated schema type.

The examples in this section can be found in chap04/sfwj. You can run
them in batch mode by simply going to that directory and entering ant
run-both-deserializers. Or, you can follow the instructions in the next
section for running them individually step by step.

4.6.1 Using the Schema Compiler and Java

Here, I show how to augment JAXB—wrapping a standard JAXB binding
inside additional code—to get the desired mapping. This approach takes
advantage of the power of the JAXB framework without getting caught up
in the difficulties associated with XmlAdapter and @XmlJavaTypeAdapter. It
is a practical approach that forms the basis of the SOA-J Serialization Sub-
System described in depth in Chapter 10.

To get started, let’s examine the results of applying the JAXB schema
compiler to the corp:AddressType listed in Figure 4–7 (see Example 4–20).

Example 4–20 The AddressType Class Generated by JAXB from
corp:AddressType

 60 @XmlAccessorType(AccessType.FIELD)
 61 @XmlType(name = "AddressType", propOrder = {
 62 "addrLine1",
 63 "addrLine2",
 64 "city",
 65 "state",
 66 "zip",
 67 "phone"
 68 })
 69 public class AddressType {
 70

4.6 Working around JAXB 2.0 Java/XML Mapping Limitations 183

 71 @XmlElement(namespace = "http://www.example.com/corp")
 72 protected String addrLine1;
 73 @XmlElement(namespace = "http://www.example.com/corp")
 74 protected String addrLine2;
 75 @XmlElement(namespace = "http://www.example.com/corp")
 76 protected String city;
 77 @XmlElement(namespace = "http://www.example.com/corp")
 78 protected String state;
 79 @XmlElement(namespace = "http://www.example.com/corp")
 80 protected String zip;
 81 @XmlElement(namespace = "http://www.example.com/corp")
 82 protected String phone;

book-code/chap04/sfwj/examples/AddressType.java

I’m showing only part of the com.example.corp.AddressType class in
Example 4–20. But it is a simple bean and you can imagine the rest—it is all
getters and setters for the fields shown here. Besides generating the fields
and methods, JAXB has included annotations that are used to marshal/
unmarshal between instances of this class and instances of the
corp:AddressType schema. Annotations are discussed in detail in Chapter
5, but so that you understand this example, I explain a little bit here.

The @XmlAccessorType annotation tells JAXB to map the fields (hence
the value AccessType.FIELD) to schema element definitions. For example,
the String field—addrLine1—gets mapped to an XML element named
addrLine1. Likewise, the @XmlType annotation tells JAXB to map the class
AddressType to an XML schema complex type. Finally, the @XmlElement
annotations provide a namespace for the elements.

These annotations map this JAXB-generated Java class back to the
corp:AddressType complex type (pictured in Figure 4–7) from which it
was generated. To make this example a little more concrete, Example 4–21
shows an instance of the corp:AddressType schema.

Example 4–21 An Instance of corp:AddressType

 4 <custinfo:address xmlns="http://www.example.com/corp"
 5 xmlns:custinfo="http://www.example.com/css/custinfo">
 6 <addrLine1>175 Main Street</addrLine1>
 7 <addrLine2>Suite 200</addrLine2>
 8 <city>New City</city>

184 The Role of WSDL, SOAP, and Java/XML Mapping in SOA

 9 <state>OH</state>
 10 <zip>59101</zip>
 11 <phone>(758) 874-1221</phone>
 12 </custinfo:address>

book-code/chap04/sfwj/src/xml/corp_address.xml

The entire process of deserializing an instance of corpAddressType to
an instance of samples.Address using the JAXB schema compiler and Java
is illustrated in Figure 4–8.

The following eight steps correspond to the labels in Figure 4–8 and
describe how the process works:

1. The boxes in the lower right represent the “start from” Java. These
classes include the samples.Address class. In order to solve the
“Start from WSDL and Java” problem, you need to be able to map
XML that conforms to the WSDL to these classes.

2. Steps 2–4 illustrate the use of the JAXB schema compiler. This
happens prior to runtime. The box in the upper left of the figure

Figure 4–8 “Start from WSDL and Java” using the JAXB schema compiler and Java.

AddressDeserializer1

JAXB schema compiler

com.example.corp.AddressType

deserializeAddress(...)

convertAddressTypeToAddress(...)

Address XML

corp_address.xml

WSDL

<types> ...
 corp:AddressType
 ...
</types>

Instance of
corp:AddressType

5

4

2

6

8

com.example.corp.AddressType samples.Address
samples.Phone

samples.State

7

1

3

4.6 Working around JAXB 2.0 Java/XML Mapping Limitations 185

represents the “start from” WSDL. It contains the schema definition
for corp:AddressType that you need to map to samples.Address.

3. Running the JAXB schema compiler against corp:AddressType cre-
ates a new class—com.example.corp.AddressType.

4. This new Java class, com.example.corp.AddressType, is used during
runtime to implement the transformation.

5. Steps 5–8 illustrate the run-time transformation of an instance of
corp:AddresssType (from the file corp_address.xml) in an instance
of samples.Address.

6. The AddressDeserializer.deserializeAddress() method (listed
in the top part of Example 4–24) takes the corp_address.xml file
and uses JAXB to transform it into an instance of com.exam-
ple.corp.AddressType.

7. Then, this instance of com.example.corp.AddressType is the input
to the method AddressDeserializer2.convertAddressTypeToAd-
dress() (listed in the bottom part of Example 4–24) that parses the
Java properties into an instance of samples.Address.

8. Lastly, the resulting instance of samples.Address is returned.

So, as you can see, the goal of the deserialization process is to map the
instance of corp:AddressType into the samples.Address class shown in
Example 4–22. To get to that point, JAXB is used to create an instance of
the intermediate class com.example.corp.AddressType.

Example 4–22 The Target Class: samples.Address

 23 public class Address implements java.io.Serializable {
 24 private int streetNum;
 25 private String streetName;
 26 private String city;
 27 private State state;
 28 private int zip;
 29 private Phone phoneNumber;
 30

book-code/chap04/sfwj/etc/java/samples/Address.java

As illustrated in Figure 4–7, part of the challenge here is to map the
two address lines into the streetNum (int) and streetName (String) in
this samples.Address class. Another challenge is to map the phone element

186 The Role of WSDL, SOAP, and Java/XML Mapping in SOA

into phoneNumber—which is an instance of samples.Phone shown in
Example 4–23.

Example 4–23 The samples.Phone Class

 21 public class Phone {
 22 private int areaCode;
 23 private String exchange;
 24 private String number;

book-code/chap04/sfwj/etc/java/samples/Phone.java

As you can see, in this case the phone element must get parsed into
three fields: areaCode (int) , exchange (String) , and number (String). In
case you are wondering, I did not create these samples.Address and sam-
ples.Phone classes out of thin air just to come up with a tricky example.
These classes are taken from the standard sample code that ships with IBM
WebSphere Application Server (in the WebServicesSamples directory).

The first step in the deserialization process is to take the instance from
Example 4–21 and unmarshal it into the JAXB schema-generated bean
shown in Example 4–20. Once that is done, you use custom Java code to
read values from the bean, parse them, and set values in the sam-
ples.Address class shown in Example 4–22. The code for this two-step
process appears in Example 4–24.

Example 4–24 Deserialization Using the Schema-Generated Bean

61 public Address deserializeAddress(Source xml) throws Exception {
 62
 63 JAXBContext jc =
 64 JAXBContext.newInstance("com.example.corp");
 65 Unmarshaller u = jc.createUnmarshaller();
 66 JAXBElement<com.example.corp.AddressType> addrJAXBElt =
 67 u.unmarshal(xml, com.example.corp.AddressType.class);
68 com.example.corp.AddressType addrJAXB = addrJAXBElt.getValue();
 69 return convertAddressTypeToAddress(addrJAXB);
 70
 71 }
 72
 73 private Address convertAddressTypeToAddress

4.6 Working around JAXB 2.0 Java/XML Mapping Limitations 187

 74 (com.example.corp.AddressType addrJAXB) throws Exception {
 75
 76 Address addr = new Address();
 77 String[] line1Parts = addrJAXB.getAddrLine1().split(" ",2);
 78 int num = -1;
 79 String street;
 80 try {
 81 num = Integer.valueOf(line1Parts[0]).intValue();
 82 } catch (Exception e) {}
 83 if (num > 0) {
 84 addr.setStreetNum(num);
 85 street = line1Parts[1];
 86 } else {
 87 street = addrJAXB.getAddrLine1();
 88 }
 89 String line2 = addrJAXB.getAddrLine2();
 90 if (line2 != null && !line2.equals("")) {
 91 street += " - " + line2;
 92 }
 93 addr.setStreetName(street);
 94 addr.setCity(addrJAXB.getCity());
 95 addr.setState(State.valueOf(addrJAXB.getState()));
 96 addr.setZip(Integer.valueOf(addrJAXB.getZip()).intValue());
 97 String ph = addrJAXB.getPhone();
 98 int areaStart = ph.indexOf("(");
 99 int areaEnd = ph.indexOf(")");
100 String area = ph.substring(areaStart+1,areaEnd);
101 ph = ph.substring(areaEnd+1,ph.length());
102 String phoneSplit[] = ph.split("-", 2);
103 Phone phone = new Phone();
104 phone.setAreaCode(Integer.valueOf(area).intValue());
105 phone.setExchange(phoneSplit[0].trim());
106 phone.setNumber(phoneSplit[1].trim());
107 addr.setPhoneNumber(phone);
108 return addr;
109
110 }

book-code/chap04/sfwj/src/java/samples/deser/AddressDeserializer1.java

The first part of this process—unmarshalling to the generated bean—
happens in the deserializeAddress method. The corp:AddressType

188 The Role of WSDL, SOAP, and Java/XML Mapping in SOA

instance is passed in to this method as an instance of javax.xml.trans-
form.Source. The JAXBContext is created from the package (com.exam-
ple.corp) containing the JAXB-generated beans. An Unmarshaller
instance is created and used to unmarshal into an instance of JAXBEle-
ment<com.example.corp.AddressType>. This JAXBElement instance is a
holder for an element instance of the generated bean. Lastly, you get an
instance of the bean using the JAXBElement.getValue method.

That first step is the standard process for unmarshalling into a generated
bean class. The next step, mapping the generated bean to samples.Address,
takes place in the method named convertAddressTypeToAddress shown in
Example 4–24.

Looking through the code in the convertAddressTypeToAddress
method, you can see that it contains a bunch of confusing and ugly string
parsing instructions. Unfortunately, there is no way to avoid having to write
that type of code to implement the mapping pictured in Figure 4–7. Code
like that is a fact of life when you are doing “Start from WSDL and Java”
development. The real question is how to best manage and maintain that
mapping code.

To run the example described earlier, follow these steps:

1. Go to <book-code>/chap04/sfwj/modules/schema2java.
2. To run the JAXB schema compiler on the schema containing

corp:AddressType (found at http://soabook.com/example/corp/stan-
dardtypes.xsd), enter mvn install.

3. Go to <book-code>/chap04/sfwj.
4. To run the deserializer, enter ant run-deserializer1.

If you use JAXB for Java/XML mapping as illustrated in this section,
you end up with this type of parsing code scattered around in various wrap-
per and utility classes. Maintenance is difficult. If a schema changes, you
need to find all that parsing code and update it. Reuse is also difficult,
because such parsing code has no clear description of its inputs and outputs.
Without such descriptions, it is difficult to determine where the code can be
reused, and developers just continue to write new parsing code for each sit-
uation they encounter.

An approach that helps to minimize the amount of ad hoc transformation
and parsing code used in an SOA application is to do the transformations at the
XML level, rather than at the Java class level. This can be done with XSLT, as
described in the next section. One benefit of doing transformation at the XML

4.6 Working around JAXB 2.0 Java/XML Mapping Limitations 189

level is that XML Schema can then be used to give precise descriptions of the
input and output schemas—enabling reuse of the XSLT transformations.

4.6.2 Using the Schema Generator and XSLT

In this section, I illustrate a different approach to the mapping problem
solved in the preceding section. Instead of generating a bean from the
corp:AddressType schema, a schema is generated from the sam-
ples.Address class using the JAXB schema generator. XSLT is then used to
map between the two schemas—the original and the JAXB-generated
schema. Figure 4–9 illustrates how this process works.

Figure 4–9 “Start from WSDL and Java” using the JAXB schema generator and XSLT.

AddressDeserializer2

JAXB schema generator

deserializeAddress(...)

convertCorpAddrToAddr(...)

address.xsd

<xs:complexType name="address"> ...
</xs:complexType>

<xs:complexType name="phone"> ...
</xs:complexType>

<xs:complexType name="state"> ...
</xs:complexType>

XSLT
corp_address_to_address.xslt

Schema Gen
Address XML
address.xml

Address XML
corp_address.xml

Instance

WSDL

Instance of
corp:AddressType

4

3

1

2

5

6

7

8

9

<types> ...
 corp:AddressType
 ...
</types>

samples.Address
samples.Phone

samples.State

190 The Role of WSDL, SOAP, and Java/XML Mapping in SOA

The following nine steps correspond to the labels in Figure 4–9 and
describe how the process works:

1. Steps 1–4 illustrate the use of the JAXB schema generator. This hap-
pens prior to runtime. The box in the lower left of the figure repre-
sents the “start from” WSDL. It contains the schema definition for
corp:AddressType.

2. The boxes in the upper left represent the “start from” Java. These
classes include the samples.Address class. In order to solve the
“Start from WSDL and Java” problem, one mapping that needs to
be implemented is from samples.Address to corp:AddressType.
This example illustrates how to create a deserializer, using XSLT,
that can convert instances of samples.Address into instances of
corp:AddressType.

3. Running the JAXB schema generator against the samples.Address
creates a new schema.

4. That schema, represented in the figure as address.xsd, contains a
complex type—address. This generated address will be mapped to
corp:AddressType by the XSLT.

5. The lower half of this figure (steps 5–9) illustrate the run-time trans-
formation of the file corp_address.xml (an instance of corp-
AddressType) into address.xml (an instance of address from
address.xsd). corp_address.xml is an input to the convertCorpAd-
drToAddr() method from AddressDeserializer2 (this method is
listed in Example 4–27).

6. The XSLT stylesheet corp_address_to_address.xslt defines the
transformation. It is listed in Example 4–26.

7. The method AddressDeserializer2.convertCorpAddrToAddr()
invokes the transformation using XSLT and JAXP in the manner
described in Chapter 3, Section 3.4.

8. The file address.xml is output. It is an instance of the complex type
address defined by address.xsd (the JAXB schema-generated XSD).

9. The method AddressDeserializer2.deserializeAddress() (listed
in Example 4–27) uses JAXB to unmarshal address.xml to an
instance of samples.Address.

The key to this approach is to use the JAXB schema generator to create a
schema that JAXB can bind to samples.Address so that the JAXB-based seri-
alization is possible to and from the samples.Address class. Example 4–25
shows the schema that is generated from the samples.Address class.

4.6 Working around JAXB 2.0 Java/XML Mapping Limitations 191

Example 4–25 Schema Generated from samples.Address

 4 <xs:schema version="1.0" xmlns:xs="http://www.w3.org/2001/XMLSchema">
 5
 6 <xs:complexType name="address">
 7 <xs:sequence>
 8 <xs:element name="city" type="xs:string" minOccurs="0"/>
 9 <xs:element name="phoneNumber" type="phone" minOccurs="0"/>
10 <xs:element name="state" type="state" minOccurs="0"/>
11 <xs:element name="streetName" type="xs:string" minOccurs="0"/>
12 <xs:element name="streetNum" type="xs:int"/>
13 <xs:element name="zip" type="xs:int"/>
14 </xs:sequence>
15 </xs:complexType>
16
17 <xs:complexType name="phone">
18 <xs:sequence>
19 <xs:element name="areaCode" type="xs:int"/>
20 <xs:element name="exchange" type="xs:string" minOccurs="0"/>
21 <xs:element name="number" type="xs:string" minOccurs="0"/>
22 </xs:sequence>
23 </xs:complexType>
24
25 <xs:simpleType name="state">
26 <xs:restriction base="xs:string">
27 <xs:enumeration value="OH"/>
28 <xs:enumeration value="IN"/>
29 <xs:enumeration value="TX"/>
30 </xs:restriction>
31 </xs:simpleType>
32 </xs:schema>

book-code/chap04/sfwj/examples/address.xsd

As discussed in Chapter 2, the JAXB marshalling process is governed by
the annotations on the classes. However, the samples.Address class (Exam-
ple 4–22) does not have any annotations, so you may be wondering how JAXB
can unmarshal instances of the preceding schema into that class. The answer
is that the JAXB schema generator adds annotations to the class as it gener-
ates the schema. The original source code class definition is not affected, but
compiled versions (.class files) are created that include the annotations. In

192 The Role of WSDL, SOAP, and Java/XML Mapping in SOA

this example, I use these compiled versions of samples.Address and sam-
ples.Phone rather than the ones generated by javac.

The next question is, how do you convert from instances of the
corp:AddressType schema to the schema shown in Example 4–25? For that,
you can use XSLT. An example of such an XSLT is shown in Example 4–26.

Example 4–26 XSLT for Transforming from corp:AddressType to the Generated Schema

4 <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 5 xmlns:custinfo="http://www.example.com/css/custinfo"
 6 xmlns:corp="http://www.example.com/corp">
 7 <xsl:output method="xml" version="1.0" encoding="UTF-8"/>
 8 <xsl:template match="custinfo:address">
 9 <address>
10 <city><xsl:value-of select="corp:city"/></city>
11 <phoneNumber>
12 <areaCode><xsl:value-of
13 select="substring-before(substring-after(corp:phone,'('),')')"
14 /></areaCode>
15 <exchange><xsl:value-of select="normalize-space(
16 substring-before(substring-after(corp:phone,')'),'-'))"
17 /></exchange>
18 <number><xsl:value-of select="normalize-space(
19 substring-after(corp:phone,'-'))"/></number>
20 </phoneNumber>
21 <state><xsl:value-of select="corp:state"/></state>
22 <streetName><xsl:value-of select="substring-after(corp:addrLine1,' ')"
23 /> - <xsl:value-of select="corp:addrLine2"/></streetName>
24 <streetNum><xsl:value-of select="substring-before(corp:addrLine1,' ')"
25 /></streetNum>
26 <zip><xsl:value-of select="corp:zip"/></zip>
27 </address>
28 </xsl:template>
29 </xsl:stylesheet>

book-code/chap04/sfwj/src/xml/corp_address_to_address.xslt

This XSLT performs the same function as the Java parsing code in
Example 4–24—except that here it is acting on an XML representation
of an address rather than on a Java class instance of an address. There
are several advantages to this approach. First, the XSLT is more readily

4.6 Working around JAXB 2.0 Java/XML Mapping Limitations 193

reusable. Second, the process of transformation followed by unmarshal-
ling into the samples.Address class is probably faster than the process
outlined in the previous section.

Note that neither the XSLT nor the Java transformation is error-proof.
They have been carefully crafted to work with the examples in this book! In
the real world, you would need to get even more complicated to handle all
the cases. And you would need good error handling to recover from the
cases you didn’t consider when designing the transformations.

The Java code that applies this transformation (using JAXP and XSLT)
and then unmarshals into samples.Address is shown in Example 4–27.

Example 4–27 Applying the XSLT and Unmarshalling

66 public Address deserializeAddress(Source xml) throws Exception {
67
68 JAXBContext jc =
69 JAXBContext.newInstance(Address.class);
70 Unmarshaller u = jc.createUnmarshaller();
71 JAXBElement<Address> addrJAXBElt = u.unmarshal(xml, Address.class);
72 Address addr = addrJAXBElt.getValue();
73 return addr;
74
75 }
76
77 private Source convertCorpAddrToAddr(Source xml, Source xslt)
78 throws Exception {
79
80 Transformer transformer =
81 TransformerFactory.newInstance().newTransformer(xslt);
82 ByteArrayOutputStream ba = new ByteArrayOutputStream();
83 transformer.transform(xml, new StreamResult(ba));
84 return new StreamSource(new StringReader(ba.toString()));
85
86 }

book-code/chap04/sfwj/src/java/samples/deser/AddressDeserializer2.java

The method convertCorpAddrToAddr applies the XSLT. The result goes
into a byte array and is returned as an instance of StreamSource. This Stream-
Source can then be processed by the method deserializeAddress(), which

194 The Role of WSDL, SOAP, and Java/XML Mapping in SOA

simply unmarshals the transformed XML into an instance of sam-
ples.Address.

To run the preceding example, follow these steps:

1. Go to <book-code>/chap04/sfwj.
2. To run the JAXB schema generator on the Java classes (e.g., sam-

ples.Address.java) in the directory etc/java/samples, enter mvn
install.

3. To run the XSLT and then the JAXB unmarshaller to deserialize
the XML into an instance of samples.Address enter ant run-
deserializer2.

4.7 Conclusions

This chapter was a quick tour of WSDL, SOAP, and Java/XML mapping. I
looked at those topics from the perspective of SOA. The primary assumption
is that you need to work with standards-compliant WSDL, XML Schema def-
initions, and Java classes as you build and deploy SOA components as Web
services. This assumption is at odds with JWS in a few places. To demonstrate
this, I showed a couple of examples of common integration problems that
have no straightforward solution using JAX-WS 2.0 and JAXB 2.0.

The purpose of pointing out these limitations has less to do with criticiz-
ing JWS than with pointing out how difficult SOA can be. In the last chapter
of this book, I cover the SOA-J Application Framework and outline a
WSDL-centric approach to building SOA components from Java that might
provide solutions to some of these limitations.

In the next four chapters, meanwhile, I look at the power of JWS and
show lots of examples of SOA problems that it can handle effectively.

195

C H A P T E R 5

The JAXB 2.0 Data Binding

This chapter describes how to use JAXB 2.0 for SOA. It is written for pro-
grammers and contains lots of details and code examples. JAXB 2.0 is critical
to SOA because it supports type mappings. A type mapping is a map from a
Java type (e.g., a class) to an XML Schema component (e.g., a complex type
definition). Serializers are used to implement type mappings. A serializer con-
verts an instance of a type mapping’s Java type into an instance of its XML
Schema component. A deserializer does the reverse.

The preceding chapter discusses the central importance of type mappings
for SOA. Section 4.5 of that chapter discussed that the ability to implement
type mappings—in other words, to do serialization—is critically important for
a Web Services Platform Architecture that supports SOA. Within JWS, the tool
for serialization is JAXB 2.0. This chapter teaches you how to use JAXB 2.0 to
do the kinds of serialization needed for SOA. At the end, it examines how JAXB
2.0 can be used for data transformations (as an alternative to XSLT).

5.1 Binding versus Mapping

Chapter 2, Section 2.4, introduced JAXB 2.0 and briefly described the dif-
ference between binding and mapping. Before diving into the details of
programming with JAXB 2.0, it is useful to look a little closer at that issue
and emphasize that JAXB 2.0 is really more of a binding tool than a map-
ping tool. This has implications as to its usefulness for SOA. Figure 5–1
illustrates the difference between binding and mapping.

The top half of the figure illustrates the binding process. A binding tool
converts Java types to XML types according to a standard mapping. That is,
it implements a standard way of converting Java to XML (and vice versa).
Most binding tools, like JAXB, map Java instances to XML documents, and
map Java applications (e.g., class definitions) to XML Schema definitions. In
this manner, a binding tool typically enables you to implement type map-
pings in two ways:

196 The JAXB 2.0 Data Binding

■ Start from an existing Java application and use a schema generator to
create a machine-generated XML schema (shaded gray in the top
right corner of Figure 5–1).

■ Start from an existing XML schema and use a schema compiler to
create a machine-generated Java application (shaded gray in the
middle left of Figure 5–1).

When you work with a binding tool, the type mappings you work with map
between existing Java and generated XML schema definitions, or between
existing XML schema definitions and generated Java program elements. In
either case, at runtime, you will be working with machine-generated artifacts
(either Java or XML schema). The type mappings you can use always include
either machine-generated Java or machine-generated XML schema.

On the other hand, when you work with a mapping tool, the type mappings
you work with are between existing Java and existing XML schema definitions.
At runtime, you will not be working with any machine-generated artifacts.

The bottom half of Figure 5–1 illustrates the Java/XML mapping process.
When working with a Java/XML mapping tool, you need to define the map-
pings between the XML and the Java. At runtime, the mapping tool uses your
mapping definitions to serialize Java to XML or deserialize XML to Java.

JAXB 2.0 is primarily a binding tool. When starting from Java, a JAXB
user writes Java code, and annotates it to map to a particular schema. Alter-
natively, when starting from XML, the JAXB user can begin with the
schema and generate a Java code template, which can be customized and
incorporated into an application. In either case, the annotations allow cus-
tomization of the standard JAXB binding, so there is quite a bit of flexibility
in terms of the schema to which you can map the Java code. In this respect,
the annotations provide a mapping from the Java code to the schema. So,
why isn’t JAXB a mapping tool? The reason why I define JAXB as a binding
tool, rather than a mapping tool, is twofold:

■ The mappings that can be defined using the annotations are varia-
tions on the standard binding. So, while there is flexibility, there are
lots of mappings that cannot be supported without resorting to cus-
tom coding using the XmlAdapter class (see Section 5.7).

■ The mapping—as defined by the annotations—is static. You can’t
implement a different mapping without changing the annotations and
recompiling the Java. In a true mapping tool, the mappings are defined
separately from the schema and the Java. So, at runtime, you can
change the mappings. True mapping tools can also support multiple

5.1 Binding versus Mapping 197

mappings at runtime. This is impossible with JAXB because a Java
class can have only one set of annotations.1

Figure 5–1 Java/XML binding versus Java/XML mapping.

1. If Java were to support external annotation files—in other words, a format for placing anno-
tations outside the Java class files—JAXB could be used more like a true mapping tool. This idea
was discussed by the JAXB Expert Group, but was deemed a broader issue related to annotations
in general, rather than a capability to be provided only within the context of JAXB 2.0.

Existing Java Application

Java Program Elements

Packages
Fields/Properties

Classes
Methods
Enums

Generated XML Schema

XML Schema Definitions

Namespaces
Complex Types
Simple Types

Attributes
Elements

Schema
Generator

Generated Java Application

Java Program Elements

Packages
Fields/Properties

Classes
Methods
Enums

Existing XML Schema

XML Schema Definitions

Namespaces
Complex Types
Simple Types

Attributes
Elements

Schema
Compiler

Existing XML Schema

XML Schema Definitions

Namespaces
Complex Types
Simple Types

Attributes
Elements

Existing Java Application

Java Program Elements

Packages
Fields/Properties

Classes
Methods
Enums

Mapping

Binding vs. Mapping

198 The JAXB 2.0 Data Binding

One example of a mapping tool is Castor [CASTOR]. Actually, Castor
can do both binding and mapping. Castor provides external mapping files
rather than annotations to define the relationships between Java and XML
types. Another example of a mapping tool (an experimental one) is the
Adaptive Serializer Framework (ASF) included in SOA-J and discussed in
Chapter 11.

Many programmers prefer binding tools to mapping tools. Binding tools
are easy to work with because you don’t have to define any mappings if you
don’t want to. You can use the schema compiler (or generator) to do the
mapping for you. It looks at the existing schema (or Java class) and produces
a machine-generated class (or schema) that it maps to. As I mentioned ear-
lier, JAXB 2.0 defines a standard mapping from XML Schema to Java (and
vice versa) that relieves programmers of the tedious work related to defin-
ing their own mappings. This standard mapping is discussed in Section 5.2.

So, when working with JAXB 2.0, you are limited to the type mappings
that can be produced by the schema generator or schema compiler—in
other words, the standard JAXB 2.0 Java/XML mapping and the customiza-
tions that can be expressed using the JAXB 2.0 annotations (with the
schema generator) or the JAXB 2.0 binding language (with the schema
compiler). And, as I showed in Chapter 4, Sections 4.5 and 4.6, there are
limitations to the type mappings that can be implemented in this manner.

So, where does that leave us? In the first paragraph of this chapter, I
reiterated the message from Chapter 4—that type mappings are centrally
important to SOA. Now, I have just explained that JAXB 2.0 is a binding
tool with limitations on the type mappings it can support. Does this mean
that the JWS platform is not well suited for SOA?

No, it means that we need some techniques at our disposal to deal with
those JAXB limitations. As discussed in Chapter 1, Section 1.1, it is impor-
tant to remember that JWS is a toolset and JAXB 2.0 is the data binding tool
included in that toolset. To implement SOA requires additional coding
techniques and best practices layered on top of the JWS APIs. This means
that in some situations, developers need to create their own Java/XML map-
ping framework on top of the Java/XML binding tool provided by JAXB 2.0.
The good news is that JAXB 2.0 is an excellent binding tool and provides a
good foundation for implementing type mappings.

In this chapter, I show you how type mappings can be implemented
using JAXB 2.0 in an application-specific manner. That is, I illustrate tech-
niques that can be used to implement the specific type mappings you need
for a specific application.

The next section of this chapter provides an overview of the standard
JAXB 2.0 Java/XML binding. You need to understand how this baseline

5.2 An Overview of the Standard JAXB 2.0 Java/XML Binding 199

binding works to effectively use JAXB 2.0. After that introduction, the
remaining sections of this chapter look at the following four application-
specific techniques for implementing type mappings with JAXB 2.0:

■ Use custom Java code to map from an existing Java object to a JAXB
2.0 generated Java object, and then use JAXB 2.0 marshalling to cre-
ate the XML instance.

■ Use JAXB 2.0 annotations to influence the schema generator so that
it produces a generated schema that matches the existing target
schema.

■ Use the JAXB 2.0 binding language to influence the schema com-
piler so that it produces generated Java classes that match the exist-
ing application.

■ Use the JAXB 2.0 XmlAdapter class to implement custom marshaling
from an existing Java class to an existing XML schema.

The last section in the chapter illustrates a related use of JAXB 2.0—
implementing data transformations. In Chapter 3, Section 3.4, I showed
how XSLT can be used for data transformation in an SOA context. In the
last section of this chapter, I illustrate how such data transformations can be
accomplished with JAXB 2.0 instead.

5.2 An Overview of the Standard JAXB 2.0 Java/XML
Binding

Before taking you through the JAXB 2.0 code examples in this chapter, I
provide a quick overview of the standard JAXB 2.0 Java/XML binding.
This should be enough to give you the basic grounding you need to get
started. For all the gory details, you should read the JAXB 2.0 specifica-
tion [JSR-222].

Example 5–1 shows a schema for a simplified purchase order. This is
the example that is used to illustrate the standard binding.

Example 5–1 The simpleOrder Schema

 4 <schema targetNamespace="http://www.example.com/oms"
 5 elementFormDefault="qualified" xmlns="http://www.w3.org/2001/XMLSchema"
 6 xmlns:oms="http://www.example.com/oms">
 7 <element name="simpleOrder">

200 The JAXB 2.0 Data Binding

 8 <complexType>
 9 <sequence>
10 <element name="billTo">
11 <complexType>
12 <sequence>
13 <element name="name" type="string"/>
14 <element name="street" type="string"/>
15 <element name="city" type="string"/>
16 <element name="state" type="string"/>
17 <element name="zip" type="string"/>
18 <element name="phone" type="string"/>
19 </sequence>
20 </complexType>
21 </element>
22 <element name="items">
23 <complexType>
24 <sequence>
25 <element name="item" type="oms:ItemType" maxOccurs="unbounded"/>
26 </sequence>
27 </complexType>
28 </element>
29 </sequence>
30 </complexType>
31 </element>
32 <complexType name="ItemType">
33 <sequence>
34 <element name="quantity" type="positiveInteger"/>
35 <element name="price" type="double"/>
36 </sequence>
37 <attribute name="productName" use="required" type="string"/>
38 </complexType>
39 </schema>

book-code/chap05/customjava/etc/simpleorder.xsd

Notice that the schema has a single global element named simpleOrder.
This element defines an anonymous purchase order type that is simply a
sequence of two elements: billTo and items. The billTo element repre-
sents the billing address, and defines an anonymous type—an address type.
The items element represents the list of items being purchased. The ele-
ments of the list are defined inside the items element’s anonymous type—by
the element named item. This element has a named type—ItemType.

5.2 An Overview of the Standard JAXB 2.0 Java/XML Binding 201

Toward the bottom of Example 5–1, you see the definition for Item-
Type. It contains two elements—quantity (an xs:positiveInteger) and
price (an xs:double). It also contains an attribute—productName (an
xs:string).

The standard JAXB 2.0 binding for this schema is illustrated in Figure 5–
2. As you can see, the standard binding defines two top-level classes from this
SimpleOrder schema—SimpleOrder and ItemType. The class SimpleOrder
also has two inner classes—SimpleOrder.BillTo and SimpleOrder.Items.

The numbered arrows in Figure 5–2 illustrate some of the important
parts of the standard JAXB 2.0 binding. Here, I provide an overview of the
standard binding by describing the binding concept called out by each arrow:

1. The namespace http://www.example.com/oms gets mapped to
the Java package com.example.oms. If you want a different pack-
age mapping, you can use the jaxb:package declaration or the
@XmlSchema.namespace annotation element.

2. The anonymous complex type defined by the element simpleOrder
gets mapped to the top-level class (i.e., not an inner class), Simple-
Order. In the default mapping, anonymous complex types get
mapped to top-level classes only when they are defined by global ele-
ment definitions.

3. The element billTo gets mapped to the property named billTo in
the SimpleOrder class. By default, local element declarations are
bound to properties.

4. The access method for the billTo property is, by default, Java-
Beans style setter/getter methods. There is no standard JAXB bind-
ing language declaration for binding an element to a public or
protected Java field (i.e., without the getter/setters). However, you
can go the other way. That is, you can generate schema from Java
where an element definition is bound to a Java field by using the
@XmlElement annotation.

5. The anonymous complex type defined by the element billTo gets
mapped to the inner class SimpleOrder.BillTo. The standard bind-
ing for anonymous complex types (that are not defined by global ele-
ments) is to make them inner classes. You can force all classes to be
generated as top-level by using the <jaxb:globalBindings
localScoping="toplevel"/> global declaration.

6. The element item gets mapped to a List<ItemType> property named
item. This is the standard binding when the element definition has a
maxOccurs value greater than 1. The Java type parameter for List<T>
is equal to the Java type that is bound to the element definition’s type

202 The JAXB 2.0 Data Binding

Figure 5–2 The standard JAXB 2.0 binding of the SimpleOrder schema.

<schema targetNamespace=
 "http://www.example.com/oms"
 elementFormDefault="qualified"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:oms="http://www.example.com/oms">
 <element name="simpleOrder">
 <complexType>
 <sequence>
 <element name="billTo">
 <complexType>
 <sequence>
 <element name="name"
 type="string"/>
 <element name="street"
 type="string"/>
 <element name="city"
 type="string"/>
 <element name="state"
 type="string"/>
 <element name="zip"
 type="string"/>
 <element name="phone"
 type="string"/>
 </sequence>
 </complexType>
 </element>
 <element name="items">
 <complexType>
 <element name="item"
 type="oms:ItemType"
 maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
 <complexType name="ItemType">
 <sequence>
 <element name="quantity"
 type="positiveInteger"/>
 <element name="price" type="double"/>
 </sequence>
 <attribute name="productName"
 use="required" type="string"/>
 </complexType>
</schema>

package com.example.oms;

public class SimpleOrder {

 protected BillTo billTo;
 protected Items items;

 public BillTo getBillTo() {
 return billTo;
 }

 public void
 setBillTo(BillTo value) {
 this.billTo = value;
 }

 ...

SimpleOrder

public static class BillTo {

 protected String name;
 protected String street;
 ...

 public String getStreet() {
 return street;
 }

 ...

SimpleOrder.BillTo

public static class Items {

 protected List<ItemType> item;

 public List<ItemType> getItem() {
 if (item == null) {
 item = new
 ArrayList<ItemType>();
 }
 return this.item;
 }

 ...

SimpleOrder.Items

public class ItemType {

 protected BigInteger quantity;
 protected double price;
 protected String productName;

 public BigInteger getQuantity() {
 return quantity;
 }

 ...

ItemType

4

6

98
7

5

1

2

3

5.2 An Overview of the Standard JAXB 2.0 Java/XML Binding 203

attribute (or anonymous type); in this case, T = ItemType. The collec-
tion type (the default is java.util.List) can be customized using the
binding language collectionType attribute at either the global or the
property level.

7. The named complex type ItemType gets mapped to the top-level
Java class ItemType. The standard mapping for named complexType
definitions is to a top-level Java value class.

8. The default mapping for xs:positiveInteger (and xs:integer as
well) is to java.math.BigInteger. This mapping can be customized
using the binding language jaxb:javaType declaration or the
@XmlElement.type annotation.

9. The default mapping for attribute declarations, like element declara-
tions, is to properties with JavaBeans style setter/getter methods.
Hence, the attribute productName gets mapped in the same manner
as the element’s children of ItemType.

A fragment of the JAXB-generated code for the SimpleOrder class is
shown in Example 5–2. In the example, you can see the annotations that are
introduced into the class to facilitate the run-time marshalling.

Example 5–2 The JAXB Value Class, SimpleOrder

 88 @XmlAccessorType(AccessType.FIELD)
 89 @XmlType(name = "", propOrder = {
 90 "billTo",
 91 "items"
 92 })
 93 @XmlRootElement(name = "simpleOrder")
 94 public class SimpleOrder {
 95
 96 @XmlElement(namespace = "http://www.example.com/oms")
 97 protected BillTo billTo;
 98 @XmlElement(namespace = "http://www.example.com/oms")
 99 protected Items items;

book-code/chap05/customjava/etc/schemacompiler_withcomments

/SimpleOrder.java

As discussed in Chapter 2, the annotations are the key to run-time mar-
shalling and unmarshalling. Annotations are also how JAXB 2.0 achieves

204 The JAXB 2.0 Data Binding

Table 5–1 Descriptions of the Java Annotations Appearing in Example 5–2

Annotation Purpose Example

@XmlAccessorType Tells the JAXB 2.0
runtime what parts
(i.e., fields, properties,
or both) of the Java
class get mapped by
default

In Example 5–2, the value
AccessType.FIELD indicates that fields
not explicitly annotated otherwise must be
mapped, and properties (i.e., getter/setter
pairs), unless explicitly annotated, must
not be.

@XmlType Tells the JAXB 2.0
runtime which
schema type to map a
class to and specifies
some aspects of the
mapping

The name attribute provides the name of
the complex type definition. In Example
5–2, name = "" indicates that this is an
anonymous type—in other words, it has
no defined name (the global element
name is defined elsewhere—see @Xml-
RootElement). The propOrder attribute
defines the order of the properties and
fields. This ordering lines up with the
ordering specified in the schema
<sequence> definition from which this
annotated class was generated.

@XmlRootElement Tells the JAXB 2.0
runtime that this class
maps to a global
element definition

The name attribute provides the name of
the global element. In Example 5–2, this
name is simpleOrder. The target
namespace, since it is not specified in this
example, comes from the default package
mapping.

@XmlElement Tells the JAXB 2.0
runtime that a
particular property
or field maps to a
schema element
definition

In Example 5–2, it is used to map the
billTo field to oms:billTo and the
items field to oms:items. The
namespace attribute, technically not
needed in this case since the default is the
package namespace, defines the target
element’s namespace. Technically, the
@XmlElement is not needed to map theses
fields either, because the default mapping
has been set to AccessType.FIELD by
the @XmlAccessorType annotation. For
clarity, the schema generator sometimes
includes annotations that are not strictly
necessary.

5.2 An Overview of the Standard JAXB 2.0 Java/XML Binding 205

portability across implementations. With JAXB 2.0, you can use the schema
compiler from one implementation and use the generated classes on
another implementation at runtime. This works because the run-time JAXB
2.0 engine does all the marshalling and unmarshalling based on introspec-
tion of the annotated classes. The annotations—together with the JAXB 2.0
standard mapping—tell the run-time engine how to map Java program ele-
ments to XML schema definition instances. Table 5–1 describes the run-
time interpretation of the annotations from SimpleOrder that are in Exam-
ple 5–2. I don’t describe all the annotations here. For a complete descrip-
tion, see [JSR-222] and its associated Javadoc.

Example 5–3 shows a snippet of the generated code for Simple-
Order.BillTo. This is an inner class. As discussed previously (see Figure 5–2),
element definitions with anonymous complex types get mapped, by default,
to inner classes.

Example 5–3 The JAXB Value Class, SimpleOrder.BillTo

176 @XmlAccessorType(AccessType.FIELD)
177 @XmlType(name = "", propOrder = {
178 "name"
179 "street",
180 "city",
181 "state",
182 "zip",
183 "phone"
184 })
185 public static class BillTo {
186
187 @XmlElement(namespace = "http://www.example.com/oms", required = true)
188 protected String name;
189 @XmlElement(namespace = "http://www.example.com/oms")
190 protected String street;
191 @XmlElement(namespace = "http://www.example.com/oms")
192 protected String city;
193 @XmlElement(namespace = "http://www.example.com/oms")
194 protected String state;
195 @XmlElement(namespace = "http://www.example.com/oms")
196 protected String zip;
197 @XmlElement(namespace = "http://www.example.com/oms")
198 protected String phone;

book-code/chap05/customjava/etc/schemacompiler_withcomments/SimpleOrder.java

206 The JAXB 2.0 Data Binding

Again, you can see, as in Example 5–2, that the @XmlElement.propOrder
annotation element specifies the order in which the Java class properties map
to the <sequence> definition of elements in the anonymous complex type.
This is needed, because a Java class has no concept of ordering on its fields
and properties (i.e., reflection provides no ordering information).

Example 5–4 shows the default mapping for the anonymous complex
type defined by the oms:item element. This class, SimpleOrder.Items, is
interesting because it illustrates the default mapping for elements that may
occur multiple times (i.e., maxOccurs > 1). As you can see, the element
oms:item, defined inside the anonymous complex type for the element
oms:items, has been mapped to a property, item, with type List<Item-
Type>. The default mapping for elements that occur multiple times is
java.util.List<T>, where T is the default class mapped to the ele-
ments’ type.

Example 5–4 The JAXB Value Class, SimpleOrder.Items

 344 @XmlAccessorType(AccessType.FIELD)
 345 @XmlType(name = "", propOrder = {
 346 "item"
 347 })
 348 public static class Items {
 349
 350 @XmlElement(namespace = "http://www.example.com/oms")
 351 protected List<ItemType> item;
 352
 353 /**
 354 * Gets the value of the item property.
 355 *
 356 * <p>
 357 * This accessor method returns a reference to the live list,
 358 * not a snapshot. Therefore, any modification you make to the
 359 * returned list will be present inside the JAXB object. This is
 360 * why there is not a <CODE>set</CODE> method for the item property.
 361 *
 362 * <p>
 363 * For example, to add a new item, do as follows:
 364 * <pre>
 365 * getItem().add(newItem);
 366 * </pre>
 367 *
 368 *

5.2 An Overview of the Standard JAXB 2.0 Java/XML Binding 207

 369 * <p>
 370 * Objects of the following type(s) are allowed in the list
 371 * {@link ItemType }
 372 *
 373 *
 374 */
 375 public List<ItemType> getItem() {
 376 if (item == null) {
 377 item = new ArrayList<ItemType>();
 378 }
 379 return this.item;
 380 }
 381
 382 }

book-code/chap05/customjava/etc/schemacompiler_withcomments/SimpleOrder.java

As you notice from looking at the code in Example 5–4, there is no set-
ter for the item property. The getter returns a live list, not a copy. So, to
update the item property, you need to get the live list and add, update, or
delete individual elements. If you want to be able to set the entire collec-
tion, with JAXB 2.0, you will need to use the binding language to specify an
alternative collection type. One way to do that is with a <property> declara-
tion, such as:

<sequence>
 <annotation><appinfo>
 <jaxb:property collectionType="indexed"/>
 </appinfo></annotation>
 <element name="item" type="oms:ItemType" maxOccurs="unbounded"/>
</sequence>

Setting collectionType="indexed" in that manner will map the item
element to an array property (i.e., ItemType[]), rather than a list. You will
get a setter method such as:

public void setItem(ItemType[] values) { ... }

Another difference when using collectionType="indexed" is that the
array returned from the getter is not “live”—it is a copy. See Section 5.5 of
[JSR-222] for more details about mapping to collections.

208 The JAXB 2.0 Data Binding

Example 5–5 illustrates the default mapping for a named complex type
(i.e., not anonymous). Named complex types do not get mapped to inner
classes as their anonymous counterparts do. So, the type oms:ItemType gets
mapped to samples.ItemType.

Example 5–5 The JAXB Value Class, ItemType

59 @XmlAccessorType(AccessType.FIELD)
60 @XmlType(name = "ItemType", propOrder = {
61 "quantity",
62 "price"
63 })
64 public class ItemType {
65
66 @XmlElement(namespace = "http://www.example.com/oms")
67 protected BigInteger quantity;
68 @XmlElement(namespace = "http://www.example.com/oms", type = Double.class)
69 protected double price;
70 @XmlAttribute(required = true)
71 protected String productName;

book-code/chap05/customjava/etc/schemacompiler_withcomments/ItemType.java

One thing to notice in Example 5–5 is the @XmlAttribute annotation.
This annotation is very similar to @XmlElement, except that it maps its asso-
ciated property (i.e., productName) to an attribute rather than an element.
The "required = true" annotation element indicates that the XML defini-
tion should have the "required" attribute—indicating that the attribute is
required for instances of the XML schema.

Another thing to notice is that the quantity property (with type
xs:positiveInteger) is mapped to a property with class java.math.Big-
Integer.2 This means that you could set the JAXB value of this property to
a negative number, and marshal it out to XML. In such a scenario, no
error is generated because the marshalling process does not, by default,
validate its output against the source schema. JAXB 2.0 has delegated
such validation to the JAXP 1.3 API. You can activate such validation by
using the setSchema(javax.xml.validation.Schema schema) method on

2. See Section 6.2.2 of [JSR-222] for details on the default mappings for all atomic
datatypes.

5.3 Implementing Type Mappings with JAXB 2.0 209

either a Marshaller or Unmarshaller instance. For more details on valida-
tion, see Section 3.5.2 of [JSR-222].

That wraps up this introduction to JAXB 2.0’s standard mapping. The
simple example presented here shows you the basics. Of course, the specifi-
cation for the entire mapping is much more complex. [JSR-222] is more
than 350 pages long and a great deal of that is devoted to describing the
standard mapping and how to customize it using either annotations or bind-
ing language declarations. However, what you have seen in this section is
enough to get started working with JAXB 2.0.

In the next section, I look at how to work with the standard mapping,
without any customizations, to implement a type mapping.

5.3 Implementing Type Mappings with JAXB 2.0

This section shows how you can combine custom Java code with the JAXB
standard mapping to implement any type mapping you desire. Many pro-
grammers like this approach because it does not require any understanding
of the JAXB annotations. You simply work with the Java that gets generated
and can ignore the annotations.

In the preceding section, I illustrated the default type mapping pro-
vided by JAXB 2.0. This is the notation I use to represent such a type
mapping:

< {http://www.example.com/oms}simpleOrder,
 com.example.oms.SimpleOrder >

This notation has the form < XML-Type, Java-Type > where the XML-
Type is the qualified name of an XML Schema-defined element or type.
Likewise, Java-Type is the name of the Java class.

In this section, I illustrate how to implement the following type mapping:

< oms:simpleOrder, samples.MySimpleOrder >

In this case, samples.MySimpleOrder is not a JAXB-generated class. It is
an existing Java class that I would like to map to oms:simpleOrder. Actually,
MySimpleOrder is a representation, not of the element oms:simpleOrder, but
of its anonymous complex type. So, with this custom type mapping, we are
going to lose the element information (e.g., tag name) that is captured in
JAXB by the JAXBElement representation. I implement this mapping by

210 The JAXB 2.0 Data Binding

letting JAXB create an instance of com.example.oms.SimpleOrder and then
mapping SimpleOrder to MySimpleOrder. Example 5–6 shows the Java class
MySimpleOrder.

Example 5–6 The Existing Java Class, MySimpleOrder

24 public class MySimpleOrder {
25
26 private MyAddress billTo;
27 private List<MyItem> itemList;
28
29 public MySimpleOrder(String name, String street, String city, String state,
30 String zip, String phone) {
31 this(new MyAddress(name, street, city, state, zip, phone));
32 }
33
34 public MySimpleOrder(MyAddress addr) {
35 this.billTo = addr;
36 itemList = new ArrayList<MyItem>();
37 }
38
39 public MyAddress getBillTo() {
40 return billTo;
41 }
42
43 public List<MyItem> getItemList() {
44 return itemList;
45 }
46
47 }

book-code/chap05/customjava/modules/serializer/src/java/samples
/MySimpleOrder.java

Two differences you can notice right away between this class and its
JAXB-generated counterpart are as follows:

■ The billTo variable, representing the billing address, has the Java
type MyAddress rather than the JAXB-generated type com.exam-
ple.oms.BillTo.

5.3 Implementing Type Mappings with JAXB 2.0 211

■ The items being purchased are represented by an instance of
List<MyItem> rather than the JAXB-generated type, Simple-
Order.Items.

So, to map samples.MySimpleOrder, to an instance of oms:simpleOr-
der, you need to map the billTo property (with Java type samples.MyAd-
dress) to an oms:billTo element, and its itemList property (with Java
type List<samples.MyItem>) to an oms:items element. Then, you com-
bine those elements—oms:billTo and oms:items—to create an instance of
oms:simpleOrder.

To understand the mapping code that implements this procedure, take
a quick look at the samples.MyAddress and samples.MyItem classes. Exam-
ple 5–7 shows the MyAddress class.

Example 5–7 The Existing Java Class, MyAddress

 21 public class MyAddress {
 22
 23 protected String name;
 24 protected String street;
 25 protected String city;
 26 protected String state;
 27 protected String zip;
 28 protected String phone;
 29
 30 public MyAddress(String name, String street, String city, String state,
 31 String zip, String phone) {
 32
 33 this.name = name;
 34 this.street = street;
 35 this.city = city;
 36 this.state = state;
 37 this.zip = zip;
 38 this.phone = phone;
 39
 40 }
 41
 42 }

book-code/chap05/customjava/modules/serializer/src/java/samples/MyAddress.java

212 The JAXB 2.0 Data Binding

As you can see, the MyAddress class is not a JavaBean, as it does not
have setter/getter methods. It is simply a container for its constituent fields.
It is not hard to imagine what the mapping from the SimpleOrder.BillTo
class to MyAddress will look like. It will simply match up the corresponding
properties with the MyAddress fields.

Example 5–8 shows the samples.MyItem class. The major differences
between this class and the JAXB schema-generated class com.exam-
ple.oms.ItemType concern the property types.

Example 5–8 The Existing Java Class, samples.MyItem

 21 public class MyItem {
 22
 23 private int quantity;
 24 private float price;
 25 private String productName;
 26
 27 public MyItem(int quantity, float price, String productName)
 28 throws Exception {
 29 if (productName == null) {
 30 throw new Exception("productName cannot be null");
 31 }
 32 this.productName = productName;
 33 this.price = price;
 34 this.quantity = quantity;
 35 }
 36
 37 public float getPrice() {
 38 return price;
 39 }
 40
 41 public void setPrice(float price) {
 42 this.price = price;
 43 }
 44
 45 public String getProductName() {
 46 return productName;
 47 }
 48
 49 public void setProductName(String productName) {
 50 this.productName = productName;
 51 }
 52

5.3 Implementing Type Mappings with JAXB 2.0 213

 53 public int getQuantity() {
 54 return quantity;
 55 }
 56
 57 public void setQuantity(int quantity) {
 58 this.quantity = quantity;
 59 }
 60
 61 }

book-code/chap05/customjava/modules/serializer/src/java/samples/MyItem.java

MyItem.quantity has the primitive type int, whereas ItemType.quan-
tity is a java.math.BigInteger. Similarly, the property price has the primi-
tive type float here, but type double in the JAXB class. Lastly, the property
productName is a java.lang.String in both classes.

Example 5–9 shows the mapping code that takes an instance of sam-
ples.MySimpleOrder and returns it as an XML document that is an
instance of oms:simpleOrder. The XML document is returned as a
javax.xml.transform.Source.

This mapping code works by creating an instance of the JAXB-generated
class com.example.oms.SimpleOrder, populating it from the MySimpleOrder
class, and marshalling the JAXB instance to get the XML document.

Example 5–9 The Mapping Code

 67 public Source getXML(MySimpleOrder order) {
 68
 69 // create the JAXB SimpleOrder
 70 SimpleOrder jaxbSimpleOrder = new SimpleOrder();
 71 // map the addresses
 72 MyAddress myAddress = order.getBillTo();
 73 SimpleOrder.BillTo billTo = new SimpleOrder.BillTo();
 74 billTo.setName(myAddress.name);
 75 billTo.setCity(myAddress.city);
 76 billTo.setPhone(myAddress.phone);
 77 billTo.setState(myAddress.state);
 78 billTo.setStreet(myAddress.street);
 79 billTo.setZip(myAddress.zip);
 80 jaxbSimpleOrder.setBillTo(billTo);
 81 // map the items

214 The JAXB 2.0 Data Binding

82 jaxbSimpleOrder.setItems(new SimpleOrder.Items()); // needed to avoid NPE
 83 List<ItemType> jaxbItemList = jaxbSimpleOrder.getItems().getItem();
 84 for (MyItem myItem : order.getItemList()) {
 85 ItemType jaxbItem = new ItemType();
 86 // jaxbItem.setPrice((double) myItem.getPrice());
 87 jaxbItem.setPrice(Double.parseDouble(Float.toString(myItem.getPrice())));
 88 jaxbItem.setProductName(myItem.getProductName());
89 jaxbItem.setQuantity(BigInteger.valueOf((long) myItem.getQuantity()));
 90 jaxbItemList.add(jaxbItem);
 91 }
 92 try {
 93 JAXBContext jaxbContext = JAXBContext.newInstance("com.example.oms");
 94 Marshaller jaxbMarshaller = jaxbContext.createMarshaller();
 95 SchemaFactory sf =
 96 SchemaFactory.newInstance(XMLConstants.W3C_XML_SCHEMA_NS_URI);
 97 Schema schema = sf.newSchema(
 98 new URL("http://soabook.com/example/oms/simpleorder.xsd"));
 99 jaxbMarshaller.setSchema(schema);
100 ByteArrayOutputStream baos = new ByteArrayOutputStream();
101 jaxbMarshaller.marshal(jaxbSimpleOrder, baos);
102 return new StreamSource(new StringReader(baos.toString()));
103 } catch (Exception e) {
104 throw new RuntimeException(e);
105 }
106
107 }

book-code/chap05/customjava/modules/serializer/src/java/samples
/MySimpleOrderSerializerNonRecursive.java

The code shown in Example 5–9 starts by creating an instance of the
JAXB-generated class SimpleOrder.BillTo—jaxbSimpleOrder—from the
instance of the MyAddress obtained from order.getBillTo(). The properties
are set using the BillTo.setXXX methods. This part is straightforward enough.

Next, the oms:items property is set to an empty list using:

jaxbSimpleOrder.setItems(new SimpleOrder.Items());

This step is needed because oms:items does not get mapped to a
List<T> by JAXB 2.0 and hence, without this initialization, jaxbSimple-
Order.getItems() would return a null. Following this initialization, a
for loop is used to populate the members of the JAXB-generated

5.3 Implementing Type Mappings with JAXB 2.0 215

List<ItemType> from the members of order.getItemList()—which
has type List<MyItem>.

Again, the setters of the form ItemType.setXXX are used. One interesting
part of this code deals with how the property types are converted. The line:

jaxbItem.setPrice(Double.parseDouble(
Float.toString(myItem.getPrice())));

converts the price property from float (in MyItem) to double (in ItemType).
This technique—converting through String instances—is used to avoid the
underflow/overflow issues that can occur when changes in precision occur.

If you instead use the more straightforward conversion (as shown in the
commented-out line):

jaxbItem.setPrice((double) myItem.getPrice());

you end up with XML that looks like this:

<price>2.990000009536743</price>

instead of this:

<price>2.99</price>

Once the SimpleType instance—jaxbSimpleOrder—has been com-
pletely populated, it is marshaled out to XML. For this process, the JAXB-
Context is created as follows:

JAXBContext jaxbContext = JAXBContext.newInstance("com.example.oms");

The String—com.example.oms—that gets passed to the factory method
newInstance is the package name of the JAXB-generated classes.3 From the
JAXBContext, a Marshaller instance is created. Next, validation is activated
by setting the schema on the Marshaller instance using these lines:

Schema schema = sf.newSchema(
 new URL("http://soabook.com/example/oms/simpleorder.xsd"));
jaxbMarshaller.setSchema(schema);

3. For more details on the JAXBContext and Marshaller APIs, I suggest you consult the
JAXB Javadoc, which is very detailed.

216 The JAXB 2.0 Data Binding

If you take these lines out and run the example with some bad data
(e.g., set a quantity to a negative number), the marshalling will succeed and
give you XML that is invalid with respect to the original schema. However,
if you set the validation as I have done here, and try to marshal with a nega-
tive quantity, you get a SAXParseException as validation fails.

Lastly, jaxbSimpleOrder is marshaled into memory (using a ByteArray-
OutputStream) and returned as a StreamSource.

Example 5–10 shows the code I use for testing this mapping.

Example 5–10 Testing the Mapping Code

 46 MySimpleOrderSerializerNonRecursive serializer =
 47 new MySimpleOrderSerializerNonRecursive();
 48 MySimpleOrder myOrder = new MySimpleOrder(
 49 "John Doe",
 50 "125 Main Street",
 51 "Any Town", "NM", "95811",
 52 "(831) 874-1123");
 53 myOrder.getItemList().add(new MyItem(6, (float) 2.99, "Diet Coke"));
54 myOrder.getItemList().add(new MyItem(4, (float) 3.99, "Potato Chips"));
55 myOrder.getItemList().add(new MyItem(2, (float) 5.34, "Frozen Pizza"));

 56 Transformer xform = TransformerFactory.newInstance().newTransformer();
 57 xform.setOutputProperty(OutputKeys.INDENT, "yes");
 58 xform.transform(
 59 serializer.getXML(myOrder),
 60 new StreamResult(System.out));

book-code/chap05/customjava/modules/serializer/src/java/samples
/MySimpleOrderSerializerNonRecursive.java

As you can see, this code creates an instance of MySimpleOrder with
three items. A javax.xml.transform.Transformer is used to write the
XML source returned from the mapping method—getXML()—to Sys-
tem.out. You can run this code by following these steps:

1. Go to chap05/customjava.
2. To run the example enter mvn install.
3. The XML that is serialized from MySimpleOrder gets written to the

console.

As you were reading through the code in this section, you probably
noticed that in the process of mapping MySimpleOrder to oms:simpleOrder,

5.4 A Recursive Framework for Type Mappings 217

I had to write code that does a mapping of MyItem to oms:item. This code,
however, is embedded in the parent type mapping and cannot be reused
(other than by cut and paste). It would be nice if you had to write each type
mapping only once, and then could reuse it whenever it appears as part of
another type mapping.

The next section continues this discussion of implementing type mappings
using JAXB. However, it gets a little more sophisticated by introducing a recur-
sive pattern that can be used to make your type mapping code reusable.

5.4 A Recursive Framework for Type Mappings

In the preceding section, you may have noticed that to implement this
mapping:

< oms:simpleOrder, samples.MySimpleOrder >

you had to implement the following mappings implicitly:

< oms:billTo, samples.MyAddress >
< oms:item, samples.MyItem >

In this manner, you can see that it is natural to define type mappings (and
their implementations) recursively. For example, if you have an implementa-
tion of the submappings for samples.MyAddress and sample.MyItem, you can
create a mapping implementation for samples.MySimpleOrder simply by run-
ning the submappings and using the results to set the corresponding properties
on samples.MySimpleOrder.

In fact, all the Java/XML mapping (and binding) tools I am aware of use
recursion to define and implement mappings.

To understand the recursion in JAXB 2.0, consider the following simple
example, which marshals an instance of the Foo class:

package samples;

@XmlRootElement
Public class Foo {

 Bar1 p1
 Bar2 p2

}

218 The JAXB 2.0 Data Binding

JAXB recursively applies the standard mapping for class Bar1 to the
instance p1, and the standard mapping for class Bar2 to the instance p2.
JAXB then combines the results to create something like this:

<foo xmlns="http://samples">
 < result of marshalling p1 />
 < result of marshalling p2 ... />
</foo>

In this book, I refer to the code that implements a mapping from Java to
XML as a serializer (and the code that does the reverse is a deserializer). I
use this terminology to distinguish the general case from the specific JAXB
2.0 case where these operations are called marshalling and unmarshalling.

Figure 5–3 illustrates how serializers can be constructed recursively.
The figure shows a serializer that maps a class Foo to a complex type named
X. This serializer implements the type mapping <X, Foo>. Class Foo is com-
posed of two properties: P1 and P2. As defined by the type mapping <Foo,
X>, the property P1 (which has class Bar1) gets mapped to an element E1
with type Y. Likewise, the property P2 (which has class Bar2) gets mapped
to an attribute A2 with type Z. So, the serializer for <X, Foo> can be imple-
mented in terms of the serializers for its property type mappings <Y, Bar1>
and <Z, Bar2>.

In Figure 5–3, step 3 inside the box labeled "Serializer for <X,
Foo>" describes how the element E1 (of type Y) and attribute A2 (of type Z)
are assembled into the instance of complex type X. This is where the JAXB
schema-generated classes get used.

The JAXB schema-generated class for complex type X (call it XGen) has
setters/getters for the element E1 and attribute A2. So, at this point, you
need to set the element E1 using the appropriate setter from XGen and like-
wise for attribute A2. Then, the last step is to use JAXB to marshal the
instance of XGen out to an XML representation of the complex type X.

The recursive serialization process just described, and illustrated in
Figure 5–3, is clearer and easier to understand if you look at a code exam-
ple. So, in what follows, I show you a refactored version of the serializer
for SimpleOrder illustrated in Example 5–9. As you walk through this
example, you will see how to use JAXB to build a serializer for SimpleOr-
der from the serializers for its properties.

To get started, we need to define an interface for a recursive serializer.
Example 5–11 shows the simple interface that is used here. As you can see,
it has a single method—getXML—that takes an Object and returns its serial-
ized form as an instance of javax.xml.transform.Source.

5.4 A Recursive Framework for Type Mappings 219

Example 5–11 The Serializer Interface

 21 import javax.xml.transform.Source;
 22
 23 public interface Serializer {
 24
 25 public Source getXML(Object o);
 26
 27 }

book-code/chap05/customjava/modules/serializer/src/java/samples/Serializer.java

Figure 5–3 Custom mappings can be implemented recursively.

Class Foo

Property P1
Class Bar1

Property P2
Class Bar2

<complexType name="X">
 ...
 <sequence>
 <element name= "E1"
 type="ns:Y"/>
 ...
 </sequence>
 ...
 <attribute name="A2"
 type="ns:Z"/>
 ...
</complexType>

Serializer for <X, Foo>

 (1) Serialize P1 to an element E1
 of type ns:Y using Serializer for
 <Y, Bar1>

 (2) Serialize P2 to an attribute A2
 of type ns:Z using Serializer for
 <Z, Bar2>

 (3) Use JAXB to put together
 element E1 and attribute A2
 into a JAXB representation of
 Foo and then marshal
 out to XML.

Class Bar1

...

Serializer for <Y, Bar1>

...

<complexType name="Y">

 ...

</complexType>

Recursive
serialization

Recursive
serialization

220 The JAXB 2.0 Data Binding

Example 5–12 shows the mapping code from Example 5–9 refactored
to use the Serializer interface and serializers that have been defined for
its properties: billTo (an instance of MyAddress) and itemList (an instance
of List<MyItem>). One of the first things you notice when looking at this
example is that it does not seem to include any mapping code. That is
because the mapping code has mostly been refactored to the sub-serializ-
ers: MyAddressSerializer and MyItemSerializer. What is going on in the
following code is the assembly of the results from those subserializers into
an instance of the JAXB-generated class, SimpleOrder.

Example 5–12 The Serializer for SimpleOrder—Refactored

 96 private SimpleOrder transformMySimpleOrderToJAXB(MySimpleOrder order)
 97 throws JAXBException {
 98
 99 SimpleOrder jaxbSimpleOrder = new SimpleOrder();
 100 // map the addresses
 101 MyAddress myAddress = order.getBillTo();
 102 Serializer myAddressSer = new MyAddressSerializer();
 103 JAXBElement<SimpleOrder.BillTo> jaxbBillToElt =
 104 (JAXBElement<SimpleOrder.BillTo>) jaxbUnmarshaller.unmarshal(
 105 myAddressSer.getXML(myAddress), SimpleOrder.BillTo.class);
 106 jaxbSimpleOrder.setBillTo(jaxbBillToElt.getValue());
 107 // map the items
 108 Serializer myItemSer = new MyItemSerializer();
109 jaxbSimpleOrder.setItems(new SimpleOrder.Items()); // needed to avoid NPE
 110 List<ItemType> jaxbItemList = jaxbSimpleOrder.getItems().getItem();
 111 for (MyItem myItem : order.getItemList()) {
 112 JAXBElement<ItemType> jaxbItemTypeElt =
 113 (JAXBElement<ItemType>) jaxbUnmarshaller.unmarshal(
 114 myItemSer.getXML(myItem), ItemType.class);
 115 jaxbItemList.add(jaxbItemTypeElt.getValue());
 116 }
 117 return jaxbSimpleOrder;
 118
 119 }

book-code/chap05/customjava/modules/serializer/src/java/samples
/MySimpleOrderSerializer.java

5.4 A Recursive Framework for Type Mappings 221

As you can see, the preceding code creates an instance of MyAddress-
Serialzier—a serializer that implements the type mapping <oms:billTo,
MyAddress>. This serializer gets invoked—myAddressSer.getXml(my-
Address)—and returns a Source instance representation of oms:billTo that
is passed through the JAXB unmarshaller to produce a JAXBElement<Simple-
Order.BillTo>. The value of this JAXBElement is then passed to the JAXB set-
ter method, SimpleOrder.setBillTo().

The code for serializing the items is similar, with the added twist of the
List<ItemType> processing. First, the SimpleOrder instance gets its items
properly initialized to an empty list using:

jaxbSimpleOrder.setItems(new SimpleOrder.Items())

Then, the MyItemSerializer class is used to serialize each instance of
MyItem into a Source representation of oms:ItemType. Again, each
oms:ItemType instance is passed through the JAXB unmarshaller to pro-
duce an instance of JAXBElement<ItemType>, and the value of that JAXB-
Element (i.e., an instance of ItemType) is added to the JAXB list—
jaxbSimpleOrder.getItems().

Once this processing is completed, an instance of the JAXB schema-
generated class SimpleOrder has been created from the original instance of
MySimpleOrder. An XML form (i.e., oms:simpleOrder) can then be created
by using the JAXB unmarshaller.

To understand this better, let’s follow the recursion down a level and
look at the implementation of the MyAddressSerializer class that imple-
ments the type mapping <oms:billTo, MyAddress>. The code for that seri-
alizer is shown in Example 5–13.

The mapping code is contained in the private method transformMy-
AddressToBillTo. This code has been extracted from Example 5–9. It
simply transforms an instance of MyAddress into an instance of the JAXB-
generated class, SimpleOrder.BillTo.

Example 5–13 MyAddressSerializer: The Serializer for the MyAddress Class

 39 public MyAddressSerializer() throws JAXBException {
 40
 41 jc = JAXBContext.newInstance("com.example.oms");
 42 m = jc.createMarshaller();
 43
 44 }
 45
 46 public Source getXML(Object o) {

222 The JAXB 2.0 Data Binding

 47
 48 SimpleOrder.BillTo jaxbBillTo;
 49 try {
 50 jaxbBillTo = transformMyAddressToBillTo((MyAddress) o);
 51 JAXBElement<SimpleOrder.BillTo> jaxbBillToElt =
 52 new JAXBElement<SimpleOrder.BillTo>(
 53 new QName("http://www.example.com/oms", "billTo"),
 54 SimpleOrder.BillTo.class,
 55 SimpleOrder.class,
 56 jaxbBillTo);
 57 ByteArrayOutputStream ba = new ByteArrayOutputStream();
 58 m.marshal(jaxbBillToElt, ba);
 59 return new StreamSource(new StringReader(ba.toString()));
 60 } catch (JAXBException e) {
 61 throw new RuntimeException(e);
 62 }
 63
 64 }
 65
 66 private SimpleOrder.BillTo transformMyAddressToBillTo(MyAddress myAddr)
 67 throws JAXBException {
 68
 69 SimpleOrder.BillTo jaxbBillTo = new SimpleOrder.BillTo();
 70 jaxbBillTo.setName(myAddr.name);
 71 jaxbBillTo.setCity(myAddr.city);
 72 jaxbBillTo.setPhone(myAddr.phone);
 73 jaxbBillTo.setState(myAddr.state);
 74 jaxbBillTo.setStreet(myAddr.street);
 75 jaxbBillTo.setZip(myAddr.zip);
 76 return jaxbBillTo;
 77
 78 }

book-code/chap05/customjava/modules/serializer/src/java/samples/
MyAddressSerializer.java

The Serializer interface method—getXML—returns this Simple-
Order.BillTo instance as an XML Source. This is done by using a JAXB
marshaller to marshal the SimpleOrder.BillTo into memory (i.e., as a
ByteArrayOutputStream) and then return it wrapped as a StreamSource.

Notice the use of JAXBElement—the JAXB 2.0 representation of an
XML element instance. JAXBElement is used to preserve element instance
information such as the tag name. So, for example, if you have:

5.4 A Recursive Framework for Type Mappings 223

JAXBElement<com.example.oms.SimpleOrder> someElement =

the value of some.Element.getName() is the QName {http://www.exam-
ple.com/oms}simpleOrder. To access the actual value of a JAXBElement rep-
resentation, you need to use the getValue() method. For example, the
following code accesses the street name of an instance of oms:simpleOrder:

JAXBElement<com.example.oms.SimpleOrder> someElement =
com.example.oms.SimpleOrder order = someElement.getValue();
String streetName = order.getBillTo().getStreet();

Lastly, I want to show you the Serializer implementation for MyItem
in Example 5–14. You will notice that it does not use JAXB! I put this here
to illustrate that this recursive serialization pattern works regardless of the
style of serialization. This approach lets you combine different serialization
styles—in this case, a JAXB-based serializer is used for MyAddress, and the
simple text processing approach illustrated here is used for MyItem.

Example 5–14 MyItemSerializer: The Serializer for the MyItem Class

26 public class MyItemSerializer implements Serializer {
27
28 public Source getXML(Object o) {
29
30 MyItem myItem = (MyItem) o;
31 String xml =
32 "<?xml version=\"1.0\" encoding=\"UTF-8\"?>" +
33 "<item xmlns=\"http://www.example.com/oms\" productName=\"" +
34 myItem.getProductName() + "\">" +
35 "<quantity>" + myItem.getQuantity() + "</quantity>" +
36 "<price>" + myItem.getPrice() + "</price>" +
37 "</item>";
38 return new StreamSource(new StringReader(xml));
39
40 }
41
42 }

book-code/chap05/customjava/modules/serializer/src/java/samples
/MyItemSerializer.java

224 The JAXB 2.0 Data Binding

In Example 5–14, you see that the XML for an instance of oms:Item-
Type is created by simply building the String for an oms:item element.
Then, this String is returned by wrapping it in a StreamSource instance.

You can run the code from this section by following these steps:

1. Go to chap05/customjava.
2. To run the example enter mvn install.
3. The XML that is serialized from MySimpleOrder gets written to the

console.

In wrapping up this section, I would point out that the primary advan-
tage of refactoring the mapping code from Example 5–9 like this is that it
provides better code reuse. Now, for example, if you have another class with
a property of type MyAddress, you can use the MyAddressSerializer to
build its serializer.

You may have noticed that while I’ve called this approach to refactoring
the code “recursive,” I have not gone all the way with this example and
shown how to build a truly recursive serialization system. All the recursion
in this example has been done “by hand.” That is, we have invoked the sub-
serializers for the parent class manually by identifying the properties and
hand-coding the references to their serializers. In Chapter 11, I take this
example to the next level and walk you through a real implementation of a
recursive serialization system based on JAXB 2.0. This section has been
intended primarily to demonstrate how code reuse can be achieved and
how JAXB schema-generated classes can be used to build serializers that
work on non-JAXB (POJO) classes.

In the next section, I continue the overview of JAXB by exploring how
the standard type mapping can be customized using annotations.

5.5 Implementing Type Mappings with JAXB 2.0
Annotations

The past two sections explored some techniques for implementing type
mappings that use the classes created from an XML schema by the JAXB
2.0 schema generator. The basic idea behind these techniques is to map
your existing POJOs to the Java representation of an XML schema created
by the JAXB schema generator. Then, you can use the JAXB runtime to
marshal/unmarshal between the JAXB classes and XML documents. So, to

5.5 Implementing Type Mappings with JAXB 2.0 Annotations 225

serialize your POJO, you run the mapping code to instantiate a JAXB-
generated class, and then marshal the JAXB class out to XML.

In this section, I look at how you can eliminate the need for mapping
code by using JAXB annotations to customize the JAXB 2.0 standard map-
ping. In many situations, you can annotate your POJOs so that they map
directly to your target schema. When such a mapping is possible using
annotations, you can use the JAXB 2.0 runtime to directly marshal/unmar-
shal your annotated POJOs to XML documents.

This section really shows off the power of the JAXB 2.0 annotations. As
you will see, it is possible to achieve the entire mapping coded with custom
Java in Sections 5.3 and 5.4 using annotations.

Of course, there are some drawbacks to this approach. Primarily, they
are the following:

■ Annotating the POJOs requires you to have access to the source code
and the authority to recompile and deploy it in your organization.
This is often not possible—particularly if the POJOs are owned by
another department.

■ It’s often a trial-and-error process of implementing annotations, and
then doing some testing to see whether they produce instances of
the desired schema. This can be time-consuming and error-prone.

■ Many type mappings cannot be implemented using annotations that
simply customize the JAXB standard mapping. In such cases, you
must fall back on the techniques outlined in Sections 5.3 and 5.4—or
else use the JAXB 2.0 customization framework (i.e., the @XmlJava-
TypeAdapter annotation that is discussed in Section 5.7).

■ Each type mapping requires a different set of annotations—and there-
fore a new class. Let’s say your POJO is a class named Foo. And let’s say
you want to support type mappings for two XML types: oms:FooType
and corp:BarType. You will need to annotate Foo in two different
ways to support <oms:FooType, Foo> and <corp:BarType, Foo>. So,
that means two different versions of the Foo class must be created and
supported.

One of the purposes of this book, with respect to JAXB, is to illustrate
how to unlock the power of the annotations and work around some of these
drawbacks. As alluded to in Chapter 3, wrapper classes can be used to han-
dle situations where annotations cannot implement a mapping. You can also
use wrappers as delegates in situations where you don’t want to or cannot
annotate your POJOs—or you need to provide multiple annotated versions

226 The JAXB 2.0 Data Binding

of a class. The SOA-J framework discussed in Chapter 11 shows how to
avoid wrapper classes altogether using a different approach to mapping that
doesn’t require user-defined annotations at all.

However, before focusing on these drawbacks and workarounds, I want
to show how powerful JAXB annotations can be—in the situations where
they can be used. Example 5–15 shows the annotated version of the
MySimpleOrder class that you have been working with in the past two sec-
tions. Note that not all components of the JAXB mapping from MySimple-
Order to its XML representation require annotations (e.g., the billTo
property has no annotation—even though it maps to a billTo element).
That is because explicit annotations are not needed when the JAXB stan-
dard default mapping is used for a component of the class definition.

Example 5–15 MySimpleOrder: The Annotated Version

28 @XmlRootElement(name="simpleOrder")
29 public class MySimpleOrder {
30
31 private MyAddress billTo;
32 private List<MyItem> itemList;
33
34 // must add a no-arg constructor
35 public MySimpleOrder() {}
36
37 public MySimpleOrder(String name, String street, String city, String state,
38 String zip, String phone) {
39 this(new MyAddress(name, street, city, state, zip, phone));
40 }
41
42 public MySimpleOrder(MyAddress addr) {
43 this.billTo = addr;
44 itemList = new ArrayList<MyItem>();
45 }
46
47 public MyAddress getBillTo() {
48 return billTo;
49 }
50
51 public void setBillTo(MyAddress billTo) {
52 this.billTo = billTo;
53 }
54

5.5 Implementing Type Mappings with JAXB 2.0 Annotations 227

55 @XmlElementWrapper(name="items")
56 @XmlElement(name="item")
57 public List<MyItem> getItemList() {
58 return itemList;
59 }
60
61 public void setItemList(List<MyItem> itemList) {
62 this.itemList = itemList;
63 }
64
65 }

book-code/chap05/annotations/src/java/samples/MySimpleOrder.java

Here is a listing of the changes that have been made to the class, along
with some explanation:

@XmlRootElement(name="simpleOrder")—The annotation has been
added right before the class definition. The @XmlRootElement anno-
tation maps a class to a global element definition. In this case, the
name of the global element is specified by the name element as "sim-
pleOrder". If this were not specified, the default value for name
would be used—which is based on the class name. In this case, the
default name would be "mySimpleOrder". @XmlRootElement also has
a namespace optional element. Since namespace is not specified
here, the global element’s namespace is derived from the package
(discussed later).
public MySimpleOrder() {}—A no arg constructor has been added to
the class. User-authored types are required to provide a no arg con-
structor. This constructor is used by the JAXB 2.0 unmarshaller to cre-
ate an instance.
@XmlElement(name="item")—Without this annotation, the property
would be bound to an XML element named itemList—the property
name the default mapping derives from the setter/getter method
names. As you may notice, the other setter/getter pair (setBillTo/
getBillTo) does not have an @XmlElement annotation. That is
because it gets mapped to an XML element named billTo by
default (see the note on @XmlAccessorType that describes the
default mapping of properties).

228 The JAXB 2.0 Data Binding

@XmlElementWrapper(name="items")—This annotation specifies
that the itemList property should be wrapped by an element
named items. Without this annotation, by default, the Java type
List<MyItem> would be mapped to a schema element definition
like this:

<element name="item" type=... maxOccurs="unbounded"/>

and the serialized XML would look like this:

<item> ... </item>
<item> ... </item>

However, with the @XmlElementWrapper annotation, it gets mapped
to this:

<element name="items">
 <element name="item" type=... maxOccurs="unbounded"/>
</element>

and the serialized XML looks like this:

<items>
 <item> ... </item>
 <item> ... </item>
</items>

This latter mapping is consistent with the schema for oms:simple-
Order. The @XmlElementWrapper is intended to be used with collec-
tions in this manner—to put a wrapper XML element around
multiple occurrences of the same element.

In addition to these annotations, another annotation has a big impact on
the mapping of this class to XML that does not appear here. That is the
@XmlAccessorType annotation. It doesn’t appear in this case because in
Example 5–15, the default is used. If it were to appear, it would look like this:

@XmlAccessorType(AccessType.PUBLIC_MEMBER)—If present, this
annotation would appear before the class definition. It specifies how
the class properties get mapped to XML. AccessType.PUBLIC_MEMBER
is the default. It indicates that every public getter/setter pair and every

5.5 Implementing Type Mappings with JAXB 2.0 Annotations 229

public field will be automatically bound to XML unless annotated by
XmlTransient.

Looking at Example 5–15, you may be wondering how the namespace
of the target XML is determined. By default, JAXB 2.0 derives the target
namespace from the package name. In this case, the package name is sam-
ples, so the default namespace would be http://samples. However, JAXB
provides a mechanism to specify a global mapping for the package: the
package-info.java file.4 Example 5–16 shows the package-info.java file
used in this example.

Example 5–16 The JAXB 2.0 package-info.java File

 19 @XmlSchema(
 20 namespace = "http://www.example.com/oms",
 21 elementFormDefault=XmlNsForm.QUALIFIED)
 22 package samples;
 23
 24 import javax.xml.bind.annotation.XmlNsForm;
 25 import javax.xml.bind.annotation.XmlSchema;

book-code/chap05/xprmnt_binder/src/java/samples/package-info.java

As you can see, this file consists of a package declaration and an annota-
tion. The annotation provides the following mapping information:

@XmlSchema(
 namespace = "http://www.example.com/oms",
 elementFormDefault=XmlNsForm.QUALIFIED)—The @XmlSchema
annotation is used only with a package declaration to define the map-
ping from a package to an XML schema. As you can see, in this case
the namespace element maps this package to the target namespace
http://www.example.com/oms. It also specifies that the element-
FormDefault for the schema representation of this package should be
qualified. This means that the element definitions mapped from

4. Actually, the use of package-info.java is recommended by [JSR-175], and that recom-
mendation is followed by the GlassFish implementation of JAXB 2.0 used for the example in this
book. The use of package-info.java is not strictly required for all JAXB implementations.

230 The JAXB 2.0 Data Binding

properties in the Java classes contained in this package are to be
namespace-qualified. That is the same way elementFormDefault is
specified in the schema for oms:simpleOrder shown in Example 5–1.

Example 5–17 shows the annotated version of the MyAddress class.

Example 5–17 MyAddress: The Annotated Version

 26 @XmlAccessorType(XmlAccessType.FIELD)
 27 @XmlType(name = "",
 28 propOrder = {"name", "street", "city", "state", "zip", "phone"})
 29 public class MyAddress {
 30
 31 @XmlElement(namespace = "http://www.example.com/oms")
 32 protected String name;
 33 @XmlElement(namespace = "http://www.example.com/oms")
 34 protected String street;
 35 @XmlElement(namespace = "http://www.example.com/oms")
 36 protected String city;
 37 @XmlElement(namespace = "http://www.example.com/oms")
 38 protected String state;
 39 @XmlElement(namespace = "http://www.example.com/oms")
 40 protected String zip;
 41 @XmlElement(namespace = "http://www.example.com/oms")
 42 protected String phone;
 43
 44 // need a no-arg constructor
 45 public MyAddress() {};

book-code/chap05/annotations/src/java/samples/MyAddress.java

In the target schema (see Example 5–1), this class maps to the anony-
mous complex type defined by the element definition for oms:billTo. Map-
ping to an anonymous type has some implications for the annotations, which
are discussed here:

@XmlAccessorType(AccessType.FIELD)—The MyAddress class does
not have setter/getter methods. So, in this case, the access type speci-
fied by the annotation is AccessType.FIELD. This indicates that every
nonstatic, nontransient field will be automatically bound to XML unless
annotated by XmlTransient.

5.5 Implementing Type Mappings with JAXB 2.0 Annotations 231

@XmlType(name = "",
 propOrder = {"name", "street", "city", "state",
 "zip", "phone"})—The @XmlType annotation is used to map a
class or an enum to a XML Schema type. This annotation does not
appear in the MySimpleOrder class (Example 5–15) because the
default mapping is used. However, in this case, the MyAddress class
is mapped to an anonymous type—which is not the default—so an
@XmlType annotation is needed. Setting the annotation element name
= "" is how you indicate that this class should map to an anonymous
type. Furthermore, the propOrder element specifies the ordering of
the properties in the target XML schema <sequence> element. As
you can see, the ordering here corresponds to the ordering specified
in the schema shown in Example 5–1.
@XmlElement(namespace = "http://www.example.com/oms")—You
may be wondering why the @XmlElement annotation is needed here.
Since the @XmlAccessorType has specified that the access type is
FIELD, the fields in this class are already mapped to XML elements.
The reason is that the namespace of the target elements needs to be
specified. The default JAXB 2.0 mapping indicates that the elements
should inherit their namespace from the enclosing class. However,
since this class is being mapped to an anonymous type, there is no
namespace to inherit and one must be specified. A namespace must be
specified because, as discussed in Example 5–16, the elementForm-
Default attribute on the target schema has the value qualified.

The last annotated class I consider here is the MyItem class, shown in
Example 5–18.

Example 5–18 MyItem: The Annotated Version

 24 @XmlType(name = "ItemType", propOrder = {"quantity", "price"})
 25 public class MyItem {
 26
 27 private int quantity;
 28 private float price;
 29 private String productName;
 30
 31 // need a no-arg constructor
 32 public MyItem() {};
 33
 34 public MyItem(int quantity, float price, String productName)

232 The JAXB 2.0 Data Binding

 35 throws Exception {
 36 if (productName == null) {
 37 throw new Exception("productName cannot be null");
 38 }
 39 this.productName = productName;
 40 this.price = price;
 41 this.quantity = quantity;
 42 }
 43
 44 public float getPrice() {
 45 return price;
 46 }
 47
 48 public void setPrice(float price) {
 49 this.price = price;
 50 }
 51
 52 @XmlAttribute
 53 public String getProductName() {
 54 return productName;
 55 }
 56
 57 public void setProductName(String productName) {
 58 this.productName = productName;
 59 }
 60
 61 public int getQuantity() {
 62 return quantity;
 63 }
 64
 65 public void setQuantity(int quantity) {
 66 this.quantity = quantity;
 67 }
 68
 69 }

book-code/chap05/xprmnt_binder/src/java/samples/MyItem.java

In the target schema (see Example 5–1), this class maps to the named
complex type oms:ItemType. The salient aspects of this mapping are dis-
cussed here:

5.5 Implementing Type Mappings with JAXB 2.0 Annotations 233

@XmlType(name = "ItemType", propOrder = {"quantity",
"price"})—The MyItem class is mapped to the oms:ItemType com-
plex type by specifying the annotation element name = "ItemType".
In this case, the namespace for the XML schema type is provided by
the @XmlSchema annotation at the package level (see Example 5–16).
@XmlAttribute—Since no @AccessorType annotation is specified
for the MyItem class, the default mapping of properties is used—in
the same manner as in Example 5–15. However, in this case, the
property productName needs to be mapped to an attribute rather
than an element. That is why the @XmlAttribute annotation gets
used here. In contrast, the other two properties (i.e., quantity and
price) get mapped to elements as specified by the default mapping.

Wrapping up this section, I next look at the code used to exercise the
annotations illustrated earlier. Example 5–19 shows how I marshal and
unmarshal an instance of MySimpleOrder in a “round-trip” fashion that vali-
dates the marshaled output against the schema shown in Example 5–1.

Example 5–19 Marshalling and Unmarshalling the Annotated Classes

36 public static void main(String[] args) throws Exception {
37
38 MySimpleOrder myOrder = new MySimpleOrder(
39 "John Doe",
40 "125 Main Street",
41 "Any Town", "NM", "95811",
42 "(831) 874-1123");
43 myOrder.getItemList().add(new MyItem(6, (float) 2.99, "Diet Coke"));
44 myOrder.getItemList().add(new MyItem(4, (float) 3.99, "Potato Chips"));
45 myOrder.getItemList().add(new MyItem(2, (float) 5.34, "Frozen Pizza"));
46 try {
47 JAXBContext jaxbContext = JAXBContext.newInstance(MySimpleOrder.class);
48 Marshaller jaxbMarshaller = jaxbContext.createMarshaller();
49 jaxbMarshaller.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT,
50 Boolean.TRUE);
51 SchemaFactory sf =
52 SchemaFactory.newInstance(XMLConstants.W3C_XML_SCHEMA_NS_URI);
53 Schema schema = sf.newSchema(
54 new URL("http://soabook.com/example/oms/simpleorder.xsd"));
55 jaxbMarshaller.setSchema(schema);
56 ByteArrayOutputStream ba = new ByteArrayOutputStream();
57 jaxbMarshaller.marshal(myOrder, ba);

234 The JAXB 2.0 Data Binding

58 System.out.println(ba.toString());
59 Unmarshaller u = jaxbContext.createUnmarshaller();
60 MySimpleOrder roundTripOrder =
61 (MySimpleOrder) u.unmarshal(new StringReader(ba.toString()));
62 System.out.println("phone = " + roundTripOrder.getBillTo().phone);
63
64 } catch (Exception e) {
65 e.printStackTrace();
66 }
67 }

book-code/chap05/annotations/src/java/samples/MySimpleOrderSerializer.java

As you can see, this example starts by creating an instance of MySimple-
Order. Next, a JAXBContext instance is created using the following version
of the newInstance method:

JAXBContext.newInstance(java.lang.Class ...)

The context created in this manner will recognize the class(es) speci-
fied, and any classes that are directly/indirectly referenced statically from
the specified class(es). So, in Example 5–19, in addition to the MySimple-
Order class, the MyAddress and MyItem classes will also be recognized by
this context.

A Marshaller instance is created from the context, and the following
method is used to turn on validation for this marshaller:

Marshaller.setSchema(javax.xml.validation.Schema)

As a result, all XML produced by this marshaller gets validated against
the schema at the URL http://soabook.com/example/oms/simpleorder.xsd.
This is the same schema as shown in Example 5–1.

As you can see, the output of the marshalling in this example is captured
in a ByteArrayOutputStream. As a result, I can wrap a StringReader around
this XML and use that to unmarshal the XML back into an instance of
MySimpleOrder (i.e., the variable roundTripOrder). This “round trip,”
together with the schema validation, indicates that the annotations illustrated
in this section accurately map the classes MySimpleOrder, MyAddress, and
MyItem to the target XML schema.

You can run the code from this section by following these steps:

5.6 Implementing Type Mappings with the JAXB 2.0 Binding Language 235

1. Go to chap05/annotations.
2. To run the example enter mvn install.
3. The XML that is serialized from MySimpleOrder and validated

against the schema gets written to the console.

Once you spend some time working with these annotations and gain an
intuitive understanding of the JAXB 2.0 standard mapping, it becomes fairly
straightforward to create type mappings this way. So, while the JAXB 2.0
specification for these annotations is daunting, I highly recommend that you
read it and then practice implementing some type mappings like the one
illustrated here. After you spend some time with this technology, I think you
will agree with me that annotations are a powerful tool for specifying type
mapping when you are starting from a Java class.

In the next section, I look at how you use JAXB 2.0 to implement type
mapping when you start from the other side—with an XML Schema definition.

5.6 Implementing Type Mappings with the JAXB 2.0
Binding Language

The preceding section looked at the “Start from Java” approach to imple-
menting a type mapping with JAXB 2.0 annotations. In this section, I look at
the “Start from XML Schema” (or “Start from XML” for short) approach.

In the end, the JAXB run-time implementation needs annotations for
marshalling and unmarshalling. So, the “Start from XML” approach is based
on adding binding language declarations to an XML schema that the JAXB
schema generator interprets and uses to generate annotated Java code. In
this manner, the binding language is a tool for customizing the default
behavior of the schema compiler.

In this section, you again start with the oms:simpleOrder XML
schema shown in Example 5–1. On the following pages, you will see how
this schema can be customized by adding binding language declarations.
My goal here is to get the schema generator to create annotated classes
that come as close as possible to implementing the type mappings we
looked at in the previous sections:

< oms:simpleOrder, samples.MySimpleOrder >
< oms:billTo, samples.MyAddress >
< oms:items, List<samples.MyItem> >
< oms:item, samples.MyItem >

236 The JAXB 2.0 Data Binding

In Section 5.3, I showed how to implement these type mappings using
the JAXB 2.0 standard mapping and custom Java code. In Section 5.4, I
showed how to do the same thing, but with a more elegant, recursive
framework for serialization. Then, in Section 5.5, you saw how to imple-
ment these same type mappings using “Start with Java” by annotating the
POJOs. In this section, you will see that it is not possible to implement
these type mappings using the “Start from XML” approach. The binding
language declarations are not as powerful as the annotations. You can get
close to these type mappings, but not quite there. The mapping
< oms:items, List<samples.MyItem>> is problematic because there is
no way to “unwrap” the oms:items element to map its internal oms:items
collection directly to a List.

To get started, look at Example 5–20, which shows the binding declara-
tions that are needed at the global (top) level.

Example 5–20 The jaxb:globalBindings and jaxb:schemaBindings Declarations

 4 <schema targetNamespace="http://www.example.com/oms"
 5 elementFormDefault="qualified" xmlns="http://www.w3.org/2001/XMLSchema"
 6 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb" jaxb:version="2.0"
 7 xmlns:oms="http://www.example.com/oms">
 8 <annotation>
 9 <appinfo>
 10 <jaxb:globalBindings localScoping="toplevel"/>
 11 <jaxb:schemaBindings>
 12 <jaxb:package name="samples"/>
 13 </jaxb:schemaBindings>
 14 </appinfo>
 15 </annotation>

book-code/chap05/bindinglang/etc/simpleorder_with_bindinglang.xsd

The binding declarations use the <appinfo> element specified by [XSD
PART 1]. Inside the <appinfo> element, you can see a jaxb:globalBind-
ings declaration and a jaxb:schemaBindings declaration.

The customizations specified inside the jaxb:globalBindings decla-
ration have global scope. This means that they are customizations that
affect the mapping of the entire schema—and any schemas that are
included or imported. In general, the types of things you specify globally
are the collection types used (e.g., List versus Array), whether to generate

5.6 Implementing Type Mappings with the JAXB 2.0 Binding Language 237

classes or interfaces, and whether to use inner classes. As you may recall
from Section 5.2, the default JAXB 2.0 mapping generates inner classes
from anonymous complex types. However, the target classes that are
considered here (from the samples package) do not contain any inner
classes. So, in this case, the jaxb:globalBindings element localScop-
ing is set to toplevel, indicating that none of the generated classes
should be inner classes.

Furthermore, the jaxb:schemaBindings declaration element provides
customizations at the schema level (but unlike the global scope customiza-
tions, these do not apply to imported schemas). In this example, the
jaxb:package declaration is used to specify that the package for the
schema-generated classes should be samples.

So, these declarations move us a long way toward our goal by enabling
us to specify that there should be no inner classes and that the package for
all the classes should be samples. In Example 5–21, I illustrate how to get
the exact class name you desire to map to.

Example 5–21 The jaxb:class Declaration

 19 <element name="simpleOrder">
 20 <annotation>
 21 <appinfo>
 22 <jaxb:class name="MySimpleOrder"/>
 23 </appinfo>
 24 </annotation>
 25 <complexType>
 26 <sequence>
 27 <element name="billTo">
 28 <complexType>
 29 <annotation>
 30 <appinfo>
 31 <jaxb:class name="MyAddress"/>
 32 </appinfo>
 33 </annotation>
 34 <sequence>
 35 <element name="name" type="string"/>
 36 <element name="street" type="string"/>
 37 <element name="city" type="string"/>
 38 <element name="state" type="string"/>
 39 <element name="zip" type="string"/>
 40 <element name="phone" type="string"/>
 41 </sequence>

238 The JAXB 2.0 Data Binding

 42 </complexType>
 43 </element>

book-code/chap05/bindinglang/etc/simpleorder_with_bindinglang.xsd

In this example, the jaxb:class declaration is used to specify the name
of the target class to which a particular XML schema type or element defi-
nition should be mapped. Here, you can see that the declaration associated
with the element oms:simpleOrder specifies that it gets mapped to a class
named MySimpleOrder. Likewise, a little bit further down in the schema
code, the anonymous complex type defined by the element oms:billTo is
getting mapped to the samples.MyAddress class.

Example 5–22 shows a snippet from the MySimpleOrder class that is
created by the schema generator from the oms:simpleOrder schema anno-
tated with the previous binding language declarations. As you can see, it is
similar to the MySimpleOrder class created “by hand” and illustrated in Sec-
tion 5.5. However, the major difference here is that the items property has
Java type Items—rather than List<MyItem>. Ideally, to implement the
desired type mapping, you would like to have the schema generator add an
@XmlElementWrapper annotation to the items property and make the type
of the property List<MyItem>. But unfortunately, there is no way to specify
this using the binding language.

Example 5–22 The MySimpleOrder Class Generated by the Schema Compiler

 82 @XmlAccessorType(AccessType.FIELD)
 83 @XmlType(name = "", propOrder = {
 84 "billTo",
 85 "items"
 86 })
 87 @XmlRootElement(name = "simpleOrder")
 88 public class MySimpleOrder {
 89
 90 @XmlElement(namespace = "http://www.example.com/oms")
 91 protected MyAddress billTo;
 92 @XmlElement(namespace = "http://www.example.com/oms")
 93 protected Items items;

book-code/chap05/bindinglang/etc/schemacompiler_withcomments/
MySimpleOrder.java

5.6 Implementing Type Mappings with the JAXB 2.0 Binding Language 239

Example 5–23 shows the Items class created by the JAXB schema gen-
erator. This class is not specified by any of the desired type mappings. As
you can see, it is simply a wrapper class for the property item, which has
Java type List<MyItem>.

Example 5–23 Generation of the Items Class Is Unavoidable

 56 @XmlAccessorType(AccessType.FIELD)
 57 @XmlType(name = "", propOrder = {
 58 "item"
 59 })
 60 public class Items {
 61
 62 @XmlElement(namespace = "http://www.example.com/oms")
 63 protected List<MyItem> item;

book-code/chap05/bindinglang/etc/schemacompiler_withcomments/Items.java

Example 5–24 shows how to handle datatype conversions when doing
“Start from XML” with binding language declarations. As you recall from
the discussion in Section 5.3, the MyItem class has a property named quan-
tity with Java type int that maps to the schema element quantity with
XML type xs:positiveInteger. Similarly, the MyItem class uses Java type
float for the price property, whereas the XML type is xs:double.

Example 5–24 Datatype Conversion with the jaxb:javaType Declaration

57 <complexType name="ItemType">
58 <annotation>
59 <appinfo>
60 <jaxb:class name="MyItem"/>
61 </appinfo>
62 </annotation>
63 <sequence>
64 <element name="quantity" type="positiveInteger">
65 <annotation>
66 <appinfo>
67 <jaxb:property>
68 <jaxb:baseType>
69 <jaxb:javaType name="int"

240 The JAXB 2.0 Data Binding

70 parseMethod="javax.xml.bind.DatatypeConverter.parseInt"
71 printMethod="javax.xml.bind.DatatypeConverter.printInt"/>
72 </jaxb:baseType>
73 </jaxb:property>
74 </appinfo>
75 </annotation>
76 </element>
77 <element name="price" type="double">
78 <annotation>
79 <appinfo>
80 <jaxb:property>
81 <jaxb:baseType>
82 <jaxb:javaType name="float"
83 parseMethod="javax.xml.bind.DatatypeConverter.parseFloat"
84 printMethod="javax.xml.bind.DatatypeConverter.printFloat"/>
85 </jaxb:baseType>
86 </jaxb:property>
87 </appinfo>
88 </annotation>
89 </element>
90 </sequence>
91 <attribute name="productName" use="required" type="string"/>
92 </complexType>
93 </schema>

book-code/chap05/bindinglang/etc/simpleorder_with_bindinglang.xsd

In the binding language declarations in Example 5–24, you can see that the
jaxb:javaType declaration is used to specify these datatype conversions. The
jaxb:javaType declaration provides a way to customize the binding of an
XML schema atomic datatype to a target Java datatype in a nonstandard way.
The name attribute (int for the quantity property and float for the price
property) specifies the Java datatype to be used for the property. Given this
attribute, the JAXB schema generator should generate Java with a property
having the type specified by the name attribute. Furthermore, the parseMethod
and printMethod attributes specify static methods that provide the necessary
datatype conversions to/from the Java type specified by the name attribute.

The parseMethod is applied during unmarshalling to convert a string
(i.e., the lexical representation of the XML type coming from an XML doc-
ument) into a value of the target Java datatype. Likewise, the printMethod

5.6 Implementing Type Mappings with the JAXB 2.0 Binding Language 241

is applied during marshalling to accomplish the reverse. As you can see in
this example, the print and parse methods specified are static methods
from the javax.xml.bind.DatatypeConverter class. This is a utility class
provided to make it easier to do datatype conversions. Instead of having to
understand the lexical representations of the XML Schema built-in types,
you can simply use the DatatypeConverter. Consult the Javadoc for a
detailed description of the DatatypeConverter class.

The mechanism by which the print and parse methods are invoked
during marshalling and unmarshalling is the @XmlJavaTypeAdapter annota-
tion. @XmlJavaTypeAdapter is discussed in detail in Section 5.7. For now,
what you need to understand is that the @XmlJavaTypeAdapter annotation
is used to specify a class that maps one datatype to another. When interpret-
ing a jaxb:javaType declaration with printMethod and parseMethod
attributes, the schema compiler annotates the target properties with @Xml-
JavaTypeAdapter and generates an instance of XmlAdapter that invokes the
printMethod and parseMethod static methods during marshaling and
unmarshalling.

This mechanism will be a little clearer when you review the code gener-
ated by the schema compiler shown in Example 5–25.

Example 5–25 The MyItem Class with @XmlJavaTypeAdapter Annotations

58 @XmlAccessorType(AccessType.FIELD)
59 @XmlType(name = "ItemType", propOrder = {
60 "quantity",
61 "price"
62 })
63 public class MyItem {
64
65 @XmlElement(namespace = "http://www.example.com/oms", type = String.class)
66 @XmlJavaTypeAdapter(Adapter1.class)
67 protected Integer quantity;
68 @XmlElement(namespace = "http://www.example.com/oms", type = String.class)
69 @XmlJavaTypeAdapter(Adapter2.class)
70 protected Float price;
71 @XmlAttribute(required = true)
72 protected String productName;

book-code/chap05/bindinglang/etc/schemacompiler_withcomments/MyItem.java

242 The JAXB 2.0 Data Binding

In this example, you can see that the quantity element has the annota-
tion @XmlJavaTypeAdapter(Adapter1.class). This annotation tells the
JAXB runtime that when it needs to marshal (or unmarshal) the quantity
property, it should invoke the @XmlJavaTypeAdapter specified class,
Adapter1.class. This class is shown in Example 5–26.

Example 5–26 An XmlAdapter Is Generated for Datatype Conversion

 30 public class Adapter1
 31 extends XmlAdapter<String, Integer>
 32 {
 33
 34
 35 public Integer unmarshal(String value) {
 36 return (javax.xml.bind.DatatypeConverter.parseInt(value));
 37 }
 38
 39 public String marshal(Integer value) {
 40 return (javax.xml.bind.DatatypeConverter.printInt(value));
 41 }
 42
 43 }

book-code/chap05/bindinglang/etc/schemacompiler_withcomments/Adapter1.java

As you can see, this Adapter1 class has methods named marshal and
unmarshal. The marshal method invokes the static method specified by the
jaxb:javaType printMethod attribute. Likewise, the unmarshal method
invokes the static method specified by the jaxb:javaType parseMethod
attribute.

Example 5–27 shows the code that tests the classes the schema generator
creates from the oms:simpleOrder schema together with the binding lan-
guage declarations. As you can see from looking through this code, working
with the versions of MySimpleOrder, MyItem, and MyAddress that are gener-
ated by the schema compiler is not as elegant as when working with the
classes of the same name created by hand in the preceding section. Primarily,
the reason is that the generated classes do not have any constructors other
than zero argument (i.e., “no arg”) constructors. So, instead of passing, for
example, the street, city, state, zip, and phone to the MyAddress construc-
tor, you have to first construct the class and then set all the properties.

5.6 Implementing Type Mappings with the JAXB 2.0 Binding Language 243

Example 5–27 Exercising the Schema Generator-Produced Classes

38 public static void main(String[] args) throws Exception {
39
40 MySimpleOrder myOrder = new MySimpleOrder();
41 myOrder.setBillTo(new MyAddress());
42 myOrder.getBillTo().setName("John Doe");
43 myOrder.getBillTo().setStreet("125 Main Street");
44 myOrder.getBillTo().setCity("Any Town");
45 myOrder.getBillTo().setState("NM");
46 myOrder.getBillTo().setZip("95811");
47 myOrder.getBillTo().setPhone("(831) 874-1123");
48 Items items = new Items();
49 myOrder.setItems(items);
50 List<MyItem> itemList = items.getItem();
51 MyItem myItem = new MyItem();
52 myItem.setPrice((float) 2.99);
53 myItem.setQuantity(6);
54 myItem.setProductName("Diet Coke");
55 itemList.add(myItem);
56 myItem = new MyItem();
57 myItem.setPrice((float) 3.99);
58 myItem.setQuantity(4);
59 myItem.setProductName("Potato Chips");
60 itemList.add(myItem);
61 myItem = new MyItem();
62 myItem.setPrice((float) 5.34);
63 myItem.setQuantity(2);
64 myItem.setProductName("Frozen Pizza");
65 itemList.add(myItem);
66 try {
67 JAXBContext jaxbContext = JAXBContext.newInstance(MySimpleOrder.class);
68 Marshaller jaxbMarshaller = jaxbContext.createMarshaller();
69 jaxbMarshaller.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT,
70 Boolean.TRUE);
71 SchemaFactory sf =
72 SchemaFactory.newInstance(XMLConstants.W3C_XML_SCHEMA_NS_URI);
73 Schema schema = sf.newSchema(
74 new URL("http://soabook.com/example/oms/simpleorder.xsd"));
75 jaxbMarshaller.setSchema(schema);
76 ByteArrayOutputStream ba = new ByteArrayOutputStream();
77 jaxbMarshaller.marshal(myOrder, ba);
78 System.out.println(ba.toString());
79 Unmarshaller u = jaxbContext.createUnmarshaller();

244 The JAXB 2.0 Data Binding

80 MySimpleOrder roundTripOrder =
81 (MySimpleOrder) u.unmarshal(new StringReader(ba.toString()));
82 System.out.println("phone = " + roundTripOrder.getBillTo().phone);
83
84 } catch (Exception e) {
85 e.printStackTrace();
86 }
87 }

book-code/chap05/bindinglang/modules/serializer/src/java/samples/
MySimpleOrderSerializer.java

Another difference here, as mentioned in connection with Example 5–
23, is that you have to create an instance of the extra class Items, and work
with the List<MyItems> property through this wrapper class. So, it is a bit
more awkward to work with these schema-generated classes than with the
ones created by hand. However, the classes work perfectly, and as you can
see from the code, the XML that is generated passes validation against the
original schema.

You can run the code from this section by following these steps:

1. Go to chap05/bindinglang.
2. To run the example enter mvn install.
3. The XML that is serialized from MySimpleOrder and validated

against the schema gets written to the console.

One advantage of working with the JAXB 2.0 binding language declara-
tions, which we have not discussed, is the ability to place the binding decla-
rations in an external binding file.5 This approach is described in Appendix
E of [JSR-222]. Basically, the external binding file contains the same decla-
rations as appear in-line in a schema, but they are associated with the defini-
tions in the schema using XPath 1.0 expressions. You can use this approach
when you are not able to edit the schema directly, or you don’t want to. One
scenario where you wouldn’t want to add in-line declarations to the schema is
when it gets imported into other schemas or WSDL files that are published
and you don’t want the ultimate users of these schemas or WSDL to see the
extra clutter produced by the binding language declarations. Furthermore,

5. For an example containing an external binding file, see Chapter 6, Section 6.4.2—the
example involving the asynchronous invocation of a Web service.

5.7 Implementing Type Mappings with the JAXB 2.0 XmlAdapter Class 245

you may want to define multiple type mappings on a single schema—in
which case you cannot use in-line declarations.

In the past two sections, I showed you how to customize the JAXB 2.0
standard mapping through the use of annotations and binding language
declarations. Although powerful, these approaches by themselves can’t alter
the basic structure of the JAXB 2.0 mapping. To implement type mappings
that deviate from the JAXB 2.0 standard mapping more radically, you need
to use the @XmlJavaTypeAdapter annotations along with the XmlAdapter
class. That is the subject of the next section.

5.7 Implementing Type Mappings with the JAXB 2.0
XmlAdapter Class

As you saw in the preceding sections, annotations, and to a lesser extent,
binding language declarations, are powerful tools for customizing the stan-
dard JAXB 2.0 Java/XML mapping. However, some structural limitations
are imposed by the standard mapping that make it impossible to customize
beyond a certain point without writing custom code.

Most of the time, the things you cannot do easily with JAXB 2.0 involve
splitting, combining, or otherwise mixing together schema definitions to
create Java properties where there is not a clear one-to-one correspon-
dence. I call these sorts of mappings multivariate type mappings. In Chap-
ter 4 (Sections 4.5 and 4.6), I introduced a multivariate type mapping. This
mapping had two multivariate components:

■ A two-line address in XML that mapped to a street number and
street name in Java

■ A single xs:string phone number that mapped to an area code,
extension, and number in Java

In Chapter 4, I showed how to hand-code a workaround to implement
such a mapping. In this section, I revisit this example and show how the
@XmlJavaTypeAdapter annotation and the javax.xml.bind.annota-
tion.XmlAdapter class can be used to encapsulate the hand-coded
workaround and incorporate it into the JAXB 2.0 framework. In this man-
ner, the @XmlJavaTypeAdapter annotation is a tool that can be used to
incorporate custom code to extend the capabilities of the JAXB 2.0 runtime
beyond the constraints of the standard JAXB 2.0 Java/XML mapping.

246 The JAXB 2.0 Data Binding

Example 5–28 shows the schema for corp:AddressType—the XML
type involved in the multivariate mapping. As you can see, this is a straight-
forward complex type definition where each element has the type
xs:string.

Example 5–28 The AddressType Schema

 4 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
5 elementFormDefault="qualified" targetNamespace="http://www.example.com/corp">
 6 <xs:complexType name="AddressType">
 7 <xs:sequence>
 8 <xs:element name="addrLine1" type="xs:string"/>
 9 <xs:element name="addrLine2" type="xs:string"/>
10 <xs:element name="city" type="xs:string"/>
11 <xs:element name="state" type="xs:string"/>
12 <xs:element name="zip" type="xs:string"/>
13 <xs:element name="phone" type="xs:string"/>
14 </xs:sequence>
15 </xs:complexType>
16 </xs:schema>

book-code/chap05/xmladapter/examples/standardtypes.xsd

The Java Address class that corp:AddressType is mapped to is shown
in Example 5–29. As you can see, there is no way to define a one-to-one cor-
respondence between the corp:AddressType elements and the Address
class properties. This mapping is illustrated in Chapter 4, at the end of Sec-
tion 4.5 (Figure 4–7).

Example 5–29 The Address Class Properties

23 @XmlJavaTypeAdapter(AddressAdapter.class)
24 public class Address {
25 private int streetNum;
26 private String streetName;
27 private String city;
28 private State state;
29 private int zip;
30 private Phone phoneNumber;

book-code/chap05/xmladapter/src/java/samples/Address.java

5.7 Implementing Type Mappings with the JAXB 2.0 XmlAdapter Class 247

To implement the <corp:AddressType, Address> type mapping,
within the JAXB 2.0 framework, you need to use the @XmlJavaTypeAdapter
annotation in three places:

1. Parsing the elements addrLine1 and addrLine2 to produce property
values for streetNum and streetName, and vice versa

2. Implementing the nonstandard datatype conversion from the zip
element (xs:string) to the zip property (int), and vice versa

3. Parsing the phone element into the constituent properties of the
Phone class, and vice versa

As you can see from item 2, multivariate type mappings are not the only
mappings that require the @XmlJavaTypeAdapter annotation. In many cases,
nonstandard conversions of XML atomic types may also require an adapter.

Example 5–30 shows the Phone class’s constituent properties. As you
can see, mapping an xs:string to this class involves parsing out the area
code, exchange, and number.

Example 5–30 The Phone Class Properties

 23 @XmlJavaTypeAdapter(PhoneAdapter.class)
 24 public class Phone {
 25 private int areaCode;
 26 private String exchange;
 27 private String number;

book-code/chap05/xmladapter/src/java/samples/Phone.java

Figure 5–4 shows the marshalling procedure you are going to work
through in the rest of this section. This diagram indicates how the type
mappings are implemented using JAXB 2.0 and the @XmlJavaTypeAdapter.
As you can see, the marshalling procedure makes use of an intermediate
Java class named AddressXML.

As shown in the diagram, this marshalling procedure can be broken
down into four steps:

1. The Address class instance is mapped to an instance of the
AddressXML class. This first step parses the streetNum and street-
Name into the addrLine1 and addrLine2 properties of AddressXML.

248 The JAXB 2.0 Data Binding

All the other properties of Address (i.e., city, state, zip, and
phone) are mapped straight over to AddressXML. This transforma-
tion, from Address to AddressXML, is handled by the Address-
Adapter class—an instance of XmlAdapter. The AddressAdapter
class is specified as the value of the @XmlJavaTypeAdapter annota-
tion on the Address class definition (see Example 5–29). Because of
this @XmlJavaTypeAdapter annotation on the Address class defini-
tion, when you marshal an instance of Address, the JAXB 2.0 run-
time automatically invokes the AddressAdapter to convert it to an
instance of AddressXML, and then proceeds to marshal the
AddressXML instance. This step takes care of the multivariate map-
ping of streetNum and streetName to addrLine1 and addrLine2.

Figure 5–4 Marshalling the Address class to AddressType.

<xs:complexType
name="AddressType">
 <xs:sequence>
 <xs:element name="addrLine1"
 type="xs:string"/>
 <xs:element name="addrLine2"
 type="xs:string"/>
 <xs:element name="city"
 type="xs:string"/>
 <xs:element name="state"
 type="xs:string"/>
 <xs:element name="zip"
 type="xs:string"/>
 <xs:element name="phone"
 type="xs:string"/>
 </xs:sequence>
</xs:complexType>

AddressXML

 String addrLine1;
 String addrLine2;
 String city;
 State state;
 Integer zip;
 Phone phone;

AddressAdapter
(XmlAdapter)

Phone
 int areaCode;
 String exchange;
 String number;

String

PhoneAdapter
(XmlAdapter)

String

IntToStringAdapter
(XmlAdapter)

1

2

3

4

Address

 int streetNum;
 String streetName;
 String city;
 State state;
 int zip;
 Phone phone;

5.7 Implementing Type Mappings with the JAXB 2.0 XmlAdapter Class 249

2. The next step illustrated in Figure 5–4 occurs as the JAXB runtime
proceeds to marshal the AddressXML instance. As you’ll notice in
Example 5–31, the zip property of AddressXML is annotated with an
@XmlJavaTypeAdapter that references the IntToStringAdapter
XmlAdapter implementation. This adapter class converts zip from
an Integer to a java.lang.String so that the JAXB runtime can
map it out to the target xs:string XML type for the zip element.

3. This step is invoked as the JAXB runtime marshals the AddressXML
instance’s phone property. This property is an instance of the Phone
class (see Example 5–30) that is annotated with an @XmlJavaType-
Adapter that references the PhoneAdapter class. PhoneAdapter is
invoked by the JAXB runtime to process the phone property and
implement the multivariate mapping that parses its three fields into a
single String, for ultimate marshalling to AddressType’s phone ele-
ment of XML type xs:string.

4. Once the zip and phone properties of AddressXML have been trans-
formed by their respective XmlAdapter classes, the rest of the mar-
shalling of this class instance follows the standard JAXB 2.0 run-time
mapping to create an instance of AddressType.

Example 5–31 shows the AddressXML class that is used as an intermedi-
ary class for the marshalling of Address to an instance of the AddressType
schema. As you can see, AddressXML has the same properties as Address,
except that the streetNum and streetName properties have been replaced
with addrLine1 and addrLine2.

Example 5–31 The AddressXML Class Used As a Marshalling/Unmarshalling Intermediary

 26 @XmlType(name="AddressType",
 27 propOrder = {
 28 "addrLine1",
 29 "addrLine2",
 30 "city",
 31 "state",
 32 "zip",
 33 "phone"
 34 })
 35 @XmlAccessorType(XmlAccessType.FIELD)
 36 public class AddressXML {
 37

250 The JAXB 2.0 Data Binding

 38 protected String addrLine1;
 39 protected String addrLine2;
 40 protected String city;
 41 protected State state;
 42 @XmlJavaTypeAdapter(IntToStringAdapter.class)
 43 protected Integer zip;
 44 protected Phone phone;
 45
 46 }

book-code/chap05/xmladapter/src/java/samples/AddressXML.java

Example 5–32 shows the AddressAdapter class that converts from
Address to AddressXML, and vice versa. The AddressAdapter class extends
the abstract class:

javax.xml.bind.annotation.adapters.XmlAdapter<ValueType, BoundType>

Extending XmlAdapter is a requirement for any class that is referenced by
an @XmlJavaTypeAdapter annotation. The type parameters for XmlAdapter
refer to the type JAXB doesn’t know how to handle (BoundType) and the type
JAXB knows how to handle (ValueType). When marshalling, the JAXB run-
time invokes the marshal method from the XmlAdapter to convert the Bound-
Type instance into a ValueType instance—which it then will marshal. (Note
that the ValueType itself may contain @XmlJavaTypeAdapter references, so
you can chain together XmlAdapters as we have done in this example.) Going
the other way, the JAXB unmarshaller unmarshals an XML document into an
instance of the ValueType, which then gets transformed by the Xml-
Adapter.unmarshal method to return an instance of BoundType.

Example 5–32 The AddressAdapter Class

 23 public class AddressAdapter extends XmlAdapter<AddressXML, Address> {
 24
 25 public AddressXML marshal(Address addr) throws Exception {
 26
 27 System.out.println("entered AddressAdapter.marshal.");
 28 AddressXML jaxbAddress = new AddressXML();
 29 String[] streetParts = addr.getStreetName().split(" - ",2);
 30 jaxbAddress.addrLine1 = addr.getStreetNum() + " " + streetParts[0];
 31 if (streetParts.length > 1) {

5.7 Implementing Type Mappings with the JAXB 2.0 XmlAdapter Class 251

 32 jaxbAddress.addrLine2 = streetParts[1];
 33 } else {
 34 jaxbAddress.addrLine2 = "";
 35 }
 36 // the rest is simple mapping
 37 jaxbAddress.city = addr.getCity();
 38 jaxbAddress.phone = addr.getPhoneNumber();
 39 jaxbAddress.state = addr.getState();
 40 jaxbAddress.zip = addr.getZip();
 41 return jaxbAddress;
 42
 43 }
 44
 45 public Address unmarshal(AddressXML jaxbAddress)
 46 throws Exception {
 47
 48 Address addr = new Address();
 49 String[] line1Parts = jaxbAddress.addrLine1.split(" ",2);
 50 int num = -1;
 51 String street;
 52 try {
 53 num = Integer.valueOf(line1Parts[0]).intValue();
 54 } catch (Exception e) {}
 55 if (num > 0) {
 56 addr.setStreetNum(num);
 57 street = line1Parts[1];
 58 } else {
 59 street = jaxbAddress.addrLine1;
 60 }
 61 String line2 = jaxbAddress.addrLine2;
 62 if (line2 != null && !line2.equals("")) {
 63 street += " - " + line2;
 64 }
 65 // the rest is simple mapping
 66 addr.setStreetName(street);
 67 addr.setCity(jaxbAddress.city);
 68 addr.setState(jaxbAddress.state);
 69 addr.setZip(jaxbAddress.zip);
 70 addr.setPhoneNumber(jaxbAddress.phone);
 71 return addr;
 72 }
 73
 74 }

book-code/chap05/xmladapter/src/java/samples/AddressAdapter.java

252 The JAXB 2.0 Data Binding

As you can see in the code for AddressAdapter in Example 5–32, the
parsing logic for converting between the two different formats for street
address is the same as used in Chapter 4 (see Section 4.6). The only differ-
ence here is that I have bundled this logic inside an XmlAdapter instance so
that it can be invoked by the JAXB runtime.

Example 5–33 shows another XmlAdapter implementation. This one is
used in step 2 from Figure 5–4—to transform the zip property from an
Integer to a String (and vice versa). As you can see, this is a very simple
transformation, but it’s necessary nonetheless because it is not a standard
mapping supported by the JAXB runtime.

Example 5–33 The IntToStringAdapter Class

23 public class IntToStringAdapter extends XmlAdapter<String, Integer> {
24
25 public Integer unmarshal(String value) {
26 return new Integer(value); }
27
28 public String marshal(Integer value) {
29 return value.toString(); }
30
31 }

book-code/chap05/xmladapter/src/java/samples/IntToStringAdapter.java

Example 5–34 shows the PhoneAdapter implementation of XmlAdapter
that is used in step 3 in Figure 5–4 to transform between the two different
representations of phone number. Again, if you check back to Chapter 4
(Section 4.6), you will see that this code is the same as the parsing code used
in that example. The only difference here is that it is bundled inside an
instance of XmlAdapter so that it can be invoked by the JAXB runtime.

Example 5–34 The PhoneAdapter Class

22 public class PhoneAdapter extends XmlAdapter<String, Phone> {
23
24 public Phone unmarshal(String jaxbPhone) throws Exception {
25

5.7 Implementing Type Mappings with the JAXB 2.0 XmlAdapter Class 253

26 Phone phone = new Phone();
27 int areaStart = jaxbPhone.indexOf("(");
28 int areaEnd = jaxbPhone.indexOf(")");
29 String area = jaxbPhone.substring(areaStart+1,areaEnd);
30 jaxbPhone = jaxbPhone.substring(areaEnd+1,jaxbPhone.length());
31 String phoneSplit[] = jaxbPhone.split("-", 2);
32 phone.setAreaCode(Integer.valueOf(area).intValue());
33 phone.setExchange(phoneSplit[0].trim());
34 phone.setNumber(phoneSplit[1].trim());
35 return phone;
36
37 }
38
39 public String marshal(Phone myPhone) throws Exception {
40
41 return "(" + myPhone.getAreaCode() + ") " + myPhone.getExchange() + "-" +
42 myPhone.getNumber();
43
44 }
45
46 }

book-code/chap05/xmladapter/src/java/samples/PhoneAdapter.java

To test the marshalling and unmarshalling of the Address class, I use the
simple Order class shown in Example 5–35. Order has a single property—
addr—with type Address.

Example 5–35 The Order Class: A Wrapper Used for Testing

26 @XmlRootElement(namespace="http://www.example.com/css/custinfo")
27 @XmlAccessorType(XmlAccessType.FIELD)
28 public class Order {
29
30 @XmlElement(namespace="http://www.example.com/css/custinfo")
31 protected Address addr;
32
33 }

book-code/chap05/xmladapter/src/java/samples/Order.java

254 The JAXB 2.0 Data Binding

The Order class is mapped by JAXB to the schema shown in Example
5–36. As you can see, this is a schema for an element named order that has
a single child element named addr. The addr element has type
corp:AddressType.

Example 5–36 The Schema Used for Validation Imports corp:AddressType

 4 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 5 xmlns:corp="http://www.example.com/corp"
 6 targetNamespace="http://www.example.com/css/custinfo"
 7 elementFormDefault="qualified">
 8 <xs:import namespace="http://www.example.com/corp"
 9 schemaLocation="http://soabook.com/example/corp/standardtypes.xsd"/>
10 <xs:element name="order">
11 <xs:complexType>
12 <xs:sequence>
13 <xs:element name="addr" type="corp:AddressType"/>
14 </xs:sequence>
15 </xs:complexType>
16 </xs:element>
17 </xs:schema>

book-code/chap05/xmladapter/etc/orderElement.xsd

The code for testing the implementation of the type mapping
<corp:AddressType, Address> using the Order class is shown in Exam-
ple 5–37. This code implements a “round trip,” marshalling out an
instance of the Order class and unmarshalling the result back. During the
marshalling, part of the process is validated against the schema shown in
Example 5–36.

Example 5–37 Round-Trip Marshal, Unmarshal, and Validation

32 public class AddressSerializer {
33
34 public static void main(String[] args) throws Exception {
35
36 Address addr = new Address(
37 175,
38 "Main Street - Suite 200",

5.7 Implementing Type Mappings with the JAXB 2.0 XmlAdapter Class 255

39 "New City", State.OH, 59101,
40 new Phone(758, "874","1221"));
41 Order order = new Order();
42 order.addr = addr;
43 try {
44 JAXBContext jaxbContext = JAXBContext.newInstance(Order.class);
45 Marshaller jaxbMarshaller = jaxbContext.createMarshaller();
46 jaxbMarshaller.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT,
47 Boolean.TRUE);
48 SchemaFactory sf =
49 SchemaFactory.newInstance(XMLConstants.W3C_XML_SCHEMA_NS_URI);
50 Schema schema = sf.newSchema(new File(args[0])); // pass in the schema
51 jaxbMarshaller.setSchema(schema);
52 ByteArrayOutputStream ba = new ByteArrayOutputStream();
53 jaxbMarshaller.marshal(order, ba);
54 System.out.println(ba.toString());
55 Unmarshaller u = jaxbContext.createUnmarshaller();
56 Order roundTripOrder =
57 (Order) u.unmarshal(new StringReader(ba.toString()));
58 printAddress(roundTripOrder.addr);

book-code/chap05/xmladapter/src/java/samples/AddressSerializer.java

You can run this code by following these steps:

1. Go to chap05/xmladapter.
2. To run the example enter mvn install.
3. The XML that is serialized from Order and validated against the

schema gets written to the console. In addition, the properties from
the Address class instance that is created by the round-trip unmar-
shalling are printed to the console.

In this section, you saw how to take the custom code used for imple-
menting type mappings in Section 5.3 and incorporate it into the JAXB 2.0
run-time framework using the @XmlJavaTypeAdapter annotation. The
JAXB 2.0 runtime employs a recursive procedure for marshalling/unmar-
shalling—analogous to the process described in Section 5.4. The JAXB 2.0
runtime and the Section 5.4 process are analogous in that they both serialize
a class instance by traversing the tree defined by its properties. To put that
into the context of the example from this section, the Address class is serial-
ized (or marshaled in the JAXB terminology), by recursively serializing each

256 The JAXB 2.0 Data Binding

of its properties, and assembling the results together to create the XML
document required by the type mapping to corp:AddressType.

As stated in Section 5.4, one of the goals of a recursive framework for
serialization is to enable the reuse of type mapping implementations. In the
JAXB 2.0 framework, implementing a type mapping as an XmlAdapter
implementation makes it reusable. For example, the AddressAdapter class
can be employed (via the @XmlJavaTypeAdapter annotation) anywhere you
want to apply the <corp:AddressType, Address> type mapping. However,
because XmlAdapter instances are invoked via annotations, they are not as
flexible as you might like. For example, if you wanted to deploy a Java class
with two different type mappings, encoded in two different XmlAdapter
implementations, you would need to create and deploy two different ver-
sions of that class—since the @XmlJavaTypeAdapter annotation is part of
the class definition itself. In Chapter 11, when I introduce the Adaptive
Serializer Framework, you will see how we can work around that problem
and provide a JAXB 2.0-based serialization subsystem that enables the clean
reuse of type mappings and the application of multiple type mappings with-
out requiring multiple versions of the same class.

5.8 JAXB 2.0 for Data Transformation (Instead of XSLT)

The previous sections of this chapter dealt with how to use JAXB 2.0 to
implement type mappings—in other words, to map from Java to XML.
JAXB 2.0 can also be used to map from one XML representation to another
using similar techniques. This is called data transformation, and in Chapter
3, Section 3.5, I illustrated how to do it using XSLT.

Many Java programmers are not comfortable with XSLT. If that
sounds familiar, this section is for you! Here, I show how to do data trans-
formation with JAXB instead of XSLT. Using this approach, you write
code to transform an instance of one JAXB-generated class into an
instance of another JAXB-generated class. Such transformation code plays
the same role as the XSLT stylesheet does in the example in Chapter 3,
Section 3.5. Although easier to understand than XSLT for many Java pro-
grammers, one drawback of this approach is that the transformation code
can be hard to understand and/or reuse. In general, the principle known
as separation of concerns suggests that data transformation be handled
separately from other code. As a result, if you’re using this approach, it is a
good idea to keep your transformation code separate from the business
logic in well-commented modules.

5.8 JAXB 2.0 for Data Transformation (Instead of XSLT) 257

The following example implements the same transformation as in Chapter
3, Section 3.5. The JAXB 2.0 data transformation process for this example is
illustrated in Figure 5–5.

Prior to runtime, the JAXB 2.0 schema compiler is used to create Java
classes that are bound to the Orders and CustomerHistoryEntries sche-
mas.6 These are represented as “JAXB Generated Classes” in Figure 5–5.
Using these classes, you write the “Transformation Code” pictured as the
arrow in the middle of the diagram. This code maps the fields and proper-
ties of the Orders-generated classes to the appropriate fields and properties
of the CustomerHistoryEntries classes.

At runtime, an instance of the Orders schema is unmarshalled to its
respective JAXB classes. Then, the transformation code is executed, to
create instances of the CustomerHistoryEntries JAXB classes. The
CustomerHistoryEntries JAXB class instances are then marshaled to an
instance of the CustomerHistoryEntries schema to complete the data
transformation.

Next, I am going to walk through the code that implements this data
transformation. To make it easier to understand, I’ve reproduced the
data mapping diagram from Chapter 3 that illustrates this transformation
as Figure 5–6.

The Java code that implements this data transformation using the JAXB-
generated classes is shown in Example 5–38. This is the same Web service

Figure 5–5 Data transformation using JAXB 2.0.

Orders
Schema
(XSD)

JAXB-
Generated
Classes

CustomerHistoryEntries
Schema

JAXB-
Generated

Classes

Schema
Compiler

Transformation
Code

Schema
Compiler

Orders
Instance
(XML)

JAXB
Marshal

instance of ins
tan

ce
of

CustomerHistoryEntries
Instance
(XML)

JAXB
Unmarshal

6. These schemas can be found at the beginning of Chapter 3. Alternatively, you can see the
Orders schema at http://soabook.com/example/oms/orders.xsd and the CustomerHistory-
Entries schema at http://soabook.com/example/css/custhistentries.xsd.

258 The JAXB 2.0 Data Binding

example7 used in Chapter 3, Section 3.4. Here, I am showing you how to get
the same result using JAXB rather than XSLT. The Chapter 3 Web services

Figure 5–6 Data mapping for the transformation from a Sales Order to a Customer
History Record (from Chapter 3).

Customer Number ENT0072123

Order Lookup
Information

 Order Number: ENT1234567
 PO Number: PO-72123-0007
 Item Number: 012345
 Item Number: 543210
 Other Information: This order is a rush.

Customer History Record

Order

Order Number ENT1234567

Header Sales Organization: NE
 Purchase Date: 2001-12-09
 Customer Number: ENT0072123
 Payment Method: PO
 Purchase Order: PO-72123-0007
 Guaranteed Delivery: 2001-12-16

Order Items Item Number: 012345
 Storage Location: NE02
 Target Quantity: 50
 Unit of Measure: CNT
 Price per UOM: 7.95
 Description: 7 mm Teflon Gasket

 Item Number: 543210
 Target Quantity: 5
 Unit of Measure: KG
 Price per UOM: 12.58
 Description: Lithium grease with PTFE/Teflon

Other Information This order is a rush.

7. See Chapter 3, Section 3.4, for a detailed discussion of Web services used in this example.
The service GetNewOrders returns instances of oms:Orders. Likewise, instances of
css:CustomerHistoryEntries are posted to the Web service UpdateCustomerHistory.

5.8 JAXB 2.0 for Data Transformation (Instead of XSLT) 259

being used in this example are RESTful,8 so I am using javax.xml.ws.Dis-
patch to get an instance of oms:Orders as a javax.xml.Source. This
oms:Orders XML source is unmarshalled into an instance of JAXBEle-
ment<OrdersType>, from which an instance of the JAXB-generated class
OrdersType is extracted. From this, you get a list of the actual OrderType
instances (the JAXB-generated class representation of oms:OrderType) that
are transformed into customer history entries.

Example 5–38 Transforming Orders to Customer History Entries with Java

 68 Dispatch<Source> getOrdersDispatch =
 69 svc.createDispatch(orderQName, Source.class, Service.Mode.PAYLOAD);
70 Map<String, Object> requestContext = getOrdersDispatch.getRequestContext();
 71 requestContext.put(MessageContext.HTTP_REQUEST_METHOD, "GET");
 72 Source s = (Source) getOrdersDispatch.invoke(null);
 73 JAXBElement<OrdersType> newOrdersElt =
 74 (JAXBElement<OrdersType>) u.unmarshal(s);
 75 OrdersType newOrders = newOrdersElt.getValue();
 76 List<OrderType> newOrderList = newOrders.getOrder();
 77 CustomerHistoryEntriesType ch = new CustomerHistoryEntriesType();
 78 CustomerHistoryEntryType che = null;
 79 // for each order, create and add a customer history to the list
 80 for (OrderType newOrder : newOrderList) {
 81 che = new CustomerHistoryEntryType();
 82 che.setCustomerNumber(newOrder.getOrderHeader().getCUSTNO());
 83 CustomerHistoryEntryType.OrderLookupInfo orderLookupInfo =
 84 new CustomerHistoryEntryType.OrderLookupInfo();
 85 orderLookupInfo.setOrderNumber(newOrder.getOrderKey());
 86 orderLookupInfo.setPURCHORDNO(newOrder.getOrderHeader().getPURCHORDNO());
 87 orderLookupInfo.setOrderText(newOrder.getOrderText());
 88 // add the item numbers
 89 for (BUSOBJITEM boItem : newOrder.getOrderItems().getItem()) {
 90 orderLookupInfo.getITMNUMBER().add(boItem.getITMNUMBER());
 91 }
 92 // add to the list history entries
 93 ch.getCustomerHistoryEntry().add(che);
 94 }

8. Some readers may be confused by the use of REST here, when I’ve said that SOAP is pre-
ferred for SOA. There are two reasons why this example uses REST: (1) to demonstrated
that JAXB mapping created here can directly replace the XSLT in the Chapter 3 example; (2)
so I don’t have to introduce JAX-WS client code to handle SOAP—as JAX-WS is the subject
of the next chapter and hasn’t been formally introduced yet.

260 The JAXB 2.0 Data Binding

 95 JAXBElement<CustomerHistoryEntriesType> chElt =
 96 new JAXBElement<CustomerHistoryEntriesType>(
 97 new QName("http://www.example.com/css","CustomerHistoryEntries"),
 98 CustomerHistoryEntriesType.class,
 99 JAXBElement.GlobalScope.class,
100 ch);

book-code/chap05/transform/src/java/samples/OrderToCustHistJAXB.java

The Java class CustomerHistoryEntriesType is the JAXB-generated
class bound to the css:CustomerHistoryEntriesType complex type—
which is simply a sequence of css:CustomerHistoryEntryType elements.
So, each customer history entry corresponds to an instance of the XML
schema type css:CustomerHistoryEntryType and JAXB-generated Java
class CustomerHistoryEntryType.

The transformation code starts by creating an instance of CustomerHis-
toryEntryType to hold the customer history entries that get created from
the orders. Next, it iterates through the list of OrderType instances, trans-
forming each into an instance of CustomerHistoryEntryType using the
code inside the for loop.

For example, the CustomerHistoryEntryType.setCustomerNumber()
setter is applied to the OrderType.getOrderHeader().getCUSTNO() prop-
erty to map the customer number in the oms:Order to the customer num-
ber in the css:CustomerHistoryEntry.

Next, the transformation code creates a new instance of CustomerHis-
toryEntryType.OrderLookupInfo—the JAXB-generated representation of
the anonymous type defined by the OrderLookupInfo element definition
within css:CustomerHistoryEntryType. The properties of the Customer-
HistoryEntryType.OrderLookupInfo instance are also set from the getters
defined on the JAXB-generated OrderType class.

And so, the transformation proceeds in this manner, setting the proper-
ties on the CustomerHistoryEntry JAXB class by navigating the properties
on the OrderType class. Once all its properties are set, each instance of Cus-
tomerHistoryEntry is added to the list property from CustomerHistory-
Entries.

After the instance of the JAXB-generated class CustomerHistoryEntries
has been completely constructed, there is one remaining step. You need to
create an element instance from this class. This JAXB class is bound to the
type css:CustomerHistoryEntries. The way an instance is created is with
the JAXBElement constructor, as shown at the very end of Example 5–38.

5.8 JAXB 2.0 for Data Transformation (Instead of XSLT) 261

An element is needed, because that is what gets POSTed to the REST-
ful Web service to update the customer history records. The code for doing
this RESTful POST is shown in Example 5–39.

Example 5–39 Using JAXB to Access a RESTful Service with Dispatch

 105 svc.addPort(histQName, HTTPBinding.HTTP_BINDING, addCustHistUrl);
 106 Dispatch<Object> postCustomerHistoryDispatch =
 107 svc.createDispatch(histQName, jc, Service.Mode.PAYLOAD);
 108 postCustomerHistoryDispatch.invoke(chElt);

book-code/chap05/transform/src/java/samples/OrderToCustHistJAXB.java

As shown in this code, you can invoke the RESTful service using the
JAXBElement instance directly. This is accomplished by using a form of
the Dispatch class with the Object type parameter—Dispatch<Object>—
that works with JAXB-generated objects.9

You can run this code by following these steps. Just like in the example
from Chapter 3, Section 3.4, after the code executes, the results (customer his-
tory entries) are written by the application to a temporary file of the form
${user.home}/tmp/soabook*.xml. So, you can look to your ${user.home}/
tmp directory to verify that the example ran properly.

1. Start GlassFish (if it is not already running).
2. Go to <book-code>/chap03/rest-post/endpoint-servlet.
3. To deploy the CSS Web service enter mvn install,

and then, ant deploy.
4. Go to <book-code>/chap03/rest-get/endpoint-servlet.
5. To deploy the OMS Web service, enter mvn install,

and then ant deploy.
6. Go to <book-code>/chap05/transform.
7. To run the example, enter mvn install.
8. To undeploy the Web services, go back to <book-code>/chap03/

rest-post/endpoint-servlet and enter ant undeploy. Do the
same in the directory <book-code>/chap03/rest-get/endpoint-
servlet.

9. See Section 4.3.3 of [JSR-224].

262 The JAXB 2.0 Data Binding

5.9 Conclusions

This chapter provided an overview of how JAXB 2.0 can be applied to
implement type mappings. Type mappings are central to implementing SOA
with Java, because they enable you to map your Java classes to standards-
compliant WSDL interfaces. Those WSDL interfaces are built from enter-
prise or eBusiness standard XML Schema documents that provide agreed
upon representations of business objects such as addresses and purchase
orders. So, at a very basic level, SOA (in the Java world) is about mapping
existing Java classes to standard XML Schema documents.

This chapter demonstrated a few approaches to type mapping. First,
you saw an approach based on the standard JAXB 2.0 Java/XML mapping.
This approach, introduced in Section 5.3, uses the JAXB schema generator
to create Java representations of the XML schema side of the type mapping.
The type mapping is implemented by writing custom code to transform the
existing classes into the classes generated by the JAXB schema generator.
Then, JAXB provides the run-time marshalling/unmarshalling for these
generated classes.

In Section 5.4, I showed you how to get a little more sophisticated about
this approach by introducing a Serializer interface that enabled you to
bundle the type mapping code and reuse it. This approach also enabled you
to build type mappings from other type mappings in a recursive manner.

Section 5.5 showed you how, in many cases, you can avoid writing cus-
tom mapping code by learning how to annotate your existing classes. You
saw how these annotations could be used to customize the standard JAXB
2.0 Java/XML mapping to realize a wide variety of type mappings. I also dis-
cussed one drawback of annotations; namely, that despite their power, they
are embedded in the class definitions, so to implement more than one type
mapping means to keep more than one version of a class around. That is,
one new class is needed for each type mapping.

Section 5.6 showed that you can also customize the standard JAXB Java/
XML mapping by annotating your XML schema with JAXB binding lan-
guage declarations. I showed how this approach modifies the output of the
schema compiler to create classes with different annotations. You saw that
one advantage of this approach is that the binding language declarations can
be kept in a separate file from the schema. However, one disadvantage is
that this approach is not as powerful as the “Start from Java” approach
where existing Java classes are annotated to match a schema.

Section 5.7 looked at the limitations of the JAXB 2.0 standard Java/
XML mapping and demonstrated how to work around them using the

5.9 Conclusions 263

@XmlJavaTypeAdapter annotation together with user-defined XmlAdapter
class instances to implement custom type maps. You saw that this approach
is powerful, but suffers from the same limitation as all annotation-oriented
approaches to type mapping. You cannot have multiple type mappings for
the same class because the annotations are part of the class definition.

Lastly, in Section 5.8, I showed how JAXB could be used for data trans-
formation. The basic idea introduced in that section is that if you use the
JAXB schema compiler to create Java representations of schemas, you can
write Java code to transform between instances of those schemas by map-
ping one JAXB representation to the other.

That wraps up the basic tour of JAXB 2.0 as it applies to SOA. In the
next section of the book, I begin to look at the JAX-WS 2.0 standard and
focus on how it can be used to write SOA clients that are consumers of Web
services.

265

C H A P T E R 6

JAX-WS—Client-Side
Development

JAX-WS 2.0 provides the Java Web Services standard for both deploying
and invoking Web services. In this chapter, I look at the client-side invoca-
tion capabilities provided by JAX-WS. In particular, I focus on how to use
JAX-WS as a client-side tool for creating SOA components that consume
Web services.

6.1 JAX-WS Proxies

JAX-WS, like its predecessor, JAX-RPC, is designed so that programmers can
invoke a Web service just as through they are invoking a Java method. In fact,
in many respects, JAX-WS imitates Java Remote Method Invocation (Java
RMI). Like Java RMI, JAX-WS enables the programmer to use a local
method call to invoke a service on another host. Unlike Java RMI, however,
the service on the other host does not need to be implemented as a Java appli-
cation. In the JAX-WS case, the Web service on the remote host needs to pro-
vide a WSDL interface—a wsdl:portType1 definition, to be precise. JAX-WS
provides a standard WSDL to Java mapping that maps a wsdl:portType to a
Java interface. Such an interface is called a service endpoint interface (SEI)
because it is a Java representation of a Web service endpoint. At runtime,
JAX-WS can generate an instance of a SEI that enables the programmer to
invoke a Web service by invoking a method on the SEI.

The technology employed by JAX-WS to create a run-time instance of a
SEI is the dynamic proxy class (for a quick overview of dynamic proxies, see
the Javadoc for java.lang.reflect.Proxy). This technology enables JAX-
WS to dynamically create (i.e., to create at runtime) an instance of a SEI

1. See Chapter 4 for a discussion of WSDL and its role as an interface definition language.

266 JAX-WS—Client-Side Development

that can be used to invoke a Web service. The internal workings of a JAX-
WS proxy are based on an instance of java.lang.reflect.Invocation-
Handler that implements a standard WSDL to Java and Java to WSDL
mapping. In essence, when you invoke a method on a proxy, the internal
InvocationHandler converts the parameters into a SOAP message that is
sent to the Web service endpoint. Likewise, the SOAP response message is
converted into an instance of the SEI return type.

You don’t need to understand the internal workings of dynamic proxies
to create and use a SEI to invoke a Web services with JAX-WS. But if you
are interested, it’s a fascinating topic to explore.

JAX-WS proxies are dynamic—they are created at runtime. You do not
need to generate stub classes that implement the SEI. However, you do
need to generate the SEI prior to runtime. That is because the dynamic
proxy technology employed by JAX-WS requires an interface definition in
order to create a proxy class instance. JAX-WS implementations provide
tools for creating a SEI from its corresponding wsdl:portType. In Glass-
Fish, for example, this functionality is provided by the wsimport utility.

Figure 6–1 Invoking a Web service with a Java proxy.

Proxy Instance

WSDL to Java
Mapping Tool

(e.g., wsimport)

Service
Endpoint
Interface

Parameters

(JAXB-Generated
Class Instances)

Web Service

WSDL

Endpoint URL

SOAP
Request

SOAP
Response

Return Value

(JAXB-Generated
Class Instance)

Invocation
Handler

Service
Endpoint
Interface

javax.xml.ws.Service

getPort(...)

1

2

3

4

5

6.1 JAX-WS Proxies 267

Figure 6–1 illustrates the process of creating and using a SEI and its
associated proxy instance.

1. A WSDL to Java mapping tool (e.g., the GlassFish wsimport utility)
is used to read the target Web service’s WSDL and generate a ser-
vice endpoint interface (SEI). This step happens prior to compiling
and running the client code that invokes the Web service.

2. At runtime, one of the getPort() methods from the javax.xml-
.ws.Service class is used to create a proxy instance that implements
the SEI.

3. The Web service is invoked simply by invoking a method from the
SEI. As indicated in Figure 6–1, the parameters that get passed to
such a method are instances of JAXB-generated classes. That is
because the SEI maps to its corresponding wsdl:portType using the
standard JAXB XML Schema to Java mapping. Each method pro-
vided by the SEI corresponds to a wsdl:operation on the
wsdl:portType.

4. The internals of the proxy instance convert the SEI method invoca-
tion parameters into a SOAP request and send it to the Web service’s
endpoint. In this diagram, I assume that the binding is SOAP over
HTTP, but the JAX-WS architecture is designed to support other
bindings.

5. Lastly, the proxy instance receives the SOAP response (or fault) and
deserializes it into an instance of the SEI method’s return type.

In what follows, I walk you through an example of how to invoke a Web
service using a proxy instance in the manner just described. The example
used here is a Web service for placing an order called the RequestOrder
service. This service requires that the client send a customer number, a pur-
chase order number (or credit card), and a list of items to be purchased.
The Web service responds with a completed order, which serves as the cus-
tomer’s receipt. The order is represented as an instance of oms:Order (for
an example of oms:Order, see Chapter 3, Example 3–1).

6.1.1 The JAX-WS WSDL to Java Mapping

As mentioned, the SEI is mapped from a Web service’s wsdl:portType
using the JAX-WS WSDL to Java mapping. So, to get started, I first illus-
trate how this mapping applies in this example.

268 JAX-WS—Client-Side Development

Example 6–1 shows the WSDL types for the RequestOrder Web service.
As with all the examples in this book, RequestOrder uses the document/literal
wrapped style of WSDL (see Chapter 4 for a description of the WSDL styles).

The element req:requestOrder defined here is the wrapper element
that contains the parameters req:CUST_NO (the customer number),
req:PURCH_ORD_NO (the purchase order number), req:ccard (the credit
card information), and one or more instances of req:item (the items being
ordered). Likewise, req:requestOrderResponse is the wrapper element
that contains the response parameter: oms:Order (the customer order).

Example 6–1 The WSDL Types Defined by the RequestOrder Web Service

10 <wsdl:types>
11 <xs:schema targetNamespace="http://www.example.com/oms">
12 <xs:include schemaLocation="http://soabook.com/example/oms/orders.xsd"/>
13 </xs:schema>
14 <xs:schema targetNamespace="http://www.example.com/faults">
15 <xs:include schemaLocation="http://soabook.com/example/faults/faults.xsd"
16 />
17 </xs:schema>
18 <xs:schema elementFormDefault="qualified"
19 targetNamespace="http://www.example.com/req">
20 <xs:import namespace="http://www.example.com/oms"/>
21 <xs:element name="requestOrder">
22 <xs:complexType>
23 <xs:sequence>
24 <xs:element name="CUST_NO">
25 <xs:simpleType>
26 <xs:restriction base="xs:string">
27 <xs:maxLength value="10"/>
28 </xs:restriction>
29 </xs:simpleType>
30 </xs:element>
31 <xs:element name="PURCH_ORD_NO" minOccurs="0">
32 <xs:simpleType>
33 <xs:restriction base="xs:string">
34 <xs:maxLength value="35"/>
35 </xs:restriction>
36 </xs:simpleType>
37 </xs:element>
38 <xs:element name="ccard" type="oms:BUSOBJ_CCARD" minOccurs="0"/>
39 <xs:element name="item" type="oms:BUSOBJ_ITEM"
40 maxOccurs="unbounded"/>

6.1 JAX-WS Proxies 269

41 </xs:sequence>
42 </xs:complexType>
43 </xs:element>
44 <xs:element name="requestOrderResponse">
45 <xs:complexType>
46 <xs:sequence>
47 <xs:element ref="oms:Order"/>
48 </xs:sequence>
49 </xs:complexType>
50 </xs:element>
51 </xs:schema>
52 </wsdl:types>

book-code/chap06/endpoint/modules/endpoint/src/webapp/WEB-INF/wsdl
/RequestOrder.wsdl

The parameters contained in these wrapper elements get mapped to
method parameters in the SEI using the JAXB 2.0 XML Schema to Java
mapping. The method signatures in the SEI, on the other hand, get
mapped from the operations defined on the wsdl:portType.

Example 6–2 shows the wsdl:portType for the RequestOrder Web ser-
vice. The wsdl:operation named requestOrder is going to be mapped to a
method on the SEI named requestOrder. The input parameters to that
method will be taken from the wsdl:input message—in other words,
req:request. As you can see, that message is a single wsdl:part, which is
the req:requestOrder wrapper element discussed previously. So the
parameters for the SEI method named requestOrder will be mapped from
the child elements of the wrapper req:requestOrder. Similarly, the
response type for the requestOrder method will map to oms:Order
because oms:Order is the child element of the wsdl:output message. If this
mapping seems confusing (which it can be!), please review the description
of the document/literal wrapped style of WSDL found in Chapter 4.

Example 6–2 The wsdl:portType Defined by the RequestOrder Web Service

56 <wsdl:message name="request">
57 <wsdl:part name="parameters" element="req:requestOrder"/>
58 </wsdl:message>
59 <wsdl:message name="response">
60 <wsdl:part name="parameters" element="req:requestOrderResponse"/>
61 </wsdl:message>

270 JAX-WS—Client-Side Development

62 <wsdl:message name="inputFault">
63 <wsdl:part name="parameters" element="faults:inputMessageValidationFault"/>
64 </wsdl:message>
65 <wsdl:portType name="RequestOrderPort">
66 <wsdl:operation name="requestOrder">
67 <wsdl:input message="req:request"/>
68 <wsdl:output message="req:response"/>
69 <wsdl:fault name="requestOrderInputFault" message="req:inputFault"/>
70 </wsdl:operation>
71 </wsdl:portType>

book-code/chap06/endpoint/modules/endpoint/src/webapp/WEB-INF/wsdl
/RequestOrder.wsdl

In the example code, I used the GlassFish utility wsimport to generate
the SEI classes from this WSDL. Example 6–3 shows how wsimport is
invoked from inside Ant in my example code. It’s a little confusing to read in
this format, but you can get the basic idea.

Example 6–3 Invoking the wsimport WSDL to Java Mapping Tool from Ant

 7 <target name="wsdl2java">
 8 <mkdir dir="${basedir}/target/work/java"/>
 9 <mkdir dir="${basedir}/target/classes"/>
10 <exec executable="${wsimport}" failonerror="true">
11 <arg value="-d"/>
12 <arg value="${basedir}/target/classes"/>
13 <arg value="-s"/>
14 <arg value="${basedir}/target/work/java"/>
15 <arg value="-keep"/>
16 <arg value="http://${glassfish.host}:${glassfish.deploy.port}/chap06-
endpoint-endpoint-1.0/requestOrder?wsdl"/>

17 </exec>
18 </target>

book-code/chap06/proxy/modules/wsdl2java/build.xml20

The wsimport utility is passed (the last argument) the URL of the
RequestOrder service’s WSDL. In this case, using the default values for

6.1 JAX-WS Proxies 271

the host and port, that URL is http://localhost:8080/oms/RequestOrder-
Service?wsdl. The wsimport utility generates the SEI classes and places
the source in the directory specified by the -s option (compiled classes
go into the directory specified by -d).

Figure 6–2 shows the JAX-WS WSDL to Java mapping implemented by
the wsimport utility. The box on the left-hand side labeled “RequestOrder
WSDL” shows an edited snippet of the WSDL for the Web service. The
five objects to the right of the WSDL represent classes that are generated
by the wsimport utility. Some of these classes (e.g., OrderType) are purely
the result of applying the JAXB XML Schema to Java mapping to the sche-
mas defined in the wsdl:types section. Others (e.g., RequestOrderPort)
are defined by the JAX-WS WSDL to Java mapping. These classes are all
annotated with both JAXB and JAX-WS annotations. For the simplicity of
this discussion, the annotations are omitted from Figure 6–2. Later in this
section, I discuss the JAX-WS annotations.

In the following numbered list, each labeled mapping component in Fig-
ure 6–2 is explained. These are high-level explanations, intended to give you a
good feel for how the WSDL to Java mapping is used in practice. For a
detailed description of the mapping, you should read Chapter 2 of [JSR-224].

1. The wsdl:portType element is mapped to the service endpoint
interface (SEI)—RequestOrderPort.

2. The wsdl:operation named requestOrder is mapped to a SEI
method of the same name.

3. The wsdl:input message determines the parameters of the
requestOrder method. As you can see, this message, req:request,
has a single wsdl:part—the wrapper element req:requestOrder
defined in the wsdl:types section. The children of this wrapper ele-
ment (i.e., CUST_NO, PURCH_ORD_NO, ccard, item) define the method
parameters. Notice that the item element gets mapped to a List
because it has maxOccurs > 1.

4. Similarly, the wsdl:output message determines the response type—
in other words, OrderType.

5. As defined by the JAX-WS mapping, each wsdl:fault gets mapped to
a thrown exception. So here, the single wsdl:fault maps to the
"throws InputFault" clause of the requestOrder method declaration.

6. The wsdl:message referred to by a wsdl:fault gets mapped to a class
that extends java.lang.Exception. In this example, the wsdl:mes-
sage named inputFault gets mapped to the InputFault class. This is
a wrapper exception class for the fault bean (described next).

272 JAX-WS—Client-Side Development

7. Furthermore, a wsdl:fault element refers to a wsdl:message with a
single part. The global element declaration referred to by that part is
mapped to a JavaBean that JAX-WS refers to as a fault bean. In this

Figure 6–2 JAX-WS WSDL to Java mapping for RequestOrder Web service.

RequestOrder WSDL

<wsdl:types>
 ...
 </xs:schema>
 <xs:schema elementFormDefault="qualified"
 targetNamespace="http://www.example.com/req">
 <xs:element name="requestOrder">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="CUST_NO" ... />
 <xs:element name="PURCH_ORD_NO"
 minOccurs="0" .../>
 <xs:element name="ccard"
 type="oms:BUSOBJ_CCARD"
 minOccurs="0"/>
 <xs:element name="item"
 type="oms:BUSOBJ_ITEM"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="requestOrderResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="oms:Order"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:schema>
</wsdl:types>
<wsdl:message name="request">
 <wsdl:part name="parameters"
 element="req:requestOrder"/>
</wsdl:message>
<wsdl:message name="response">
 <wsdl:part name="parameters"
 element="req:requestOrderResponse"/>
</wsdl:message>
<wsdl:message name="inputFault">
 <wsdl:part name="parameters"
 element="faults:inputMessageValidationFault"/>
</wsdl:message>
<wsdl:portType name="RequestOrderPort">
 <wsdl:operation name="requestOrder">
 <wsdl:input message="req:request"/>
 <wsdl:output message="req:response"/>
 <wsdl:fault name="requestOrderInputFault"
 message="req:inputFault"/>
 </wsdl:operation>
</wsdl:portType>

public interface RequestOrderPort {

 public OrderType requestOrder(
 String custNO,
 String purchORDNO,
 BUSOBJCCARD ccard,
 List<BUSOBJITEM> item)
 throws InputFault;

}

RequestOrderPort (SEI)

public class BUSOBJCCARD {

 protected String cctype;
 ...
}

BUSOBJCCARD

public class InputFault
 extends Exception {

 private
 InputMessageValidationFaultType
 faultInfo;
 ...
}

InputFault

public class OrderType {

 protected String orderKey;
 ...
}

OrderType

public class BUSOBJITEM {

 protected String itmnumber;
 ...
}

BUSOBJITEM

8

3

3

3

5

2
1

4

7

6

8

8

6.1 JAX-WS Proxies 273

example, the element faults:inputMessageValidationFault maps
to the fault bean named InputMessageValidationFaultType. Fault
beans like this are properties wrapped by an exception wrapper class
(as described in the preceding item).

8. The types and global elements defined in the wsdl:types section get
mapped to Java classes using the JAXB XML Schema to Java map-
ping described in Chapter 5. In this example, oms:Order gets
mapped to OrderType, oms:BUSOBJ_ITEM gets mapped to BUSOB-
JITEM, and oms:BUSOBJ_CCARD gets mapped to BUSOBJCCARD.

This discussion provided an example of how JAX-WS maps WSDL to
Java classes—and in particular, how a SEI is created from a wsdl:port-
Type. Next, I discuss how the JAX-WS runtime converts a method invoca-
tion on a SEI into a SOAP message. The key to that process is the JAX-WS
annotations.

6.1.2 Service Endpoint Interface Annotations

As you recall from Chapter 5, the JAXB runtime uses annotations to deter-
mine how to marshal/unmarshal a JAXB value class to/from XML. Analo-
gously, the JAX-WS runtime uses annotations on the SEI to determine how
to marshal a method invocation to a SOAP request message and unmarshal
a SOAP response into an instance of the method’s return type. For simplic-
ity’s sake, I only consider the example illustrated here—where the output
message has a single part/wrapper child that maps to the SEI method’s
return value. If you are interested in all of the details of how operations with
output messages that have multiple parts/wrapper children get mapped to
annotated SEI operations, please see Chapters 2 and 7 of [JSR-224].

Figure 6–3 shows the annotated SEI, RequestOrderPort, and how it
maps to the SOAP request and response messages. This is the annotated
code produced by the wsimport utility as it generated the SEI from the
wsdl:portType named RequestOrderPort. The annotations are discussed
in detail in Table 6–1. Here, I highlight the aspects of the relationship
between the SEI annotations and the SOAP messages that are numbered in
Figure 6–3:

1. The @RequestWrapper annotation defines the wrapper element for
the SOAP request message. In a document/literal wrapped style
Web service, the SOAP request parameters appear as children of a
wrapper element that is the only child of the SOAP body. The wrap-
per element is defined in the wsdl:types section as discussed in

274 JAX-WS—Client-Side Development

Figure 6–3 JAX-WS SEI annotations and the corresponding SOAP request/response
messages.

SOAP Request Message

<soapenv:Envelope xmlns:soapenv=
 "http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ns1="http://www.example.com/req">
 <soapenv:Body>
 <ns1:requestOrder>
 <ns1:CUST_NO>ENT0072123</s1:CUST_NO>
 <ns1:PURCH_ORD_NO/>
 <ns1:ccard> ... </ns1:ccard>
 <ns1:item> ... </ns1:item>
 <ns1:item> ... </ns1:item>
 </ns1:requestOrder>
 </soapenv:Body>
</soapenv:Envelope>

SOAP Response Message

<soapenv:Envelope xmlns:soapenv=
 "http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ns1="http://www.example.com/req">
 <soapenv:Body>
 <ns1:requestOrderResponse>
 <Order xmlns=
 "http://www.example.com/oms">

 <OrderKey>9411150746</OrderKey>
 <OrderHeader> ... </OrderHeader>
 <OrderItems>
 <item> ... </item>
 <item> ... </item>
 </OrderItems>
 <OrderCcard>
 <ccard> ... </ccard>
 </OrderCcard>
 <OrderText>WEB Order placed via ...
 </OrderText>
 </Order>
 </ns1:requestOrderResponse>
 </soapenv:Body>
</soapenv:Envelope>

@WebService(name = "RequestOrderPort",
 targetNamespace =
 "http://www.example.com/req",
 wsdlLocation = "http://localhost:8080/
 oms/requestOrder?wsdl")
public interface RequestOrderPort {

 @WebMethod
 @WebResult(name = "Order",
 targetNamespace =
 "http://www.example.com/oms")
 @RequestWrapper(localName =
 "requestOrder",
 targetNamespace =
 "http://www.example.com/req",
 className =
 "com.example.req.RequestOrder")
 @ResponseWrapper(localName =
 "requestOrderResponse",
 targetNamespace =
 "http://www.example.com/req",
 className = "com.example.req.
RequestOrderResponse")
 public OrderType requestOrder(
 @WebParam(name = "CUST_NO",
 targetNamespace =
 "http://www.example.com/req")
 String custNO,
 @WebParam(name = PURCH_ORD_NO",
 targetNamespace =
 "http://www.example.com/req")
 String purchORDNO,
 @WebParam(name = "ccard",
 targetNamespace =
 "http://www.example.com/req")
 BUSOBJCCARD ccard,
 @WebParam(name = "item",
 targetNamespace =
 "http://www.example.com/req")
 List<BUSOBJITEM> item)
 throws InputFault
 ;

}

RequestOrderPort (SEI)

1

2

3

2 2

2

4

6.1 JAX-WS Proxies 275

Example 6–1. So, as you can see in this example, the SOAP request
message has a single child of its body—with the local name request-
Order and namespace http://www.example.com/req as defined in
the @RequestWrapper annotation.

2. The @WebParam annotations map the parameters of a SEI method to
the parameters of the SOAP request message. In a document/literal
wrapped style Web service, these parameters are children of the
wrapper element, as discussed previously.

3. Analogous to the @RequestWrapper annotation, the @ResponseWrap-
per annotation defines the wrapper element for the SOAP response
message. So, as you can see in Figure 6–3, the only child of the
SOAP response body element is the wrapper element defined by this
annotation.

4. The @WebResult annotation maps the return value of a SEI method
to corresponding child of the response wrapper element contained
in the SOAP response message’s body. In this example, the annota-
tion defines an element named oms:Order, and as you can see, that is
the element appearing as the grandchild of the SOAP body in the
response message.

Because the annotated Java interface (SEI) in Figure 6–3 is a little
tough to read, I repeat the code listing for the RequestOrderPort class in
Example 6–4.

Example 6–4 The Annotated Service Endpoint Interface

40 @WebService(name = "RequestOrderPort",
41 targetNamespace = "http://www.example.com/req",
42 wsdlLocation = "http://localhost:8080/oms/RequestOrderService?wsdl")
43 public interface RequestOrderPort {
44
45 @WebMethod
46 @WebResult(name = "Order", targetNamespace = "http://www.example.com/oms")
47 @RequestWrapper(localName = "requestOrder",
48 targetNamespace = "http://www.example.com/req",
49 className = "com.example.req.RequestOrder")
50 @ResponseWrapper(localName = "requestOrderResponse",
51 targetNamespace = "http://www.example.com/req",
52 className = "com.example.req.RequestOrderResponse")
53 public OrderType requestOrder(
54 @WebParam(name = "CUST_NO",

276 JAX-WS—Client-Side Development

55 targetNamespace = "http://www.example.com/req")
56 String custNO,
57 @WebParam(name = "PURCH_ORD_NO",
58 targetNamespace = "http://www.example.com/req")
59 String purchORDNO,
60 @WebParam(name = "ccard", targetNamespace = "http://www.example.com/req")
61 BUSOBJCCARD ccard,
62 @WebParam(name = "item", targetNamespace = "http://www.example.com/req")
63 List<BUSOBJITEM> item)
64 throws InputFault
65 ;
66
67 }

book-code/chap06/proxy/edited/RequestOrderPort.java

Table 6–1 identifies and explains the use of annotations in the generated
SEI interface appearing in Example 6–4. As you read through this table,
notice that the “Purpose” column gives a general description of what the
annotation is used for. The “Example” column, on the other hand, explains
the role the annotation is playing in this particular example.

These annotations serve two purposes. As used here, they annotate a
SEI and determine, at runtime, how to map a method invocation to SOAP
request/response messages. However, these annotations are also used on
the service side to deploy a Java class as a Web service. If you think about it,
these two purposes are really the same—in either case, the annotations are
mapping a wsdl:operation to a Java method. In fact, the mapping from the
annotations to the SOAP request/response messages shown in Figure 6–3 is
a byproduct of the WSDL SOAP Binding defined in Section 3 of [WSDL
1.1] and clarified in [WS-I BP 1.1]. Stated another way, the SEI annotations
really define a mapping from the wsdl:portType/wsdl:operation to the
Java interface/method. However, by following the WSDL SOAP Binding,
we can also see the relationship between these annotations and the struc-
ture of the SOAP request/response messages.

I’ve covered the SEI annotations in a lot of detail here, because I feel it
is useful for gaining some intuition about the interrelationships between the
WSDL, the SOAP messages, and the mapped service endpoint interface
(SEI). The better the grasp of these interrelationships you have, the easier
it becomes to feel comfortable working with Web Services using the JAX-
WS paradigm.

6.1 JAX-WS Proxies 277

Table 6–1 Descriptions of the Java Annotations Appearing in Example 6–4

Annotation Purpose Example

@WebService Identifies a Java class
as implementing a
Web service, or a
Java interface as
defining a Web ser-
vice interface.

A mapped SEI (in this example, a SEI
mapped from a wsdl:portType) must be
annotated with @WebService per Section
2.2 of [JSR-224]. The name and target-
Namespace attributes identify the
wsdl:portType. The wsdlLocation
attribute identifies the location of the
WSDL containing the wsdl:portType.

@WebMethod Identifies that the
associated method has
been mapped from a
wsdl:operation.

A mapped SEI method (in this example, a
SEI method mapped from a wsdl:opera-
tion) must be annotated with @Web-
Method per Section 2.3 of [JSR-224].

@WebResult Associates the SEI
method’s return
value to a
wsdl:part or the
wsdl:part’s ele-
ment definition.

For a document binding (as in this exam-
ple), the name attribute corresponds to the
local name of the XML element represent-
ing the return value, and the targetName-
space attribute provides the namespace of
the XML element. On the wire, in this
example, this XML element corresponds to
the wrapper child of the SOAP body (the
grandchild of the SOAP body). For an rpc/
literal binding, the name attribute can vary
as the name of the response element is not
defined and is not significant.aa

@RequestWrapper Identifies the request
wrapper bean—a
JAXB-generated
class that maps to the
request message’s
wrapper element.

For a document/literal wrapped style Web
service (as in this example), the class-
Name attribute specifies the fully qualified
name of the JAXB-generated request wrap-
per bean. Likewise, the localName and
targetNamespace attributes refer to the
name and namespace of the wsdl:types
defined wrapper element. The wrapper
element appears as the only child of the
SOAP request message’s body. For an rpc/
literal binding, this annotation is not used,
as the wrapper element is not defined in
the WSDL’s schema.a

Continues

278 JAX-WS—Client-Side Development

In the next section, I look at the nuts and bolts of invoking the example
Web service using a JAX-WS client. After all this complicated discussion
about mappings, you will be relieved to see that it is pretty easy to invoke a
Web service with a JAX-WS proxy!

@ResponseWrapper Identifies the
response wrapper
bean—a JAXB-
generated class that
maps to the response
message’s wrapper
element.

For a document/literal wrapped style Web
service (as in this example), the class-
Name attribute specifies the fully qualified
name of the JAXB-generated response
wrapper bean. Likewise, the localName
and targetNamespace attributes refer to
the name and namespace of the
wsdl:types defined wrapper element.
The wrapper element appears as the only
child of the SOAP response message’s
body. For an rpc/literal binding, this anno-
tation is not used, as the wrapper element
is not defined in the WSDL’s schema.a

@WebParam Associates a SEI
method’s parameter
with a particular
wsdl:part (rpc
style) or a wrapper
child of a particular
wsdl:part’s ele-
ment definition (doc-
ument style). In
either case, the
@WebParam associ-
ates a Java represen-
tation of a parameter
with the WSDL/
SOAP representa-
tion.

For a document/literal wrapped style Web
service (as in this example), the name and
targetNamespace attributes refer to the
name and namespace of a wrapper child of
the wrapper element defined in the
wsdl:types section. On the wire, these
wrapper elements appear as the children of
the request wrapper element, which is the
only child of the SOAP request message’s
body. So, the @WebParam defined elements
are the grandchildren of the SOAP request
message’s body. For an rpc/literal binding,
the targetNamespace attribute is not
used since parameters are unqualified in
that case. Instead, the partName attribute
is used indicating which part of the input
message the parameter maps to.a

a. See Chapter 4, Section 4.3, for a discussion regarding the various styles of WSDL and the differences
between document/literal, document/literal wrapped, and rpc/literal.

Table 6–1 Descriptions of the Java Annotations Appearing in Example 6–4 (Continued)

Annotation Purpose Example

6.1 JAX-WS Proxies 279

6.1.3 Invoking a Web Service with a Proxy

You can use several methods to get a proxy instance. In this section, we
look at three of them. The most elegant approach involves dependency
injection specified by an annotation, as illustrated in Example 6–5.

Example 6–5 Injecting a Proxy Instance with @WebServiceRef

 31 @WebServiceRef(RequestOrderService.class)
 32 public static RequestOrderPort port;

book-code/chap06/proxy/modules/client/src/java/samples/Client.java

The @WebServiceRef annotation defines a reference to a Web ser-
vice. It follows the resource pattern exemplified by the javax.annota-
tion.Resource annotation in Section 2.3 of [JSR-250]. When this
annotation is applied on a field or method, the container will inject an
instance of the requested resource into the application when the applica-
tion is initialized.

In Example 6–5, it annotates the field port of type RequestOrderPort
(the SEI used in this example). This is an example of dependency injection
and the variable port is referred to as the injection target. Using the @Web-
ServiceRef annotation in this way, the container will inject a proxy instance
implementing the SEI into the injection target.

Of course, for such injection to work, this code must execute inside a
container. For this example, I use the GlassFish Application Client Con-
tainer (ACC)—appclient. The ACC is defined within Java EE 5 (see
Chapter EE.9 of [JSR-244]) as a lightweight container required to provide
only security and deployment services.

Getting back to the @WebServiceRef annotation, in this case I am
using it to inject an instance of the SEI RequestOrderPort. When used
in this manner, the value attribute of the annotation must refer to a gen-
erated service interface type (i.e., a subtype of javax.xml.ws.Service).
The class specified here for the value attribute—RequestOrder-
Service.class—was generated at the same time as the SEI by the
wsimport utility. The RequestOrderService generated class provides a
getRequestOrderPort() method that returns an instance of Request-
OrderPort.

280 JAX-WS—Client-Side Development

If you are not running inside a container, you cannot use the @WebSer-
viceRef for injection, but you can still make use of the generated service
class RequestOrderService, as shown in Example 6–6.

Example 6–6 Creating a Proxy Instance Using a Generated Service

63 RequestOrderService service = new RequestOrderService();
64 RequestOrderPort port = service.getRequestOrderPort();
65 (new Tester()).runTests(port);

book-code/chap06/proxy/modules/client/src/java/samples/Client.java

Finally, you can construct a proxy instance for the SEI dynamically by
configuring an instance of the javax.xml.ws.Service class at runtime.
This approach is shown in Example 6–7.

Example 6–7 Creating a Proxy Instance Using a Dynamically Configured Service

77 URL wsdlURL = new URL("http://"+hostName+":"+portVal+"/chap06-endpoint-
endpoint-1.0/requestOrder?wsdl");

78 QName serviceQName =
79 new QName("http://www.example.com/req", "RequestOrderService");
80 QName portQName =
81 new QName("http://www.example.com/req", "RequestOrderPort");
82 Service service = Service.create(wsdlURL, serviceQName);
83 RequestOrderPort port =
84 (RequestOrderPort) service.getPort(portQName, RequestOrderPort.class);
85 (new Tester()).runTests(port);

book-code/chap06/proxy/modules/client/src/java/samples/Client.java

Using this approach, you make use of the Service.create() factory
method to configure a Service instance using the WSDL’s URL and QName
of the wsdl:service. Technically, since the SEI is annotated with the
WSDL’s URL, you don’t even need the URL parameter. However, in case
the URL has changed since the SEI was generated, it is generally safer to
specify the URL in this manner.

Having created the Service instance, you simply invoke the Ser-
vice.getPort() method passing in the QName of the wsdl:portType and

6.1 JAX-WS Proxies 281

the SEI (e.g., RequestOrderPort.class). The Service instance, using the
dynamic proxy mechanism discussed at the beginning of Section 6.1, cre-
ates a proxy instance that you can cast to the SEI.

Example 6–8 shows how the proxy instance can be used and, in particu-
lar, how exceptions are handled.

Example 6–8 Exercising the Proxy Instance

46 public void runTests(RequestOrderPort port) throws Exception {
47
48 BUSOBJCCARD ccard = createCreditCard();
49 BUSOBJCCARD expiredCCard = createExpiredCreditCard();
50 ArrayList<BUSOBJITEM> itemList = createItemList();
51
52 OrderType order;
53 try {
54 System.out.println("Running test with expired credit card.");
55 order = port.requestOrder(
56 "ENT0072123", null, expiredCCard, itemList);
57 } catch (SOAPFaultException sfe) { // a run-time exception
58 processSOAPFault(sfe);
59 } catch (InputFault e) { // a checked exception
60 System.out.println("Error - should have thrown SOAPFault");
61 }
62 try {
63 System.out.println("Running test with null customer number.");
64 order = port.requestOrder(
65 null, null, ccard, itemList);
66 } catch (InputFault ife) {
67 processInputFault(ife);
68 }
69 try {
70 System.out.println("Running test with a valid request.");
71 order = port.requestOrder(
72 "ENT0072123", null, ccard, itemList);
73 printReturnedOrder(order);
74 } catch (InputFault ife) {
75 processInputFault(ife);
76 }

book-code/chap06/proxy/modules/client/src/java/samples/Tester.java

282 JAX-WS—Client-Side Development

The method runTests, shown in Example 6–8, receives as its single
parameter a proxy instance, implementing the RequestOrderPort inter-
face, that was created by one of the approaches discussed earlier. In the
first few lines of this method, I create the JAXB instances that are passed
as parameters to the proxy instance’s SEI method. Since this example
illustrates some exception handling, I created an “expired” credit card and
a “good” credit card.

Inside the first try block, you can see how the dynamic proxy is invoked:

order = port.requestOrder("ENT0072123", null, expiredCCard, itemList);

It’s that simple. You just invoke the requestOrder method on the
RequestOrderPort interface. The return value has type OrderType—which
is the JAXB binding of the oms:Order element specified by the wsdl:out-
put message.

6.1.4 Fault Handling with Proxies

The WSDL for the RequestOrder Web service used in this example speci-
fies a wsdl:fault in the wsdl:operation definition for requestOrder. As
you can see in Example 6–4, this wsdl:fault gets mapped to the Java
exception class InputFault. So, as you would expect, the code that exer-
cises the RequestOrderPort.requestOrder method in Example 6–8 has
catch blocks to handle any InputFault exceptions that might get thrown.

However, you may also have noticed that the code also catches and han-
dles instances of javax.xml.ws.soap.SOAPFaultException. SOAPFaultEx-
ception is the run-time exception the JAX-WS runtime uses to carry
SOAP2 protocol-specific fault information. So, if an invocation of the
RequestOrder Web service returns a SOAP fault message that does not map
to InputFault (i.e., the SOAP fault message’s detail element isn’t an
instance of the faults:inputMessageValidationFault element specified
by the wsdl:fault’s corresponding wsdl:message), JAX-WS converts this
SOAP fault message to an instance of SOAPFaultException.

In an ideal world, all application-specific faults would be represented by
a wsdl:fault. If this were true, the only SOAPFaultException you would
get would be caused by system-level errors (e.g., a server error unrelated
to the Web service’s business logic). But in the real world, a Web service
may return SOAP fault messages that are business-logic-related and not

2. As indicated in Chapter 4, “SOAP” refers to SOAP 1.1 unless specified otherwise.

6.1 JAX-WS Proxies 283

represented by a wsdl:fault. That is why it is good practice, as shown in
Example 6–8, to write catch blocks to handle SOAPFaultException.

As an example of this, the code in Example 6–8 first invokes the
requestOrder method with an expired credit card. As I have set things up
in this example, this causes the Web service to return a SOAP fault message
that does not map to an InputFault. As a result, the requestOrder method
throws the run-time exception SOAPFaultException. The SOAP-ENV:Fault
element, from the SOAP message body, its shown in Example 6–9.

Example 6–9 The SOAP-ENV:Fault Element Resulting from an Expired Credit Card

 3 <SOAP-ENV:Fault xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 4 <faultstring>Business logic exception</faultstring>
 5 <faultcode>SOAP-ENV:Client</faultcode>
 6 <detail>
 7 <expiredCC xmlns="http://www.example.com/req"> Credit card has
 8 expired</expiredCC>
 9 </detail>
10 </SOAP-ENV:Fault>

book-code/chap06/proxy/edited/soapfaultexception.xml

As you can see here, the faultstring element indicates that this is a
business logic exception. The detail element tells you that this results from
an expired credit card. The detail element is intended to provide more
information than is conveyed by the faultcode element, because as you can
see, in this example, the faultcode of SOAP-ENV:Client simply tells you
there was a problem with the request message. Without the detail, you
don’t know what went wrong.

On the other hand, for application-specific faults that are repre-
sented by a wsdl:fault, the WSDL’s soap:fault element specifies the
contents of the SOAP fault message’s details element. The name
attribute relates the soap:fault to the wsdl:fault defined for the oper-
ation. So, from the WSDL (Example 6–1 and Example 6–2), you can see
that for such messages, the detail element contains a single
faults:inputMessageValidationFault child element. Per JAX-WS,
that element gets mapped to the FaultInfo property of the InputFault
exception wrapper class. Example 6–10 shows the sample code from this
example that processes the InputFault instance.

284 JAX-WS—Client-Side Development

Example 6–10 Processing an InputFault Exception

 148 private void processInputFault(InputFault e) {
 149
 150 System.out.println("Mapped Exception (InputFault)");
 151 System.out.println("InputFault.getMessage() =");
 152 System.out.println(e.getMessage());
 153 System.out.println("InputFault.getFaultInfo.getMsg() =");
 154 System.out.println(e.getFaultInfo().getMsg());
 155 System.out.println();
 156
 157 }

book-code/chap06/proxy/modules/client/src/java/samples/Tester.java

So, you can see that handling exceptions that get mapped from
wsdl:fault declarations is relatively simple. You can just use the get-
FaultInfo() method to get a JAXB representation of the fault message’s
detail element contents. This is a lot easier than using the SAAJ APIs to
parse a javax.xml.soap.SOAPFault instance. Example 6–11 shows the
results of running the code from Example 6–10 when a SOAP request mes-
sage is sent to the Web service that contains a null customer number.

Example 6–11 InputFault Processing Output

 3 [java] Running test with null customer number.
 4 [java] Mapped Exception (InputFault)
 5 [java] InputFault.getMessage() =
 6 [java] Input parameter failed validation.
 7 [java] InputFault.getFaultInfo.getMsg() =
 8 [java] Customer Number cannot be null.

book-code/chap06/proxy/edited/inputfault.xml

To run the sample code in this section, do the following:

1. Go to <book-code>/chap06/endpoint.
2. To deploy the Web service, enter mvn install,

and then enter ant deploy.

6.2 XML Messaging 285

3. Go to <book-code>/chap06/proxy.
4. To run the example, enter mvn install,

and then enter ant run-standalone.
5. To run in the client container, enter mvn install,

and then enter ant run-container.
6. When you are done, go back to <book-code>/chap06/endpoint.
7. To undeploy the service, enter ant undeploy.

This section covered a lot of ground. You learned how to use JAX-WS
proxies, and you learned a lot about the technology and standards behind
the use of such proxies. To be comfortable working with JAX-WS, I think it
is necessary to have some intuition about how the WSDL to Java mapping is
defined. That is why I included so much information about the mapping,
and the annotations that control its behavior at runtime. The JAX-WS API is
designed to make it look like you can do Web services invocation simply by
calling a method on a SEI. And with dynamic proxy technology, that is true.
However, understanding how your software behaves—which is necessary
when writing anything more sophisticated than a basic “Hello World” appli-
cation—requires that you get a feel for the mappings and how SOAP fault
messages get handled.

In the next section, I look at a less Java-centric approach to working
with Web services. Instead of invoking SEI methods with JAXB-generated
parameters, I show an example of how to send and receive XML messages
using the JAX-WS client infrastructure.

6.2 XML Messaging

Although dynamic proxies make Web services invocations look like standard
Java method calls, along with this simplicity comes many constraints that
can make SOA difficult.

First, the proxy approach requires that you use a SEI that was gener-
ated, according to the standard JAX-WS WSDL to Java mapping, from the
target Web service’s WSDL. The parameters and return types of the meth-
ods on such a SEI are classes that are created by the JAXB schema compiler
from the wsdl:types section of the WSDL. These are not going to be the
same classes you are using in your business today. For example, if your busi-
ness organization has a Java-based system for order management, you prob-
ably already have a credit card class you would like to use when invoking a
Web service that requires credit card payment. Using the JAXB-generated

286 JAX-WS—Client-Side Development

BUSOBJCCARD class from Section 6.1 (see Figure 6–2) to represent a credit
card is problematic. You are going to be forced to write some custom
middleware to translate between your existing credit card class and
BUSOBJCCARD.

Second, it is often preferable to work with XML messages directly,
rather than with JAXB schema-generated classes. One example of such a
scenario is provided in Chapter 3, where I showed an example of an SOA
Integration service that gets orders from one Web service and uses them
to update a customer history system via another Web service. XSLT is
used to transform the XML from the form used in the orders Web service
to the form required by the customer history Web service. In that exam-
ple, there was no need to bind the XML to a Java class. To do so would
introduce a performance penalty and the potential for errors. So, when
you are doing SOA Integration that involves chaining together multiple
Web services, it often makes the most sense to work with XML directly
rather than a Java binding.

Third, you may want to write code that can dynamically invoke a Web
service. That is, invoke a Web service without having generated and com-
piled a SEI prior to runtime. Such an approach is required, for example,
when the WSDL is not known prior to runtime. This can happen when a
target Web service is looked up, using a registry, at runtime. It is not possi-
ble to invoke such “late binding” Web services using the SEI approach.

JAX-WS provides the javax.xml.ws.Dispatch<T> interface to handle
these scenarios and provide support for XML messaging interactions with
Web services. Dispatch provides support for the dynamic invocation of
Web services.

6.2.1 XML Messaging with Raw XML

In this section, I provide an example of how to dynamically invoke a Web
service using an XML message and the Dispatch<T> interface. The XML
message used in this example appears in Example 6–12.

Example 6–12 The XML Message Used to Invoke a Web Service

 4 <requestOrder xmlns="http://www.example.com/req"
 5 xmlns:ns2="http://www.example.com/oms">
 6 <CUST_NO>ENT0072123</CUST_NO>
 7 <ccard>
 8 <ns2:CC_TYPE>VISA</ns2:CC_TYPE>
 9 <ns2:CC_NUMBER>01234567890123456789</ns2:CC_NUMBER>

6.2 XML Messaging 287

10 <ns2:CC_EXPIRE_DATE>2009-10-31</ns2:CC_EXPIRE_DATE>
11 <ns2:CC_NAME>John Doe</ns2:CC_NAME>
12 </ccard>
13 <item>
14 <ns2:ITM_NUMBER>012345</ns2:ITM_NUMBER>
15 <ns2:STORAGE_LOC>NE02</ns2:STORAGE_LOC>
16 <ns2:TARGET_QTY>50</ns2:TARGET_QTY>
17 <ns2:TARGET_UOM>CNT</ns2:TARGET_UOM>
18 <ns2:PRICE_PER_UOM>7.95</ns2:PRICE_PER_UOM>
19 <ns2:SHORT_TEXT>7 mm Teflon Gasket</ns2:SHORT_TEXT>
20 </item>
21 <item>
22 <ns2:ITM_NUMBER>543210</ns2:ITM_NUMBER>
23 <ns2:TARGET_QTY>5</ns2:TARGET_QTY>
24 <ns2:TARGET_UOM>KG</ns2:TARGET_UOM>
25 <ns2:PRICE_PER_UOM>12.58</ns2:PRICE_PER_UOM>
26 <ns2:SHORT_TEXT>Lithium grease with PTFE/Teflon</ns2:SHORT_TEXT>
27 </item>
28 </requestOrder>

book-code/chap06/xmlmessaging/etc/requestOrder.xml

If this message looks familiar, it is because we worked with it—indirectly
via JAXB—in the preceding section. This is an instance of the req:request-
Order element defined by the wsdl:types section of the RequestOrder
WSDL (see Example 6–1). This is the wrapper element that holds the
parameters required by the Web service. Notice the parameters that are
present in this example: customer number, credit card, and a list of items
to be purchased. Notice also that this is not a SOAP message. It is the
payload for a SOAP message that needs to be carried as the child of the
SOAP Body element.

Example 6–13 shows how to create and use an instance of Dispatch<T>
to invoke a Web service with the message in Example 6–12. The target is
the RequestOrder Web service introduced in the previous section.

Example 6–13 Using Dispatch<Source> for XML Messaging

79 StreamSource xmlSource =
80 new StreamSource(new StringReader(xmlByteArray.toString()));
81 // create Service
82 URL wsdlURL = new URL("http://"+host+":"+port+

288 JAX-WS—Client-Side Development

83 "/chap06-endpoint-endpoint-1.0/requestOrder?wsdl");
84 QName serviceQName =
85 new QName("http://www.example.com/req", "RequestOrderService");
86 Service service = Service.create(wsdlURL, serviceQName);
87 // create Dispatch<Source>
88 QName portQName =
89 new QName("http://www.example.com/req", "RequestOrderPort");
90 Dispatch<Source> dispatch = service.createDispatch(portQName,
91 Source.class, Service.Mode.PAYLOAD);
92 Source orderSource = dispatch.invoke(xmlSource);
93 JAXBContext jc = JAXBContext.newInstance(RequestOrderResponse.class);
94 Unmarshaller u = jc.createUnmarshaller();
95 RequestOrderResponse response =
96 (RequestOrderResponse) u.unmarshal(orderSource);

book-code/chap06/xmlmessaging/modules/client/src/java/samples/Client.java

Starting at the top of this code, you see that the XML message being
used to invoke the service is encapsulated in the StreamSource variable
named xmlSource. The javax.xml.ws.Service class acts as a factory for
creating Dispatch instances. So, to create a Dispatch, we must first create a
Service instance.

As you can see, the Service is created dynamically, as discussed in Exam-
ple 6–7, using the WSDL’s URL and the QName of the wsdl:service—
req:RequestOrderService.

In the middle of this code block, the Dispatch<T> is created. The Ser-
vice.createDispatch() method takes three parameters: the QName of the
wsdl:portType, the Class of the type parameter T, and the service mode.
The type parameter T specifies the Class used to encapsulate the XML
message being sent. Dispatch<T> supports javax.xml.transform.Source,
Object (for JAXB annotated classes), javax.xml.soap.SOAPMessage, and
javax.activation.DataSource (for MIME-typed messages). In this exam-
ple, I use Source to encapsulate the XML. In the next example, I illustrate
how to use JAXB objects.

The service mode parameter can either be javax.xml.ws.Ser-
vice.Mode.MESSAGE or javax.xml.ws.Service.Mode.PAYLOAD. With the
former, you work with the entire SOAP message. With the latter, you use the
Dispatch<T>.invoke() method with only the XML message—i.e., the pay-
load that is contained in the SOAP Body element. As you can see, this example
uses the PAYLOAD service mode. In PAYLOAD mode, the Dispatch instance is
responsible for creating the SOAP message that contains the payload.

6.2 XML Messaging 289

At the end of the code block from Example 6–13, Dis-
patch<T>.invoke() is called, and it returns the response XML message as
a Source instance.

6.2.2 XML Messaging with Custom Annotated JAXB
Classes

Another approach to XML messaging involves writing your own JAXB
annotated classes to represent the XML messages that are sent and received
from a Web service. That is the technique illustrated in this section.

The point here is that you can use JAXB without having to tie yourself to a
JAX-WS-generated SEI. You can use JAXB annotations to map your existing
Java classes to the message payloads a target Web service sends and receives.

Example 6–14 shows the code that sets up and uses the Dis-
patch<Object> instance along with the custom JAXB classes. Notice that
the first thing I’ve done here is to create a JAXBContext using the custom
classes—MyRequestOrder and MyRequestOrderResponse.

Example 6–14 Using Dispatch<Object> for XML Messaging with JAXB

 124 JAXBContext ctxt = JAXBContext.
 125 newInstance(MyRequestOrder.class, MyRequestOrderResponse.class);
 126 QName portQName =
 127 new QName("http://www.example.com/req", "RequestOrderPort");
 128 Dispatch<Object> dispatchJAXB = service.createDispatch(portQName,
 129 ctxt, Service.Mode.PAYLOAD);
 130 // create the custom request order object
 131 MyRequestOrder myReq = new MyRequestOrder();
 132 myReq.ccard = createMyCreditCard();
 133 myReq.item = createMyItemList();
 134 myReq.CUST_NO = "ENT0072123";
 135 myReq.PURCH_ORD_NO = "";
 136 MyRequestOrderResponse resp =
 137 (MyRequestOrderResponse) dispatchJAXB.invoke(myReq);

book-code/chap06/xmlmessaging/modules/client/src/java/samples/Client.java

The Dispatch<Object> instance is created by the Service factory
method as before, except this time we use the factory method that accepts a
JAXBContext rather than a type parameter. This context is used by the

290 JAX-WS—Client-Side Development

underlying Dispatch implementation to marshal/unmarshal the Java
objects to/from the message payloads.

Moving down the code, after the Dispatch<Object> instance is created, I
configure an instance of the MyRequestOrder class—my custom JAXB anno-
tated class that maps to the required SOAP request payload. This class is
shown in Example 6–15. Lastly, the Dispatch<Object>.invoke() method is
used to call the target Web service. The response message payload is mar-
shaled to an instance of MyRequestOrderResponse—my custom JAXB anno-
tated class for holding the response.

Example 6–15 The Custom JAXB Annotated Class: MyRequestOrder

 26 @XmlAccessorType(XmlAccessType.FIELD)
 27 @XmlType(namespace = "http://www.example.com/req")
 28 @XmlRootElement(name = "requestOrder",
 29 namespace = "http://www.example.com/req")
 30 public class MyRequestOrder {
 31
 32 protected String CUST_NO;
 33 protected String PURCH_ORD_NO;
 34 protected MyCreditCard ccard;
 35 protected List<MyItem> item;
 36
 37 }

book-code/chap06/xmlmessaging/modules/client/src/java/samples
/MyRequestOrder.java

Example 6–15 shows how simple it is to create a JAXB annotated object
that maps to the XML message payload request wrapper. This MyRequest-
Order class is simply a container for the four parameters contained as chil-
dren of req:requestOrder. Likewise, Example 6–16 shows how I
constructed a custom JAXB annotated class that maps to the credit card
XML Schema type oms:BUSOBJ_CCARD.

Example 6–16 The Custom JAXB Annotated Class: MyCreditCard

 26 @XmlAccessorType(XmlAccessType.FIELD)
 27 @XmlType(name = "BUSOBJ_CCARD",
 28 namespace = "http://www.example.com/oms")

6.2 XML Messaging 291

 29 public class MyCreditCard {
 30
 31 protected String CC_TYPE;
 32 protected String CC_NUMBER;
 33 protected String CC_EXPIRE_DATE;
 34 protected String CC_NAME;
 35 protected BigDecimal BILLAMOUNT;
 36 protected String CHARGE_DATE;
 37
 38 @XmlAccessorType(XmlAccessType.FIELD)
 39 @XmlType(name = "")
 40 public static class OrderCcard {
 41
 42 @XmlElement(namespace = "http://www.example.com/oms")
 43 protected MyCreditCard ccard;
 44
 45 }
 46 }

book-code/chap06/xmlmessaging/modules/client/src/java/samples
/MyCreditCard.java

To run the sample code in this section, do the following:

1. Start GlassFish (if it is not already running).
2. Go to <book-code>/chap06/endpoint.
3. To deploy the Web service, enter mvn install,

and then enter ant deploy.
4. Go to <book-code>/chap06/xmlmessaging.
5. To run the example, enter mvn install,

and then enter ant run.
6. When you are done, go back to <book-code>/chap06/endpoint.
7. To undeploy the service, enter ant undeploy.

In this section, I illustrated how you can use Dispatch<T> to invoke a
target Web service by working directly with the XML messages that are
sent and received by the client. I also showed how you can create custom
JAXB annotated classes that map to the messages sent and received by a
Web service. These are powerful techniques to have at your disposal for
situations where you can’t, or don’t want to, work with a SEI generated
from WSDL.

292 JAX-WS—Client-Side Development

In the next section, I take these ideas a step further and show how you
can bypass JAXB entirely and use another Java/XML mapping tool to medi-
ate between your existing Java classes and a target Web service.

6.3 Invocation with Custom Java/XML Mappings:
An Example Using Castor Instead of JAXB

In this section, I show how you can use the Castor (www.castor.org) Java/
XML mapping tool and the Dispatch<T> interface to map your existing Java
classes to XML messages that can be used to interact with Web services.
These same techniques can be applied to work with other Java/XML map-
ping tools as well. I have chosen Castor for this example simply because it is
a relatively popular open source tool.3

Castor enables you to map existing Java classes to XML. Intead of using
annotations, like JAXB, Castor uses an external mapping file. So, to map
your classes to XML, you create a mapping file that associates each class and
its properties with an XML type or element and its children. For some
more background on the Castor Java/XML mapping process, read the sec-
tion of www.castor.org titled “XML Mapping.”

Using Castor, or another Java/XML mapping tool, makes sense if you
need to work with existing Java classes and you can’t or don’t want to add
JAXB annotations to them. If the classes are in production, you may not
be able to modify them. Or it may require a lengthy process of modifica-
tion, unit testing, system testing, and so on. to get annotated versions of
the classes put into production. In such situations, it may be easier and
faster to work with a tool like Castor than JAXB. In Chapter 11, I intro-
duce SOA-J’s “Adaptive Serializer” framework that takes this concept a
step further to provide extremely flexible Java/XML mapping for produc-
tion environments.

To get started with this Castor example, examine Example 6–17. It
shows a portion of the class that represents a credit card. As you can see, it
is a simple structure containing the properties of a credit card (e.g., card
number, expiration date). It is actually similar to the custom JAXB credit
card class shown in Example 6–16, except that the field names and types are
different and there are no annotations.

3. Through the magic of Maven, you don’t actually need to do anything to install Castor in
order to run the examples in this section. When you follow the instructions at the end to run
the examples, Maven downloads the Castor JAR for you.

6.3 Invocation with Custom Java/XML Mappings Using Castor

6.3 Invocation with Custom Java/XML Mappings Using Castor 293

Example 6–17 The CreditCard Class

 20 public class CreditCard {
 21
 22 public String type;
 23 public String num;
 24 public String expireDate;
 25 public String name;
 26 public float amount;
 27 public String chargeDate;

book-code/chap06/castor/src/java/samples/CreditCard.java

Likewise, Example 6–18 shows the MyRequestOrder class that is used to
hold the request message parameters that need to be sent to the target Web
service. Again, this class is similar to the JAXB version shown in Example 6–15,
but it has no annotations.

Example 6–18 The MyRequestOrder Class: A Wrapper for the Request
Parameters

 24 public class MyRequestOrder {
 25
 26 protected String custno;
 27 protected String purchordno;
 28 protected CreditCard ccard;
 29 protected List<MyItem> itemList;

book-code/chap06/castor/src/java/samples/MyRequestOrder.java

Example 6–19 shows a portion of the Castor mapping file used in this
example. The top-level mapping element contains the relationships
between classes and the XML they are mapped to. I also define the
namespaces (i.e., req, oms) used in the target XML in the mapping element
so that I can use their prefixes consistently throughout the file.

The children of the mapping element are class elements. These define
the mappings from each Java class to their corresponding XML representa-
tions. The first class element maps the MyRequestOrder class to the
req:requestOrder element.

294 JAX-WS—Client-Side Development

Example 6–19 The Castor Mapping File

4 <!DOCTYPE mapping PUBLIC "-//EXOLAB/Castor Object Mapping DTD Version 1.0//EN"
 5 "http://castor.org/mapping.dtd">
 6 <mapping xmlns:req="http://www.example.com/req"
 7 xmlns:oms="http://www.example.com/oms">
 8 <class name="samples.MyRequestOrder">
 9 <map-to xml="requestOrder" ns-uri="http://www.example.com/req"/>
10 <field name="custno" type="java.lang.String">
11 <bind-xml name="req:CUST_NO" node="element"/>
12 </field>
13 <field name="purchordno" type="java.lang.String">
14 <bind-xml name="req:PURCH_ORD_NO" node="element"/>
15 </field>
16 <field name="ccard" type="samples.CreditCard">
17 <bind-xml name="req:ccard" node="element"/>
18 </field>
19 <field name="itemList" type="samples.MyItem" collection="collection">
20 <bind-xml name="req:item"/>
21 </field>
22 </class>
23 <class name="samples.CreditCard">
24 <map-to xml="BUSOBJ_CCARD" ns-uri="http://www.example.com/oms"/>
25 <field name="type" type="java.lang.String" direct="true">
26 <bind-xml name="oms:CC_TYPE" node="element"/>
27 </field>
28 <field name="num" type="java.lang.String" direct="true">
29 <bind-xml name="oms:CC_NUMBER" node="element"/>
30 </field>
31 <field name="expireDate" type="java.lang.String" direct="true">
32 <bind-xml name="oms:CC_EXPIRE_DATE" node="element"/>
33 </field>
34 <field name="name" type="java.lang.String" direct="true">
35 <bind-xml name="oms:CC_NAME" node="element"/>
36 </field>
37 <field name="amount" type="float" direct="true">
38 <bind-xml name="oms:BILLAMOUNT" node="element"/>
39 </field>
40 <field name="chargeDate" type="java.lang.String" direct="true">
41 <bind-xml name="oms:CHARGE_DATE" node="element"/>
42 </field>
43 </class>

book-code/chap06/castor/etc/mapping.xml

6.3 Invocation with Custom Java/XML Mappings Using Castor 295

The children of the class element are field elements. These map the
properties of the Java class to XML elements or attributes. For example,
you can see that the class element for MyRequestOrder contains field ele-
ments for custno, purchordno, and so on. Lastly, the field element con-
tains a child named bind-xml that specifies the XML the Java property gets
mapped to. In Example 6–19, the field element for custno (at the top) has
a bind-xml child that maps to the req:CUST_NO element.

That is a simple example of a Castor mapping file. If you are interested
in a more detailed description of mapping files, check out the Castor Web
site. Next, I show you how this mapping file can be used together with JAX-
WS to invoke a Web service.

Example 6–20 contains the code that invokes the target Web service. At
the beginning of this code, the mapping file is loaded into an instance of
org.exolab.castor.mapping.Mapping. The Castor Mapping class plays a
role similar to the JAXBContext class in that it is used to configure mar-
shallers and unmarshallers. Next, I create an instance of MyRequestOrder
and a ByteArrayOutputStream to marshal it into. The Castor
org.exolab.castor.xml.Marshaller instance is constructed as a wrapper
around the ByteArrayOutputStream. Then, the Marshaller is configured
by loading in the Mapping instance using the setMapping method.

Example 6–20 Invoking the Web Service with the Castor Java/XML Mapping

48 String host = args[1];
49 String port = args[2];
50 // load Castor Mapping File
51 FileInputStream castorMappingFile = new FileInputStream(args[0]);
52 Mapping castorMapping = new Mapping();
53 castorMapping.loadMapping(new InputSource(castorMappingFile));
54 // Use Castor to marshal MyRequestOrder to XML
55 MyRequestOrder requestOrder = createRequestOrder();
56 ByteArrayOutputStream ba = new ByteArrayOutputStream();
57 Marshaller m = new Marshaller(new OutputStreamWriter(ba));
58 m.setMapping(castorMapping);
59 m.marshal(requestOrder);
60 Source xmlSource = new StreamSource(new StringReader(ba.toString()));
61 // create Dispatch<Source>
62 URL wsdlURL = new URL("http://"+host+":"+port+
63 "/chap06-endpoint-endpoint-1.0/requestOrder?wsdl");
64 QName serviceQName =
65 new QName("http://www.example.com/req", "RequestOrderService");
66 Service service = Service.create(wsdlURL, serviceQName);

296 JAX-WS—Client-Side Development

67 QName portQName =
68 new QName("http://www.example.com/req", "RequestOrderPort");
69 Dispatch<Source> dispatch = service.createDispatch(portQName,
70 Source.class, Service.Mode.PAYLOAD);
71 // invoke Web service with Castor-generated XML
72 Source orderSource = dispatch.invoke(xmlSource);

book-code/chap06/castor/src/java/samples/Client.java

The method invocation

m.marshal(requestOrder);

marshals the MyRequestOrder instance to an XML document (stored in the
ByteArrayOutputStream) according to the rules specified in the Castor
mapping file that was loaded. From this point, the Dispatch<Source>
instance is created and invoked as in the previous section of this chapter
(see Example 6–13). The difference here is that the XML message being
used for this invocation was generated using Castor, as described earlier.

To run the sample code in this section, do the following:

1. Start GlassFish (if it is not running already).
2. Go to <book-code>/chap06/endpoint.
3. To deploy the Web service, enter mvn install,

and then enter ant deploy.
4. Go to <book-code>/chap06/castor.
5. To run the example, enter mvn install,

and then enter ant run.
6. When you are done, go back to <book-code>/chap06/endpoint.
7. To undeploy the service, enter ant undeploy.

In this section, I illustrated some of the versatility that can be achieved
using the Dispatch<Source> interface. Here, you have seen how a non-
JAXB binding tool can be used together with Dispatch<Source> to invoke a
Web service using your existing Java classes.

Up to this point, we have been discussing only the synchronous invoca-
tion of Web services. But JAX-WS also supports asynchronous invocation.
That is the topic of the next section.

6.4 Asynchronous Invocation 297

6.4 Asynchronous Invocation

JAX-WS provides easy-to-use APIs for asynchronous invocation. Using
these APIs, along with the interface java.util.concurrent.Future<T>,
you don’t have to worry about thread use and other low-level concurrency
issues in order to invoke Web services asynchronously.

Asynchronous invocation is a powerful tool for SOA programming
because it helps you to manage the “impedance mismatch” between local
execution and remote processing being handled by Web services. Typically,
a Web services invocation executes significantly slower than the processing
going on in your local address space. So, you can speed up your code con-
siderably by running Web services invocations in separate threads, and hav-
ing the locally executing code do something else while waiting for these
invocations to complete.

In fact, the JAX-WS API provides two approaches to asynchronous pro-
cessing: polling and callback. In the polling form of asynchronous invoca-
tion, your code is responsible for polling an instance of
java.xml.ws.Response<T> (which extends Future<T>) to determine when
a Web service invocation has completed. On the other hand, using the call-
back form of asynchronous invocation, your code supplies an instance of
javax.xml.ws.AsyncHandler to process the results of the Web service
invocation. When the Web service returns its results, they are automatically
processed by the AsyncHandler instance you provided. In this manner, the
AsyncHandler plays a role analogous to javax.jms.MessageListener on a
JMS queue. Just as the MessageListener processes messages asynchro-
nously as they arrive, so the AsyncHandler processes a Web service
response asynchronously when it arrives. The major difference here, of
course, is that whereas a MessageListener is configured once for a queue
and handles many messages, an AsyncHandler must be specified with each
asynchronous Web service invocation.

6.4.1 Polling

Example 6–21 shows an example of how to use the polling form of asyn-
chronous invocation with a Dispatch<T> interface. As you can see, the Dis-
patch<Source> instance is configured in the same manner as in previous
examples.

298 JAX-WS—Client-Side Development

Example 6–21 Asynchronous Invocation with Polling

141 URL wsdlURL = new URL("http://"+host+":"+port+
142 "/chap06-endpoint-endpoint-1.0/requestOrder?wsdl");
143 QName serviceQName =
144 new QName("http://www.example.com/req", "RequestOrderService");
145 Service service = Service.create(wsdlURL, serviceQName);
146 QName portQName =
147 new QName("http://www.example.com/req", "RequestOrderPort");
148 Dispatch<Source> dispatch = service.createDispatch(portQName,
149 Source.class, Service.Mode.PAYLOAD);
150 Response<Source> responseSource = dispatch.invokeAsync(xmlSource);
151 long startTime = (new Date()).getTime();
152 while (!responseSource.isDone()) {
153 Thread.sleep(10);
154 }
155 long elapsed = (new Date()).getTime() - startTime;
156 Source orderSource = responseSource.get();

book-code/chap06/asynchronous/modules/client/src/java/samples/Client.java

In this case, however, the Web service is invoked using the Dis-
patch<T>.invokeAsync(T msg) method. Under the covers, this method
uses the java.util.concurrent.Executor4 associated with the Service
instance that created the Dispatch<T> to invoke the Web service using a
separate thread. The asynchronous invocation returns an instance of
Response<Source>. The javax.xml.ws.Response<T> interface is a wrapper
around Future<T> that provides an additional method—getContext()—to
retrieve the response message context.

In this example, I use the get() method from Future<T> to retrieve the
response message payload as an instance of Source. Notice that this exam-
ple demonstrates the polling aspect of this form of asynchronous invocation.
The polling can be seen in the while loop that polls the isDone() method
to determine when the asynchronous invocation has completed. The vari-
able elapsed captures the milliseconds required to complete the asynchro-
nous invocation. To run this example,5 do the following:

4. The Executor interface, along with Future<T> and the rest of the java.util.concur-
rent package, was introduced in J2SE 5.0. Implementations of Executor typically provide
thread management services (e.g., pooling, scheduling). For more information, see [JSR-166].
5. This actually runs the code for all the examples in Section 6.4.

6.4 Asynchronous Invocation 299

1. Start GlassFish (if it is not running already).
2. Go to <book-code>/chap06/endpoint.
3. To deploy the Web service, enter mvn install,

and then enter ant deploy.
4. Go to <book-code>/chap06/asynchronous.
5. To run the example, enter mvn install,

and then enter ant run.
6. When you are done, go back to <book-code>/chap06/endpoint.
7. To undeploy the service, enter ant undeploy.

In this section, I showed an example of asynchronous invocation using
the Dispatch<T> client interface. It is also possible, however, to do asyn-
chronous invocation with a proxy instance of a SEI, rather than a Dispatch.

6.4.2 Asynchronous Methods with Proxies

Before looking at how the callback form of asynchronous invocation works,
I’m taking a little diversion to talk about how to enable asynchronous invo-
cation when working with SEI proxies, rather than Dispatch<T>.

In addition to the asynchronous invocation methods on the Dis-
patch<T> interface, JAX-WS specifies that implementations must make it
possible to generate service endpoint interfaces (SEIs) with client-side
asynchronous methods. The generation of a SEI that includes asynchronous
methods is optional at the user’s discretion. JAX-WS also declares that the
user must be able to specify the generation of these asynchronous methods
using binding language declarations. See Chapter 5, Section 5.6, for a
detailed discussion of JAXB 2.0 binding language declarations. The JAX-WS
binding language works in a similar fashion, but is used to customize the
WSDL to Java mapping (rather than the XML Schema to Java mapping that
is customized by JAXB 2.0 binding declarations).

The asynchronous methods are generated as follows. Say that the syn-
chronous mapping of the target wsdl:operation looks like this:

Xxx port.yyyZzz()

where Xxx is the return type and yyyZzz is the property name. Then, the
polling form of the asynchronous mapping of that same wsdl:operation
looks like this:

Response<Xxx> port.yyyZzzAsync()

300 JAX-WS—Client-Side Development

and the callback form will look like:

Future<?> port.yyyZzzAsync(..., AsyncHandler<Xxx> asyncHandler)

The binding language declarations needed to generate these interfaces
can be specified either inline with the WSDL or as a separate file. In my
opinion, the inline specification of binding declarations seems rather
impractical because usually the Web service will be deployed with its
WSDL, and that WSDL is not going to contain, in general, custom binding
language declarations that are used only by Java clients. Many would say
that publishing WSDL with such annotations is actually bad practice
because it introduces programming language specifics into the WSDL.

Example 6–22 shows how the necessary binding language specifications
can be expressed in an external file. In this example, the enableAsyncMap-
ping element (the innermost portion of the XML) is set to true to indicate
that the WSDL to Java compiler that creates the SEI should enable the
generation of the asynchronous methods.

Example 6–22 Binding Language Declarations for Enabling Asynchronous Methods

 4 <bindings xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 5 wsdlLocation="http://localhost:8080/chap06-endpoint-endpoint-1.0/
requestOrder?wsdl"

 6 xmlns="http://java.sun.com/xml/ns/jaxws">
 7 <bindings node="//wsdl:portType[@name='RequestOrderPort']">
 8 <bindings node="wsdl:operation[@name='requestOrder']">
 9 <enableAsyncMapping>true</enableAsyncMapping>
10 </bindings>
11 </bindings>
12 </bindings>

book-code/chap06/asynchronous/modules/wsdl2java/etc
/async-binding-customizations.xml

The bindings elements that surround this declaration use the node
attribute to specify the part of the target WSDL that is to be modified by the
enclosed binding declaration. The node attribute is set to an XPath expression
to indicate the target location. As you can see from this example, bindings
elements can be nested. Here, the outer bindings element specifies the
RequestOrderPort wsld:portType of the target WSDL. Inside that, the sec-
ond bindings element specifies the requestOrder wsdl:operation.

6.4 Asynchronous Invocation 301

When using GlassFish to generate the SEI with the asynchronous
methods, the external binding declarations file shown in Example 6–22 is
passed to the wsimport utility with the -b option.

In the next section, I show an example of using the asynchronous meth-
ods on a SEI proxy generated in this manner. I also use the callback form of
the asynchronous method to demonstrate that style of invocation.

6.4.3 Callback

Example 6–23 shows how to implement an asynchronous callback using a
SEI. As you can see, the code for creating the Service instance is the same
as in Example 6–21. From the Service instance, the getPort() method is
used to create a proxy instance of the SEI RequestOrderPort. This is the
same approach as used in Example 6–7.

Example 6–23 Asynchronous Invocation with Callback

103 URL wsdlURL = new URL("http://"+host+":"+portVal+
104 "/chap06-endpoint-endpoint-1.0/requestOrder?wsdl");
105 QName serviceQName =
106 new QName("http://www.example.com/req", "RequestOrderService");
107 Service service = Service.create(wsdlURL, serviceQName);
108 QName portQName =
109 new QName("http://www.example.com/req", "RequestOrderPort");
110 RequestOrderPort port = service.getPort(portQName, RequestOrderPort.class);
111 RequestOrderCallbackHandler cbh = new RequestOrderCallbackHandler();
112 cbh.setStartTime((new Date()).getTime());
113 Future<?> response1 = port.requestOrderAsync(
114 "ENT0072123", "", createCreditCard(), createItemList(), cbh);
115 Future<?> response2 = port.requestOrderAsync(
116 "ENT0072123", "", createExpiredCreditCard(), createItemList(), cbh);
117 try {
118 response1.get(2000, TimeUnit.MILLISECONDS);
119 } catch (TimeoutException te) {
120 response1.cancel(true);
121 }

book-code/chap06/asynchronous/modules/client/src/java/samples/Client.java

What is different here is the creation and use of the AsyncHandler<T>
instance: RequestOrderCallbackHandler. This class, discussed later, is

302 JAX-WS—Client-Side Development

used to handle the response to the Web service invocation. It is invoked, by
the thread handling the Web services call, when the response message is
received.

Notice that the invocations themselves (there are two of them in Exam-
ple 6–23)—port.requestOrderAsync()—contain the same four parame-
ters as the synchronous versions (see Example 6–8), plus a fifth
parameter—the AsyncHandler<T> instance. The asynchronous invocations
return instances of Future<?> (i.e., response1 and response2). The
Future<?> instance returned can be polled to determine when the opera-
tion has completed. However, this is not necessary since the response mes-
sage is processed by the AsynchHandler<T> in a separate thread. In this
example, I used the expression

response1.get(2000, TimeUnit.MILLISECONDS)

to poll the Future<?> instance that has been returned. This form of the
Future<T>.get() method waits for, at most, 2,000 milliseconds for the
operation to complete. If it has not completed in that amount of time, it
throws a TimeoutException. In this example, I catch the TimeoutExcep-
tion and cancel the Web service invocation. In this manner, you can see
that it is possible to use such an approach to place limits on the amount of
time you will let an asynchronous invocation run.

Example 6–24 shows the implementation of AsyncHandler<T>—
RequestOrderCallbackHandler—used in this section. The AsyncHan-
dler<T> interface has a single method, handleResponse, which implements
the action to be taken when the response message is received from a Web
service invocation. The RequestOrderCallbackHandler implementation
does two things. It calculates the elapsed time used by the asynchronous
invocation, and it prints out the response message to the console.

Example 6–24 An AsyncHandler<T> Implementation

225 private static class RequestOrderCallbackHandler
226 implements AsyncHandler<RequestOrderResponse> {
227
228 private long startTime;
229
230 public void handleResponse (Response<RequestOrderResponse> response) {
231
232 long elapsed = (new Date()).getTime() - startTime;
233 Marshaller m;

6.4 Asynchronous Invocation 303

234 try {
235 JAXBContext jc = JAXBContext.newInstance(RequestOrderResponse.class);
236 m = jc.createMarshaller();
237 m.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT, Boolean.TRUE);
238 System.out.println();
239 System.out.println("==");
240 System.out.println("Asynchronous Proxy Test");
241 System.out.println("with Callback and Dynamic Service");
242 System.out.println("Elapsed waiting time for Web service response:");
243 System.out.println(elapsed + " milliseconds.");
244 System.out.println("==");
245 System.out.println();
246 System.out.println();
247 System.out.println("Response Message =============================");
248 if (response != null) {
249 RequestOrderResponse orderResponse = response.get();
250 m.marshal(orderResponse, System.out);
251 }
252 } catch (ExecutionException e) {
253 Throwable t = e.getCause();
254 if (t instanceof SOAPFaultException) {
255 processSOAPFault((SOAPFaultException) t);
256 return;
257 }
258 e.printStackTrace();
259 } catch (Exception e) {
260 e.printStackTrace();
261 }
262
263 }
264
265 public void setStartTime(long t) { startTime = t; }
266

book-code/chap06/asynchronous/modules/client/src/java/samples/Client.java

In addition, one other important function is performed by this han-
dler—exception processing. As I illustrated in Section 6.1.4, it is very
important to build fault handling into your Web services invocations. In
this case, I show how to implement fault handling in a callback scenario,
within an AsyncHandler<T> implementation. According to the JAX-WS
specification, if a wsdl:operation asynchronous invocation fails, neither

304 JAX-WS—Client-Side Development

a SEI-specific exception nor a SOAPFaultException gets thrown directly;
instead, it throws a java.util.concurrent.ExecutionException
instance is returned from the Response.get() method. The cause of the
ExecutionException, retrieved using the getCause() method, contains
either the SEI-specific exception (e.g., InputFault from Example 6–4)
or a protocol-specific exception such as SOAPFaultException.

In Example 6–24, I show the code to handle the SOAPFaultException
case. In this case, I simply invoke the processSOAPFault method as in
Example 6–8 to print out the contents of the SOAP fault message. You can
run this example by following the same steps as shown in Example 6–21.
The instructions there run both the polling and the callback invocations of
the target Web service.

That concludes this discussion of client-side Web service invocation
basics. I showed you how to use SEI proxies for Java style invocation, and
how to use the Dispatch<T> interface for XML messaging. You saw both
synchronous and asynchronous invocation styles. I also looked into some of
the details of the JAX-WS WSDL to Java mapping and talked about the
importance of fault processing when dealing with Web services invocation.

In the next section, I look at the topic of client-side handlers. Handlers
enable you to do pre- and post-processing of the messages used to invoke
Web services. Handlers can be used when doing SEI proxy style invocation
or Dispatch<T> style XML messaging.

6.5 SOAP Message Handlers

The JAX-WS handler framework allows you to define message handlers that
can process XML messages before and after a Web service invocation—
either on the client side or on the server side. In this section, I focus on cli-
ent-side handlers. Such handlers are commonly used to implement messag-
ing functionality that is not specific to a particular Web service. For
example, you might use a handler to add a wsse:Security6 header or a
wsrm:Sequence7 header to a SOAP message. In fact, one of the primary
uses envisioned for the JAX-WS handler framework is as a means to
implement Web Services standards like WS-Security [WS-Security 1.1]

6. wsse:Security is a header block defined by the SOAP MessageSecurity 1.1 standard
that is part of the OASIS WS-Security [WS-Security 1.1] specification.
7. wsrm:Sequence is a header block defined by the OASIS Web Services Reliable Messag-
ing standard for reliable messaging [WS-RM].

6.5 SOAP Message Handlers 305

and WS-ReliableMessaging [WS-RM] on top of the base invocation
implementation.

To demonstrate the use of client-side message handlers, I created a sim-
ple example implementing message persistence using a handler. Message
persistence is the process of saving a message to nonvolatile memory (e.g.,
disk) prior to sending it. It enables the user to recover the message and
resend it in the event of a system failure (e.g., crash, network disruption,
etc.). Message persistence can be used, for example, to help provide the
type of delivery assurance specified in WS-ReliableMessaging.

Using JAX-WS, there are two approaches for configuring a message
handler on a client: It can be done programmatically, or with the
@javax.jws.HandlerChain annotation. In this section, I focus on the pro-
grammatic configuration of handlers. When I look at server-side handlers in
the next chapter, I show examples that use the @HandlerChain annotation.

Interestingly, the JAX-WS specification does not define a standard
deployment model for handlers. Such a model is provided by [JSR-109] and
[JSR-181]. I discuss the deployment model for handlers in Chapter 8.

Example 6–25 shows how to programmatically configure handlers.
Handlers are set up by configuring an instance of javax.xml.ws.hand-
ler.HandlerResolver on a Service instance. In this manner, any SEI
proxy or Dispatch<T> created from such a Service instance will use the
specified HandlerResolver to determine the handler chain defined for the
particular wsdl:portType it implements. In the code example here, you can
see that the Service.setHandlerResolver() method is used to set up an
instance of the RequestOrderHandlerResolver—a class I have written that
implements HandlerResolver (discussed further later).

Example 6–25 Programmatically Adding Handlers for a Web Service Invocation

55 private static void runPersistenceHandlerTest(File persistenceDir)
56 throws Exception {
57
58 RequestOrderService service = new RequestOrderService();
59 // add the handler to the service
60 service.setHandlerResolver(new RequestOrderHandlerResolver());
61 RequestOrderPort port = service.getRequestOrderPort();
62 // configure message request context
63 Map<String, Object> reqCtxt = ((BindingProvider) port).getRequestContext();
64 reqCtxt.put(PersistMessageHandler.PERSISTENCE_DIR_PROP, persistenceDir);
65 reqCtxt.put(AddMessageIdHandler.MSGID_PROP, "msg0001");
66 // add the callback handler

306 JAX-WS—Client-Side Development

67 RequestOrderCallbackHandler cbh = new RequestOrderCallbackHandler();
68 cbh.setStartTime((new Date()).getTime());
69 Future<?> response = port.requestOrderAsync(
70 "ENT0072123", "", createCreditCard(), createItemList(), cbh);
71 response.get(2000, TimeUnit.MILLISECONDS);
72
73 }

book-code/chap06/handler/modules/client/src/java/samples/Client.java

It is important that the SEI proxy or Dispatch<T> (i.e., the Binding-
Provider) be instantiated after the Service has been configured with the
HandlerResolver. That is because the BindingProvider inherits the Hand-
lerResolver that is configured at the time it gets instantiated. If, later on,
you set a new HandlerResolver, BindingProvider instances created from
that point on will use the new HandlerResolver. But those created previ-
ously will not be affected.

In the last half of the code in Example 6–25, you can see that I am
configuring the request context of the RequestOrderPort SEI proxy. This
is not generally required for handler configuration, but in the specific
example I have created here, it is necessary for the simple persistence
handler I implemented to operate. In this example, I am setting a prop-
erty—PERSISTENCE_DIR_PROP—that specifies the directory where mes-
sages will be stored (i.e., persisted). At runtime, a handler has access to
this request context. As you will see, my persistence handler reads that
property to configure itself.

Example 6–26 shows my implementation of the HandlerResolver
interface. This interface implements a single method—getHandler-
Chain(PortInfo p)—that returns a list of handlers.

Example 6–26 Implementing the HandlerResolver Interface

148 private static class RequestOrderHandlerResolver implements HandlerResolver {
149
150 public List<Handler> getHandlerChain(PortInfo arg0) {
151
152 List<Handler> handlerChain = new ArrayList<Handler>();
153 handlerChain.add(new AddMessageIdHandler());
154 handlerChain.add(new PersistMessageHandler());
155 return handlerChain;

6.5 SOAP Message Handlers 307

156
157 }
158
159 }

book-code/chap06/handler/modules/client/src/java/samples/Client.java

At runtime, the BindingProvider (i.e., proxy or Dispatch<T>) uses this
interface to get a list of handlers. Outbound messages are processed by the
handlers in the order in which they appear in this list. Inbound messages
(i.e., SOAP responses on the client side) are processed by the handlers in
the reverse order.

As you can see here, the List<Handler> returned by RequestOrder-
HandlerResolver contains two handlers: AddMessageIdHandler and Per-
sistMessageHandler. The first of these, AddMessageIdHandler, adds a
message ID (a unique identifier) header to the outgoing SOAP message.
This ID is used by the subsequent handler, PersistMessageHandler, to
create a unique filename under which the message gets persisted.

Both handlers implement the javax.xml.ws.handler.soap.SOAPHan-
dler<T extends SOAPMessageContext> interface. Therefore, these are
what the JAX-WS specification refers to as Protocol Handlers, which oper-
ate on protocol-specific messages (and message contexts). The protocol
here is SOAP, so these handlers operate on SOAP messages. JAX-WS also
defines Logical Handlers that operate only on the generic message payloads
(and contexts). Logical Handlers implement javax.xml.ws.handler.Logi-
calHandler and are not able to manipulate protocol-specific parts of a mes-
sage such as a SOAP header block.

Example 6–27 implements a Protocol Handler for SOAP that persists
messages to a file system directory.

Example 6–27 A Message Handler for Client-Side Persistence

35 public class PersistMessageHandler implements SOAPHandler<SOAPMessageContext> {
36
37 public static final String PERSISTENCE_DIR_PROP =
38 "samples.persistence.directory";
39
40 public Set<QName> getHeaders() {
41 return null;
42 }

308 JAX-WS—Client-Side Development

43
44 public boolean handleMessage(SOAPMessageContext ctxt) {
45
46 System.out.println("Entered PersistMessageHandler.handleMessage");
47 // return if inbound message
48 if (!((Boolean)ctxt.get(MessageContext.MESSAGE_OUTBOUND_PROPERTY)).
49 booleanValue()) { return true; }
50 SOAPMessage msg = ctxt.getMessage();
51 File persistenceDir = (File) ctxt.get(PERSISTENCE_DIR_PROP);
52 Iterator itr;
53 try {
54 itr = msg.getSOAPHeader().examineAllHeaderElements();
55 String msgId = null;
56 while (itr.hasNext() && msgId == null) {
57 SOAPHeaderElement headerElt = (SOAPHeaderElement) itr.next();
58 QName headerQName = headerElt.getElementQName();
59 if (headerQName.equals(AddMessageIdHandler.MSGID_HEADER)) {
60 msgId = headerElt.getAttribute("id");
61 }
62 }
63 if (msgId == null) {
64 System.out.println("No message ID header.");
65 return false;
66 }
67 File msgFile = new File(persistenceDir, msgId+".xml");
68 msgFile.createNewFile();
69 msg.writeTo(new FileOutputStream(msgFile));
70 } catch (Exception e) {
71 e.printStackTrace();
72 return false;
73 }
74 return true;
75
76 }
77
78 public boolean handleFault(SOAPMessageContext ctxt) {
79 return false;
80 }
81
82 public void close(MessageContext ctxt) {}
83
84
85 }

book-code/chap06/handler/modules/client/src/java/samples/PersistMessageHandler.java

6.5 SOAP Message Handlers 309

As you can see, the handleMessage() method receives an instance of
the SOAPMessageContext. The first thing that happens inside the handle-
Message() method is that the context is examined to determine the value of
MessageContext.MESSAGE_OUTPUT_PROPERTY. This handler only persists
outgoing messages, so determining the direction of the message is the first
thing that happens.

Assuming the message is outgoing, the next thing that happens is that
the handler examines the PERSISTENCE_DIR_PROP (which got set in Exam-
ple 6–25) to determine the directory into which the outgoing message
should be saved. Next comes the SOAP header processing to find the
header where the message’s unique ID is contained. Such header process-
ing is typical for a SOAP handler—although this example is extremely sim-
ple. If there were an authentication handler, for example, you might see
code here that looked for a header containing an encrypted password to
authenticate the user before sending his message over the wire. Having
found the message ID, you can see that this code simply saves the message
to a file using the SOAPMessage.writeTo() method. SOAPMessage and
SOAPHeader are part of the SAAJ 1.3 API (SOAP with Attachments API for
Java) for manipulating SOAP messages. SAAJ is the API that is typically
used inside a handler to get access to the parts of a SOAP message. See
[JSR-67] for more details on SAAJ.

To run the example from this section, do the following. After you run it,
check the contents of chap06/handler/persistedMessages to see the
SOAP message that has been saved there by the PersistMessageHandler
handler.

1. Start GlassFish (if it is not running already).
2. Go to <book-code>/chap06/endpoint.
3. To deploy the Web service, enter mvn install,

and then enter ant deploy.
4. Go to <book-code>/chap06/handler.
5. To run the example, enter mvn install,

and then enter ant run.
6. When you are done, go back to <book-code>/chap06/endpoint.
7. To undeploy the service, enter ant undeploy.

That wraps up our discussion of handlers on the client side. I get into
more depth with handlers in the next chapter, where I look at how to use
them together with a Web service deployment.

310 JAX-WS—Client-Side Development

6.6 Conclusions

In this chapter, you received a concise introduction to creating JAX-WS cli-
ents. In the first part, I focused quite a bit on explaining the JAX-WS
WSDL to Java mapping. That is because I believe strongly that to use JAX-
WS effectively, you need to understand how this mapping (along with the
JAXB XML Schema to Java mapping) works. I encourage you to play
around with the code examples in this chapter. For example, change the
RequestOrder.wsdl file contained in the <book-code>/chap06/endpoint
directory to modify the Web service interface. Of course, when you do this,
you will need to also modify the samples.RequestOrder class in that same
directory structure to comply with the new WSDL.

After doing this, run through the examples from each section in this
chapter. Pay attention to how the SEI proxy method changes and how its
parameters change. Doing this will start to develop your intuition for how
the WSDL to Java mapping works and how changes to the WSDL ripple
through your Java code.

In the next chapter, I provide a detailed look at how to create Web ser-
vices using JAX-WS 2.0.

311

C H A P T E R 7

JAX-WS 2.0—Server-Side
Development

The preceding chapter looked at how JAX-WS can be used as a client-side
tool to create consumers of SOA services. This chapter looks at the server-
side capabilities provided by JAX-WS. I examine a variety of implementa-
tions, including examples that start from WSDL, integrate with existing
(legacy) classes, and perform XML processing without any Java/XML bind-
ing. Deployment and packaging issues are discussed in the next chapter,
where Web Services Metadata 2.0 (WS-Metadata) [JSR 181] and Web Ser-
vices for Java EE 1.2 (WSEE) [JSR 109] are covered.

The key to understanding how to best use JAX-WS to develop and
deploy useful SOA services is to look at and write lots of examples. So, that
is what I give you in this chapter—lots of examples. However, before diving
into the examples, it is good to step back for a minute and understand the
big picture. Section 7.1 starts with an overview of the JAX-WS server-side
architecture.

7.1 JAX-WS Server-Side Architecture

A Java EE 5 container provides deployment services for publishing Web
services endpoints and run-time services for processing Web services
requests, responses, and faults. This section looks at the run-time services
architecture as specified primarily by JAX-WS [JSR 224] and to some extent
by WSEE [JSR 109]. Deployment of security services and the run-time
implementation of security are discussed briefly in the next chapter.

Figure 7–1 provides a high-level illustration of the run-time architecture
for an endpoint deployed using the SOAP protocol binding. It shows the run-
time components of a deployed Web service. The numbers label the steps of an
invocation of the deployed Web service. On the far left, the Endpoint Listener

312 JAX-WS 2.0—Server-Side Development

and Dispatcher are components largely described by WS-Metadata and
WSEE. The implementation of these components is platform specific and dif-
fers depending on whether the Web service is deployed as a stateless session
bean (EJB) endpoint or as a servlet endpoint. A detailed discussion of these
deployment options is deferred to the next chapter. In this chapter, I focus on
the components and behavior that are common to both EJB endpoints and
servlet endpoints.

The components of Figure 7–1 that are labeled “SOAP Protocol
Binding” and “JAX-WS and JAXB Java/XML Binding” are largely
described by the JAX-WS specification. The component labeled “Web
Service” is described in all the specifications. For example, the @Web-
ServiceProvider annotation is specified in JAX-WS, whereas the @WebSer-
vice annotation is specified in WS-Metadata. The meta-data (e.g.,
deployment descriptors) that get packaged in a WAR or EJB-JAR is
largely specified in WSEE.

To describe each component, I walk through an invocation by a client.
The steps in the invocation follow the numbering in Figure 7–1. Note that
the client can be written in any language (e.g., Java, C#, PHP, etc.).

Figure 7–1 Server-side JAX-WS invocation sub-system.

Web Service

Meta-data

(WSDL,
Handler

File, Depl
Descrpt.)

@WebService or
@WebServiceProvider

SOAP
Request

SOAP
Response

1

D
is

pa
tc

he
r

JA
X-

W
S

 a
nd

 J
AX

B
Ja

va
/X

M
L

B
in

di
ng

En
dp

oi
nt

 L
is

te
ne

r

JAX-WS Runtime Services

SEI

Other Impl.
Classes

(via WSDL
or user-
defined)

Publish
WSDL

SOAP Protocol Binding

m
us

tU
nd

er
st

a
nd

 P
ro

ce
ss

in
g

JSR-109 &
JSR-181
Services

Handler Chain

Handler

(SOAPHandler)

SOAP Fault Processing

Web Service Client

(Java, .NET, PHP, etc.)

Get WSDL

2

3

4

5

6
7

8

9

7.1 JAX-WS Server-Side Architecture 313

1. The client starts by getting the WSDL for the Web service that has
been deployed. WSEE requires that a JAX-WS provider support
URL publication. In the examples supplied in this chapter, I use the
WSDL that GlassFish publishes to the URL of the form http://<end-
point-address>?wsdl. Publishing the WSDL at a URL of that form is
a common convention across Web Services providers, but is not
mandated by any standard.

2. Based on the WSDL, the client composes a SOAP request and does
an HTTP POST1 to the URL specified by the soap:address’s loca-
tion attribute.

3. The HTTP request containing the SOAP message is received by the
Endpoint Listener. This listener is a servlet. The process by which
the listener servlet is deployed or registered varies by Java EE con-
tainer and even by type of deployment.2 The listener servlet passes
the HTTP request along to the Dispatcher. The Dispatcher may be
implemented as a separate class from the Endpoint Listener, or the
two may be combined, but the functionality is logically distinct. The
Dispatcher’s job is to look up the correct Web service endpoint
implementation and dispatch the HTTP request to that endpoint.3

4. At this stage, the request processing transitions to the JAX-WS
run-time system. Along with the request, the JAX-WS has received
from the Dispatcher a description of the correct endpoint. A
javax.xml.ws.handler.MessageContext is built from the con-
tents of the HTTP request. In this case (since we are talking about
SOAP), the message context is an instance of javax.xml.ws.hand-
ler.soap.SOAPMessageContext and contains the SOAP request as
a SAAJ SOAPMessage. This SOAPMessageContext is processed by
the SOAP protocol binding before the actual Web service end-
point is invoked. The SOAP protocol binding is an example of a
JAX-WS protocol binding. The primary responsibilities of such a
JAX-WS protocol binding are to extract the message context from
the transport protocol (e.g., SOAP/HTTP or XML/HTTP); process

1. HTTP GET is allowed when doing XML/HTTP, commonly called REST. See Chapter 3
for more details.
2. For example, in GlassFish, servlet endpoints have a listener (the JAXWSServlet class)
that is deployed along with a provider-generated web.xml. SSB endpoints, on the other hand,
use a different listener (the EjbWebServiceServlet class) that is registered at run-time
when the SSB is started.
3. Chapter 4 contains a description of how SOAP over HTTP requests are dispatched to
endpoints.

314 JAX-WS 2.0—Server-Side Development

the message context through the handlers that have been configured
for the Web service endpoint; and configure the result (either a
response or an exception) to be sent back to the client using the
appropriate transport. In this case, a SOAP protocol binding has the
additional task of doing the mustUnderstand processing required by
SOAP. If there are any “must understand” headers that are not
understood, either a SOAP fault is dispatched or (if the endpoint is
deployed as a one-way service) processing stops.

5. Next, the SOAP protocol binding invokes each handler in its associ-
ated handler chain. The handlers associated with the endpoint are
defined by a deployment descriptor file that is specified by the
@HandlerChain annotation on the service implementation bean.
Handlers provide developers with the capability of preprocessing a
message context before the endpoint gets invoked. Examples of the
types of processing typically done by server-side handlers include
persisting a message to provide recovery in the event of a server
crash; encryption/decryption; sequencing (i.e., examining message
header sequence IDs to ensure that messages are delivered in
order); and so on. SOAP header processing is usually done by han-
dlers, but the JAX-WS framework provides handlers with access to
the SOAP body as well.

6. After the inbound handlers are finished, the SOAP message is
unmarshalled into instances of the Java objects that are used to
invoke the endpoint method. This unmarshalling process is governed
by the JAX-WS WSDL to Java mapping and the JAXB 2.0 XML to
Java mapping. The WSDL to Java mapping determines (from the
wsdl:operation) which endpoint method to invoke based on the
structure of the SOAP message. And the JAXB runtime serializes
the SOAP message into the parameters required to invoke that
method. If the deployed service implementation bean is an imple-
mentation of javax.xml.ws.Dispatch<T>, this process is much
simpler. In that case, the message payload is simply passed to the
Dispatch.invoke() method and the implementation processes the
XML directly.

7. The last step of the inbound request processing is the invocation of
the appropriate method on the deployed service implementation
bean. After invocation, the process is reversed. The return value
from the invocation (along with any parameters that have been
declared OUT or IN/OUT) is marshaled to a SOAP response mes-
sage of the appropriate form based on the JAX-WS WSDL to Java
mapping and the JAXB 2.0 XML to Java mapping.

7.1 JAX-WS Server-Side Architecture 315

8. The outbound response processing invokes the handlers (in
reverse order) again. If at any point, during inbound handler pro-
cessing, endpoint invocation, or outbound handler processing, an
unhandled exception is thrown, the SOAP Fault Processing com-
ponent maps the exception to a SOAP fault message. In either
case, SOAP fault or SOAP response message, the SOAP protocol
binding formats the result for the appropriate transport (e.g.,
SOAP/HTTP).

9. Lastly, the Endpoint Listener servlet completes its processing and
sends back the result received from the Dispatcher as an HTTP
response to the client.

Those steps provide a high-level overview of the JAX-WS runtime as
configured within a Java EE 5 container. Each Java EE provider imple-
ments things slightly differently, but the overview given here is largely dic-
tated by the JWS specifications, so it should not vary enormously from one
provider to the next. The most variation will be found in how the Endpoint
Listener and Dispatcher components are implemented. Also, you should
bear in mind that this overview assumes that the protocol binding is SOAP/
HTTP. The process for a RESTful endpoint (i.e., XML/HTTP) is different
in that the handlers do not implement the SOAPHandler<T> interface, and
the (un)marshaling is greatly simplified because the endpoint processes
XML directly. The JAX-WS runtime does not need to worry about the JAX-
WS WSDL to Java mapping and the JAXB 2.0 XML to Java mapping for a
RESTful service. Likewise, you can imagine that a SOAP/JMS deployment
would also be different. Such a thing is not specified by JWS, but it is not
hard to conceive of how it would work. To implement a SOAP/JMS protocol
binding, you would need an Endpoint Listener on a JMS endpoint—that
could be an instance of javax.jms.MessageListener. Likewise, a SOAP/
JMS protocol binding would read/write the SOAPMessageContext from/to a
javax.jms.Message.

So, as you can see from this discussion, the JAX-WS run-time architec-
ture has been modularized so that it can be adapted to a variety of trans-
ports. The main focus of this chapter, however, is JAX-WS server-side
processing of SOAP/HTTP.

Don’t worry if this discussion seems a little bit confusing at this point.
You don’t need to understand the details of the JAX-WS invocation sub-
system in order to create and deploy Web services. I include it here
because, as you get more sophisticated about creating services with JAX-
WS, you are likely to start wondering how all this stuff works. When you get
to that point, come back and look at this section again.

316 JAX-WS 2.0—Server-Side Development

In the next section, I walk through a detailed example of how to create,
deploy, and invoke a JAX-WS endpoint using an existing WSDL contract
and a service endpoint interface (SEI).

7.2 Start from WSDL Using a Service Endpoint
Interface (SEI)

When starting from an existing WSDL document in JAX-WS, the most
straightforward way to implement a Web service that conforms to the
WSDL contract is to use a service endpoint interface (SEI). A SEI is a Java
interface mapped from a wsdl:portType using the JAX-WS WSDL to Java
mapping and JAXB XML to Java mapping. A SEI is specified using the
@WebSevice.endpointInterface attribute, as shown in Example 7–1.

Example 7–1 The @WebService Annotation Defines a Web Service

47 @WebService(targetNamespace = "http://www.example.com/req",
48 endpointInterface="com.example.req.RequestOrderPort")
49 public class RequestOrder implements RequestOrderPort {
50
51 @Resource
52 WebServiceContext wscontext;
53
54 public OrderType requestOrder(String custNum, String poNum, BUSOBJCCARD ccard,
55 List<BUSOBJITEM> itemList) throws InputFault {

book-code/chap07/endpoint-sei/modules/endpoint/src/java/samples
/RequestOrder.java

The class RequestOrder, shown in Example 7–1, implements the SEI
com.example.req.RequestOrderPort. In the terminology of WS-Meta-
data, RequestOrder is a service implementation bean (SIB). A SIB contains
the business logic of a Web service. It must be annotated with either @Web-
Service or @WebServiceProvider. A service implementation bean is not
required to reference a SEI. Later in this chapter, we will work with SIB
that do not implement a SEI.

The SEI implemented by RequestOrder has a single method—request-
Order—shown at the bottom of Example 7–1. As you can see, this method,

7.2 Start from WSDL Using a Service Endpoint Interface (SEI) 317

and the SEI, are the same as used in the preceding chapter to illustrate JAX-
WS client development. The difference here is that whreas on the client side,
you worked with dynamic proxy implementations of this SEI, on the server
side, you are responsible for the actual implementation of this SEI.

Another thing to notice in Example 7–1 is the dependency injection
defined by the @Resource annotation.4 The javax.xml.ws.WebService-
Context interface makes it possible for a SIB to access contextual infor-
mation pertaining to the request being served. You can use the
WebServiceContext to access the javax.xml.soap.SOAPMessageCon-
text. This enables the SIB to access the results of processing that took
place in the handler chain (e.g., the security profile for the user who sent
the message).

Example 7–2 shows the RequestOrderPort SEI that has been gener-
ated from the WSDL. This SEI, its mapping to a SOAP message, and a
detailed description of its annotations can be found in Chapter 6, Section
6.1.2. If you haven’t read that section, please do so now so that you can
understand everything that is going on with all these annotations.

Notice that the SEI, like the service implementation bean, is anno-
tated with @WebService. A SEI is required by JAX-WS to have an @Web-
Service annotation. If you glanced back at the illustration of this SEI in
the preceding chapter, you may have noticed that the wsdlLocation
attribute’s value is different here. On the server side, you can use the
wsdlLocation attribute to specify the location of a WSDL file deployed
with the WAR or EJB-JAR containing the SIB. When you do that, the
container uses the specified WSDL rather than generating WSDL. On
the other hand, if @WebService.wsdlLocation is not specified, the
WSDL file is generated from the annotations in the service implementa-
tion bean implementing the SEI. One reason to supply the WSDL inside
the packaging like this is that it preserves all the detail. For example,
some of the facets for XML Schema simple types (e.g., the xs:maxLength
restriction for xs:string) are not captured by the standard JAXB map-
ping. So, if your WSDL started with such restrictions, and you try to re-
create it from the annotated SEI, the resulting WSDL will no longer
contain these restrictions. The WSDL used to generate the Request-
OrderPort SEI is shown near the end of this chapter—in Example 7–29.
The WSDL shown there contains such restrictions. Another benefit of
using the wsdlLocation attribute like this is that it provides access to the

4. See Section 2.2 of [JSR 250] Common Annotations for the Java Platform for a description
of the @Resource annotation.

318 JAX-WS 2.0—Server-Side Development

original WSDL from inside the service implementation bean or its han-
dlers. As I demonstrate in Section 7.5, this can be used as part of a mech-
anism to validate incoming SOAP messages against the WSDL and
rejecting badly formed messages.

Example 7–2 The @WebService Annotation Used with a SEI

40 @WebService(name = "RequestOrderPort",
41 targetNamespace = "http://www.example.com/req",
42 wsdlLocation = "WEB-INF/wsdl/RequestOrder.wsdl")
43 public interface RequestOrderPort {
44
45 @WebMethod
46 @WebResult(name = "Order", targetNamespace = "http://www.example.com/oms")
47 @RequestWrapper(localName = "requestOrder",
48 targetNamespace = "http://www.example.com/req",
49 className = "com.example.req.RequestOrder")
50 @ResponseWrapper(localName = "requestOrderResponse",
51 targetNamespace = "http://www.example.com/req",
52 className = "com.example.req.RequestOrderResponse")
53 public OrderType requestOrder(
54 @WebParam(name = "CUST_NO",
55 targetNamespace = "http://www.example.com/req")
56 String custNO,
57 @WebParam(name = "PURCH_ORD_NO",
58 targetNamespace = "http://www.example.com/req")
59 String purchORDNO,
60 @WebParam(name = "ccard",
61 targetNamespace = "http://www.example.com/req")
62 BUSOBJCCARD ccard,
63 @WebParam(name = "item", targetNamespace = "http://www.example.com/req")
64 List<BUSOBJITEM> item)
65 throws InputFault
66 ;
67
68 }

book-code/chap07/endpoint-sei/examples/RequestOrderPort.java

When you use a SEI like this to implement a Web service, you end up
working with the JAXB-generated classes produced by the mapping of the

7.2 Start from WSDL Using a Service Endpoint Interface (SEI) 319

corresponding wsdl:portType. Example 7–3 gives you a flavor of what it is
like to implement business logic with such JAXB-generated classes.

Example 7–3 Using JAXB to Implement Web Service Processing

 77 // generate a pseudo-unique 10-digit order ID
 78 String orderId = Long.toString((new Date()).getTime());
 79 orderId = orderId.substring(orderId.length()-10);
 80 OrderType response = new OrderType();
 81 response.setOrderKey(orderId);
 82 // create OrderHeader
 83 BUSOBJHEADER hdr = new BUSOBJHEADER();
 84 response.setOrderHeader(hdr);
 85 hdr.setCUSTNO(custNum);
 86 GregorianCalendar cal = new GregorianCalendar();
 87 hdr.setPURCHDATE(dateAsString(cal));
 88 cal.add(Calendar.DAY_OF_MONTH, 14);
 89 hdr.setWARDELDATE(dateAsString(cal));
 90 if (poNum != null && poNum.length()>0) {
 91 hdr.setPYMTMETH("PO");
 92 hdr.setPURCHORDNO(poNum);
 93 } else {
 94 hdr.setPYMTMETH("CC");
 95 // OrderType.OrderCcard
96 OrderType.OrderCcard ordCcard = new OrderType.OrderCcard();

 97 ordCcard.setCcard(ccard);
 98 response.setOrderCcard(ordCcard);

book-code/chap07/endpoint-sei/modules/endpoint/src/java/samples
/RequestOrder.java

In this particular case, the requestOrder method implements the busi-
ness logic related to processing an order. If the order is successfully pro-
cessed, this method returns a completed purchase order (implemented by
the class OrderType). The snippet of code shown in Example 7–3 shows
part of this processing and includes creating an order ID, setting the order
date, defining the warrantee expiration date, and adding the payment infor-
mation to the purchase order.

As you can see, this code constructs an instance of the JAXB-generated
class, OrderType. The setOrderKey method is used to set the order’s ID.

320 JAX-WS 2.0—Server-Side Development

Next, an instance of the JAXB-generated class BUSOBJHEADER is created to
hold the header information, like customer number and purchase date. All
of this is pretty straightforward.

To run the sample code in this section, do the following:

1. Start GlassFish (if it is not already running).
2. Go to <book-code>/chap07/endpoint-sei.
3. Enter mvn install.5

Sometimes, however, you might not want to work with JAXB-generated
classes. You might want to implement the business logic directly against the
XML. XML processing can sometimes improve performance—especially if
you can implement the business logic using an XSLT stylesheet. It also pro-
vides a degree of insulation from changes in the WSDL. When you use a
SEI, as illustrated here, changes to the WSDL require that you regenerate
the SEI and update all your code to accommodate the resulting changes to
the JAXB-generated object. This can happen even when the changes to the
WSDL are relatively minor and have nothing to do with the business logic
you are implementing. For example, in this case, suppose the schema for
addresses changes. Well, all we are really doing in the business logic of this
example is copying the address from the request to the purchase order that
gets returned. So, ideally, changes to the XML structure of an address
shouldn’t be a problem.

The next section shows how you can implement a Web service for an
existing WSDL without having to use JAXB-generated classes.

7.3 Providers and XML Processing without JAXB

To deploy a Web service that enables you to work with XML messages
directly—without the JAXB binding—you use the javax.xml.ws.Pro-
vider<T> interface. The Provider<T> interface defines a single method:

T invoke(T request)

5. This will build and deploy the service, run a client to invoke it, and undeploy the service
when the client finishes running. The client is run as a JUnit test. Unlike in some of the
examples in previous chapters, you do not need to deploy the service separately from run-
ning the client.

7.3 Providers and XML Processing without JAXB 321

In this case, T, the type parameter, is the class used to represent the
message or message payload. Provider supports two usage modes: Message
and Message Payload. In Message mode, the service implementation bean
works directly with protocol-specific message structures. For example,
when used with a SOAP protocol binding, the invoke method receives and
returns SOAP messages (as instances of the type parameter T). In Message
Payload mode, the service implementation bean works with the payload of
messages rather than the messages themselves. For example, when used
with a SOAP protocol binding, the invoke method receives and returns the
contents of the SOAP body rather than the entire SOAP message.

JAX-WS specifies the classes that must be supported as type parame-
ters for Provider<T>. It requires that all implementations support
javax.xml.transform.Source in payload mode with all the predefined
bindings (i.e., SOAP/HTTP, XML/HTTP). Likewise, JAX-WS implemen-
tations must also support Provider<SOAPMessage> in message mode in
conjunction with the predefined SOAP bindings.

Example 7–4 shows a snippet from a class declaration for RequestOrder-
Endpoint—an implementation of Provider<Source>.

Example 7–4 The @WebServiceProvider Annotation Defines a Web Service
Implemented Using Provider<T>

 68 @WebServiceProvider(serviceName = "RequestOrderService",
 69 portName="RequestOrderPort",
 70 targetNamespace = "http://www.example.com/req",
 71 wsdlLocation="WEB-INF/wsdl/RequestOrder.wsdl")
 72 @ServiceMode(Service.Mode.PAYLOAD)
 73 public class RequestOrderEndpoint implements Provider<Source> {
 74
 75 @Resource
 76 WebServiceContext webServiceContext;
 77
 78 private static final String REQ_NS = "http://www.example.com/req";
 79 private static final String OMS_NS = "http://www.example.com/oms";
 80
 81 public Source invoke(Source payload) {
 82

book-code/chap07/endpoint-provider/modules/endpoint/src/java/samples
/RequestOrderEndpoint.java

322 JAX-WS 2.0—Server-Side Development

As you can see, this code uses the @WebServiceProvider annotation. A
Provider-based service implementation bean must carry an @WebService-
Provider annotation to tell the container that it is a service implementation
bean. Unlike an @WebService annotated endpoint, a Provider implementa-
tion is not mapped to a WSDL interface by the JAX-WS WSDL to Java map-
ping. As a result, you must (per Section 5.3.2.2 of [JSR 109]) package a
WSDL file with a Provider implementation. As shown in Example 7–4, the
location of the WSDL file in this example is WEB-INF/wsdl/Request-
Order.wsdl. In addition, as shown here, the @ServiceMode annotation is used
to indicate whether the service should be deployed in Message mode or Mes-
sage Payload mode. Table 7–1 summarizes the roles of these annotations.

You may be wondering what is the point of supplying a WSDL file for
a Provider implementation when the JAX-WS runtime does not provide
any binding for the incoming messages. One reason is that clients using
the deployed service require a WSDL. By publishing a WSDL, you indi-
cate the structure of the XML messages your Web service can process.

Table 7–1 Descriptions of the Java Annotions Appearing in Example 7–4

Annotation Purpose Example

@WebServiceProvider Identifies a Java class
as a service
implementation bean to
be deployed as a Web
service using the
Provider<T> interface

A Provider-based service
implementation bean (as in this
example) must be annotated with
@WebServiceProvider per
Section 5.1 of [JSR-224]. The name
and targetNamespace attributes
identify the wsdl:portType. The
wsdlLocation attribute identifies
the location of the WSDL
containing the wsdl:portType.
The serviceName and portName
identify the wsdl:service and
wsdl:port local names.

@ServiceMode Specifies the mode for a
Provider<T>
implementation; i.e.,
whether the Provider
operates on messages or
message payloads

In the example given here, the value
Service.Mode.PAYLOAD indicates
the Message Payload usage mode.
The other option is
Service.Mode.MESSAGE to
indicate the Message usage mode.

7.3 Providers and XML Processing without JAXB 323

Unlike in the @WebService case, however, in the @WebServiceProvider
case, it is your responsibility to do all the validation of the form of the
incoming messages to ensure that they are compliant with the WSDL—at
least compliant enough for your business logic to successfully process them.

This example uses javax.xml.transform.Source as the type parameter
for Provider<T>. So, as you can see, it implements a method of the form:

public Source invoke(Source payload)

When the JAX-WS runtime receives a request that is dispatched to this
Web service, it calls this invoke method and provides the message payload as
the input parameter. To implement the business logic, it is up to you to pro-
cess the raw XML. Example 7–5 shows how the Document Object Model
(DOM) APIs are used in this example to do that processing. If you are not
familiar with the DOM APIs, or you need a refresher, I suggest you take a
second to look through one of the online tutorials, such as Chapter 6 of Sun’s
J2EE 1.4 tutorial found at http://java.sun.com/j2ee/1.4/docs/tutorial/doc/.

The DOM processing in Example 7–5 begins with the creation of a doc-
ument to hold the payload request. This is necessary because the Source
form of the payload is not accessible using the DOM APIs. You must trans-
form it into a DOM representation. In this example, it is transformed into
payloadDoc—an instance of org.w3c.dom.Document. The code creates
another Document instance, referenced by respDoc, to hold the response
message that is constructed. Next, an instance of javax.xml.trans-
form.Transformer—xformer—is used to load the payload Source into the
payloadDoc Document.

The WSDL for this service, shown toward the end of this chapter in
Example 7–29, indicates that the response message should have the form:

<xs:element name="requestOrderResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="oms:Order"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

As a result, using DOM to construct the response message in this exam-
ple is done as follows:

Element responseElt =
respDoc.createElementNS(REQ_NS, "requestOrderResponse");

324 JAX-WS 2.0—Server-Side Development

The Document.createElementNS method is used here to create an ele-
ment with the local name requestOrderResponse in the namespace
defined by the String constant REQ_NS (the target namespace).

Example 7–5 Using DOM to Implement Web Service Processing

115 DocumentBuilderFactory dbfac = DocumentBuilderFactory.newInstance();
116 DocumentBuilder docBuilder = dbfac.newDocumentBuilder();
117 Document respDoc = docBuilder.newDocument();
118 Document payloadDoc = docBuilder.newDocument();
119 Transformer xformer = TransformerFactory.newInstance().newTransformer();
120 xformer.transform(payload, new DOMResult(payloadDoc));
121 Element responseElt =
122 respDoc.createElementNS(REQ_NS, "requestOrderResponse");
123 Element orderElt = respDoc.createElementNS(OMS_NS, "Order");
124 responseElt.appendChild(orderElt);
125 Element orderKeyElt = respDoc.createElementNS(OMS_NS, "OrderKey");
126 orderElt.appendChild(orderKeyElt);
127 // generate a pseudo-unique 10-digit order ID
128 String orderId = Long.toString((new Date()).getTime());
129 orderId = orderId.substring(orderId.length()-10);
130 orderKeyElt.appendChild(respDoc.createTextNode(orderId));
131 Element orderHeaderElt = respDoc.createElementNS(OMS_NS, "OrderHeader");
132 orderElt.appendChild(orderHeaderElt);
133 // items wrapper comes after header
134 Element orderItemsElt = respDoc.createElementNS(OMS_NS, "OrderItems");
135 orderElt.appendChild(orderItemsElt);
136 Element salesOrgElt = respDoc.createElementNS(OMS_NS, "SALES_ORG");
137 orderHeaderElt.appendChild(salesOrgElt);
138 salesOrgElt.appendChild(respDoc.createTextNode("WEB"));
139 Element purchDateElt = respDoc.createElementNS(OMS_NS, "PURCH_DATE");
140 orderHeaderElt.appendChild(purchDateElt);
141 purchDateElt.appendChild(
142 respDoc.createTextNode(dateAsString(new GregorianCalendar())));
143 Element custNoElt = respDoc.createElementNS(OMS_NS, "CUST_NO");
144 orderHeaderElt.appendChild(custNoElt);
145 // get CUST_NO from payload
146 NodeList nl = payloadDoc.getElementsByTagNameNS(REQ_NS, "CUST_NO");
147 custNoElt.appendChild(respDoc.createTextNode(
148 ((Text)((Element) nl.item(0)).getFirstChild()).getNodeValue()));

book-code/chap07/endpoint-provider/modules/endpoint/src/java/samples/
RequestOrderEndpoint.java

7.4 Deploying Web Services Using Custom Java/XML Mappings 325

As you can see, the code continues like that, using DOM APIs to build
the response message tree. The Document.createElementNS() method is
used to create elements, and the method Node.appendChild() is used to
add them into the DOM tree.

To run the sample code in this section, do the following:

1. Start GlassFish (if it is not already running).
2. Go to <book-code>/chap07/endpoint-provider.
3. Enter mvn install.

This example should give you the sense that programming with the
DOM API is tedious and error prone (but sometimes necessary). I used
about 80 lines of DOM API code in this example (not all shown here). In
contrast, the JAXB code from Example 7–3 to implement the same func-
tionality requires about 20 lines. Of course, there are better ways to pro-
gram with XML than working with the DOM APIs. I’m just using this
example to make a point: It is significantly easier and less error prone for
most Java programmers to work with JAXB-generated classes than to imple-
ment business logic by directly manipulating XML.

On the other hand, there are often good reasons not to use either XML
programming techniques (e.g., DOM) or JAXB—particularly when doing
SOA and you have existing Java classes that implement your business logic.
For example, what happens if you already have a PurchaseOrder class and it
contains a method named processOrder that already implements your com-
pany’s business process for receiving an order, processing it, and returning a
PO? Wouldn’t you rather deploy that class? The problem you run into here is
that the Java/WSDL mapping provided by JAX-WS and JAXB can’t easily be
coerced into mapping your existing PurchaseOrder.processOrder()
method to the desired wsdl:portType. In such a situation, you may want to
consider writing a JAX-WS service implementation bean that uses a custom
Java/XML mapping to bind the WSDL types to your existing Java classes. The
next section provides an example of how this can be done.

7.4 Deploying Web Services Using Custom Java/XML
Mappings

In Chapter 6, I introduced Castor [CASTOR]—a Java/XML mapping tool
that you can use to bind an existing Java class to an existing XML schema. In
this section, I again use Castor to illustrate the techniques for using custom

326 JAX-WS 2.0—Server-Side Development

Java/XML mappings in a JAX-WS context, but this time I focus on the
server-side issues.

The first issue to consider in this example is how to get the Castor map-
ping file at runtime. In this case, I have packaged the mapping file inside
the WAR at the location /WEB-INF/castor/mapping.xml. One way to get
that file, illustrated in Example 7–6, is to use the instance of WebService-
Context that has been injected using the @Resource annotation. The injec-
tion of the context, as shown in Example 7–1, happens at the time the
endpoint is initialized. It is a live reference to the context, so changes the
handlers made before the endpoint was invoked will be reflected.

In any event, I am using the context here simply to get to the Servlet-
Context (via the MessageContext), as shown in the first few lines of the
example. Once the ServletContext has been obtained, you can use the
getResourceAsStream method to access the mapping file.

Example 7–6 Using Castor to Bind the Payload to Custom Classes

 105 if (webServiceContext == null) {
 106 throw new RuntimeException("WebServiceContext not injected.");
 107 }
 108 MessageContext mc = webServiceContext.getMessageContext();
 109 ServletContext sc =
 110 (ServletContext) mc.get(MessageContext.SERVLET_CONTEXT);
 111 if (sc == null) {
 112 throw new RuntimeException("ServletContext is null.");
 113 }
 114 InputStream castorMappingFile =
 115 sc.getResourceAsStream("/WEB-INF/castor/mapping.xml");
 116 if (castorMappingFile == null) {
 117 throw new IOException("Castor mapping file not found.");
 118 }
 119 Mapping castorMapping = new Mapping();
 120 castorMapping.loadMapping(new InputSource(castorMappingFile));
 121 Unmarshaller u = new Unmarshaller(castorMapping);
 122 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 123 DocumentBuilder db = dbf.newDocumentBuilder();
 124 Document payloadDOM = db.newDocument();
 125 Transformer xf = TransformerFactory.newInstance().newTransformer();
 126 xf.transform(payload, new DOMResult(payloadDOM));
 127 MyRequestOrder reqOrder = (MyRequestOrder) u.unmarshal(payloadDOM);

book-code/chap07/endpoint-provider-castor/modules/endpoint/src/java/samples
/RequestOrderEndpoint.java

7.4 Deploying Web Services Using Custom Java/XML Mappings 327

Once you have obtained the Castor mapping file, you use a Castor
Unmarshaller to instantiate your Java classes from the XML. As you can
see, in this example, as in Example 7–5, I have used a Transformer to move
the payload from a Source instance into a DOM Document. That is required
simply because the Castor Unmarshaller cannot process a Source directly.
Having done that, the following line instantiates the custom class MyRe-
questOrder from the payload:

MyRequestOrder reqOrder = (MyRequestOrder) u.unmarshal(payloadDOM);

The Castor mapping file tells the Unmarshaller how to map the XML
into the MyRequestOrder instance. The Castor example in Section 6.3 of
Chapter 6, illustrates how mapping files work and provides an example of a
mapping file. Please have a look there, and examine the mapping file in this
example (look in the directory book-code/chap07/endpoint-provider-
castor/modules/endpoint/src/webapp/WEB-INF/castor) if you are inter-
ested in digging into the mechanics of the Castor mapping in this example.

Having applied the Castor mapping, you can now use the custom
classes to implement the business logic. This is shown in Example 7–7.

Example 7–7 Implementing the Web Service with Custom Classes

132 MyRequestOrderResponse response;
133 try {
134 response = reqOrder.processOrder();
135 } catch (PaymentException pe) {
136 SOAPFactory fac = SOAPFactory.newInstance();
137 SOAPFault sf = fac.createFault(pe.getMessage(),
138 new QName("http://schemas.xmlsoap.org/soap/envelope/", "Client"));
139 throw new SOAPFaultException(sf);
140 }

book-code/chap07/endpoint-provider-castor/modules/endpoint/src/java/samples
/RequestOrderEndpoint.java

So, instead of 20 lines of JAXB code, or 80 lines of DOM code, in this
example I have implemented the business logic with one line of code:

response = reqOrder.processOrder();

328 JAX-WS 2.0—Server-Side Development

Okay, so that is a little disingenuous, because the code that is hidden
within the processOrder method here has about 20 lines—the same as
the JAXB code. But in this case, I am reusing my existing code, instead of
having to recreate business logic using the JAXB-generated classes. That is
the big advantage of using your existing classes and a custom mapping tool
like Castor. To do this, of course, you need to put in the work to create the
Castor mapping file. See Section 6.3 of Chapter 6 to get an idea for how
hard that is. What you will find is that there is a trade-off. If you have a lot of
business logic code, it probably makes sense to use something like Castor in
this manner to avoid rewriting your business logic with the JAXB-generated
classes. An alternative approach is to use the JAXB-generated classes, and
then write Java code to map them to your existing classes. Use the busi-
ness logic in your existing classes, and then you have to map the results
back to the JAXB classes to create the return value. This approach
requires you to write custom mapping code in Java, instead of creating a
Castor mapping file.

Getting back to the Castor example I’ve been working through, Exam-
ple 7–8 demonstrates how to return the result value as a SOAP message.
The custom class containing the result is MyRequestOrderResponse—refer-
enced by the variable response. Again, the Castor mapping is used, but this
time to marshal the MyRequestOrderResponse to XML that can be
returned.

Example 7–8 Marshalling Custom Classes into the SOAP Response Payload

 145 ByteArrayOutputStream ba = new ByteArrayOutputStream();
 146 Marshaller m = new Marshaller(new OutputStreamWriter(ba));
 147 m.setMapping(castorMapping);
 148 m.marshal(response);
 149 return new StreamSource(new StringReader(ba.toString()));

book-code/chap07/endpoint-provider-castor/modules/endpoint/src/java/
samples/RequestOrderEndpoint.java

As you can see in this example, the Castor Marshaller uses the map-
ping file (castorMapping) to write XML into a ByteArrayOutputStream.
These bytes are then wrapped in a StreamSource that is returned as the
response message payload.

To run the sample code in this section, do the following:

7.5 Validation and Fault Processing 329

1. Start GlassFish (if it is not already running).
2. Go to <book-code>/chap07/endpoint-provider-castor.
3. Enter mvn install.

As you were working through this section, you may have noticed in
Example 7–7 that the code catches the PaymentException thrown by the
business logic and transforms it into a SOAPFaultException. This is an
example of how you can use the JAX-WS run-time infrastructure to return
SOAP fault messages. In the next section, I look at the techniques for vali-
dation and fault processing in detail.

7.5 Validation and Fault Processing

Validation and fault processing are critical components of implementing a
Web service that are often overlooked. Validation is critical because it is
much more efficient to reject an XML message as invalid based on its
structure than to allow an unpredictable failure to occur during the busi-
ness logic processing of the bad data. Fault processing is important
because any exception thrown by your Java code needs to potentially get
translated into a SOAP fault that can be sent back to the client informing
him of why the Web service invocation failed. If you had to write your own
fault processing layer, you would be in for a lot of work. Fortunately, as
depicted in Figure 7–1, JAX-WS provides SOAP fault processing in the
SOAP/HTTP protocol binding. In this section, I show you how to imple-
ment validation and take advantage of the existing JAX-WS fault process-
ing infrastructure.

7.5.1 Validation

When you develop a service implementation bean starting with a WSDL
document, one of the things you often want to do is validate the incoming
SOAP message against your WSDL types to make sure it is valid. When you
are using JAXB outside of JAX-WS, you can turn on validation by using the
setSchema() methods provided by Marshaller and Unmarshaller. You sim-
ply pass in the schema, as an instance of javax.xml.validation.Schema,
and JAXB validates against it during marshalling or unmarshalling.

Unfortunately, in the 2.0 version of JAX-WS, you don’t have the ability
to turn on JAXB validation like that. So, you have to roll your own. The fol-
lowing example shows you how to do validation against WSDL. Note that

330 JAX-WS 2.0—Server-Side Development

this technique is particularly useful in those Provider endpoint cases, as in
Sections 7.3 and 7.4, where you are not using JAXB at all.

The first thing you need to do to validate against your WSDL is to figure
out how the service implementation bean code can access the associated
WSDL. To accomplish that, you can use dependency injection to get an
instance of the Web services context like this:

@Resource
WebServiceContext webServiceContext;

An example of this type of dependency injection occurs in Example 7–1
at the beginning of this chapter. Once you have included such a WebSer-
viceContext field in your code, you proceed as shown in Example 7–9 to
get the WSDL. From the WebServiceContext, you can get the Message-
Context. Since we are deploying this as a servlet endpoint, the context
property MessageContext.SERVLET_CONTEXT gives the ServletContext.
From there, you can get the WSDL as packaged at the location /WEB-INF/
wsdl/RequestOrder.wsdl.

Example 7–9 Using WebServiceContext to Access the WSDL

236 if (webServiceContext == null) {
237 throw new RuntimeException("WebServiceContext not injected.");
238 }
239 MessageContext mc = webServiceContext.getMessageContext();
240 ServletContext sc = (ServletContext) mc.get(MessageContext.SERVLET_CONTEXT);
241 if (sc == null) {
242 throw new RuntimeException("ServletContext is null.");
243 }
244 InputStream wsdlStream =
245 sc.getResourceAsStream("/WEB-INF/wsdl/RequestOrder.wsdl");

book-code/chap07/endpoint-provider/modules/endpoint/src/java/samples/
RequestOrderEndpoint.java

Once you have the WSDL, you need to extract the XML schemas from
its <types> section and use these for validation. The code in Example 7–10
shows how this can be done using the DOM API. First, the InputStream
wsdlStream, obtained in Example 7–9, is loaded into a DOM Document
instance. Then, the getElementsByTagNameNS method is used to extract the

7.5 Validation and Fault Processing 331

xs:schema nodes. After this, there is some DOM API code (inside the for
loop) that copies these xs:schema nodes into an array. This step is neces-
sary, because if you just pull the xs:schema nodes out of the WSDL’s DOM
tree, they will not have the necessary namespace prefix attributes. So, the
code I wrote here takes all the namespace declarations from the WSDL and
adds them to each xs:schema node copy to make each a valid stand-alone
schema.

Example 7–10 Extracting Schema from the WSDL and Validating the SOAP Payload

252 DocumentBuilderFactory dbfac = DocumentBuilderFactory.newInstance();
253 DocumentBuilder docBuilder = dbfac.newDocumentBuilder();
254 Document wsdlDoc = docBuilder.newDocument();
255 Transformer xformer = TransformerFactory.newInstance().newTransformer();
256 xformer.transform(new StreamSource(wsdlStream), new DOMResult(wsdlDoc));
257 NodeList schemaNodes = wsdlDoc.getElementsByTagNameNS(
258 XMLConstants.W3C_XML_SCHEMA_NS_URI, "schema");
259 int numOfSchemas = schemaNodes.getLength();
260 Source[] schemas = new Source[numOfSchemas];
261 Document schemaDoc;
262 Element schemaElt;
263 for (int i=0; i < numOfSchemas; i++) {
264 schemaDoc = docBuilder.newDocument();
265 NamedNodeMap nsDecls = getNamespaces((Element) schemaNodes.item(i));
266 schemaElt = (Element) schemaDoc.importNode(schemaNodes.item(i), true);
267 for (int j=0; j<nsDecls.getLength(); j++) {
268 Attr a = (Attr) schemaDoc.importNode(nsDecls.item(j), true);
269 schemaElt.setAttributeNodeNS(a);
270 }
271 schemaDoc.appendChild(schemaElt);
272 schemas[i] = new DOMSource(schemaDoc);
273 }
274 SchemaFactory schemaFac = SchemaFactory.
275 newInstance(XMLConstants.W3C_XML_SCHEMA_NS_URI);
276 Schema schema = schemaFac.newSchema(schemas);
277 Validator validator = schema.newValidator();
278 if (!DOMSource.class.isInstance(payload) &&
279 !SAXSource.class.isInstance(payload)) {
280 Document payloadDoc = docBuilder.newDocument();
281 xformer.transform(payload, new DOMResult(payloadDoc));
282 payload = new DOMSource(payloadDoc);
283 }

332 JAX-WS 2.0—Server-Side Development

284 try {
285 validator.validate(payload);
286 } catch (SAXException se) {

book-code/chap07/endpoint-provider/modules/endpoint/src/java/samples
/RequestOrderEndpoint.java

Having created an array of type Source[] to contain the schemas, I pass
this array to an instance of javax.xml.validation.SchemaFactory to cre-
ate an instance of java.xml.validation.Schema. From this, I get a JAXP
Validator (javax.xml.validation.Validator). This Validator is used to
validate the XML payload. One curious thing you may have noticed here is
the check near the end to determine whether the payload is a DOMSource or
a SAXSource. The reason for this check is that the Validator is only guaran-
teed to work on these types. In particular, it isn’t guaranteed to work on a
StreamSource. Hence, the possible transformation to a DOMSource becomes
necessary.

The next logical question to wonder about is, what happens if the pay-
load fails its validation? The answer is that you would probably like to return
a SOAP fault message indicating why the validation failed. In the next sec-
tion, I discuss this kind of fault handling and, more generally, the topic of
JAX-WS fault processing.

7.5.2 Fault Processing

The WSDL specification provides a tag—wsdl:fault—for specifying fault
messages. Ideally, all SOAP faults emitted by a Web service would conform
to one of the WSDL’s wsdl:fault message formats. Unfortunately, that is
not necessarily the case, as many WSDL interface definitions do not even
include wsdl:fault declarations, and just emit a SOAP fault of unspecified
type when something goes wrong. Hence, in this section, I distinguish
between Java exceptions that can reasonably be mapped to a wsdl:fault
message (mapped exceptions) and those that have to be represented as
generic SOAP faults (unmapped exceptions). As an example, it is likely that
when an exception is thrown because input message validation fails, this
would be a mapped exception because the WSDL writer could anticipate
such an exception and define a wsdl:fault message for it. On the other
hand, exceptions resulting from unanticipated run-time errors most likely
will not have a corresponding wsdl:fault message and will need to be
returned as generic SOAP faults.

7.5 Validation and Fault Processing 333

The JAX-WS WSDL to Java mapping binds wsdl:fault messages to
generate subclasses of java.lang.Exception. When you generate a SEI
from a WSDL, these mapped exception classes are also generated. Section
6.1 of Chapter 6 describes this mapping and shows how mapped exceptions
are generated. If you are still a little fuzzy on the WSDL to Java mapping,
it’s probably a good idea to quickly review that section.

So, if you have implemented your Web service using a SEI mapped
from a wsdl:portType, one option for returning a SOAP fault is to throw a
mapped exception, which the JAX-WS runtime will automatically translate
into the appropriate wsdl:fault message, wrap in the SOAP body, and
return. Example 7–11 illustrates this approach.

Example 7–11 Returning a wsdl:fault from within a SEI Implementation

61 InputMessageValidationFaultType ft = new InputMessageValidationFaultType();
62 if (custNum == null) {
63 ft.setMsg("Customer Number cannot be null.");
64 throw new InputFault("Input parameter failed validation.", ft);
65 }
66 if (poNum == null && ccard == null) {
67 ft.setMsg("Must supply either a PO or a CCard.");
68 throw new InputFault("Input parameter failed validation.", ft);
69 }
70 if (itemList == null || itemList.isEmpty()) {
71 ft.setMsg("Must have at least one item.");
72 throw new InputFault("Input parameter failed validation.", ft);
73 }

book-code/chap07/endpoint-sei/modules/endpoint/src/java/samples
/RequestOrder.java

You can see two generated classes being used in Example 7–11: InputMes-
sageValidationFaultType and InputFault. The first, InputMessage-
ValidationFaultType, was mapped from the XML schema definition
referenced by the wsdl:fault message. The second, InputFault, is mapped
from the wsdl:message corresponding to this wsdl:fault itself. The name of
this wsdl:message is inputFault and, hence, JAX-WS has generated a
mapped exception named InputFault.

This fault mapping can be a little confusing, so I’m going to walk
through it step by step, even though that is a little tedious. Example 7–12

334 JAX-WS 2.0—Server-Side Development

shows a snippet of the WSDL, where the wsdl:fault is defined inside the
wsdl:portType definition.

Example 7–12 The wsdl:fault Definition Inside the wsdl:portType

59 <wsdl:message name="inputFault">
60 <wsdl:part name="parameters" element="faults:inputMessageValidationFault"/>
61 </wsdl:message>
62 <wsdl:portType name="RequestOrderPort">
63 <wsdl:operation name="requestOrder">
64 <wsdl:input message="req:request"/>
65 <wsdl:output message="req:response"/>
66 <wsdl:fault name="requestOrderInputFault" message="req:inputFault"/>
67 </wsdl:operation>
68 </wsdl:portType>

book-code/chap07/endpoint-sei/modules/endpoint/src/webapp/WEB-INF/wsdl
/RequestOrder.wsdl

Notice that the wsdl:fault (named requestOrderInputFault) refer-
ences the message req:inputFault. The message req:inputFault is
defined at the top of Example 7–12. This is the message JAX-WS maps to
the mapped exception named InputFault used in Example 7–11. In Exam-
ple 7–13, you can see the Java code generated by JAX-WS for InputFault.
JAX-WS uses the @WebFault annotation to identify this class as a mapped
exception. As you can see, this class is really a simple wrapper for the
InputMessageValidationFaultType class. JAX-WS refers to this wrapped
Java type as the fault bean. A wsdl:fault element inside a wsdl:portType
always refers to a wsdl:message that contains a single wsdl:part with an
element attribute. The global element declaration referred to by that
wsdl:part’s element attribute is mapped by JAX-WS to a JavaBean called a
fault bean.

Example 7–13 The Mapped Exception InputFault Generated by JAX-WS

25 @WebFault(name = "inputMessageValidationFault",
26 targetNamespace = "http://www.example.com/faults")
27 public class InputFault
28 extends Exception {
29

7.5 Validation and Fault Processing 335

30 private InputMessageValidationFaultType faultInfo;
31
32 public InputFault(String message, InputMessageValidationFaultType faultInfo) {
33 super(message);
34 this.faultInfo = faultInfo;
35 }

book-code/chap07/endpoint-sei/examples/InputFault.java

The next step in understanding this fault mapping is to look at the schema
from which the fault bean InputMessageValidationFaultType gets gener-
ated. In the WSDL used for this example, this schema is imported from http://
soabook.com/example/faults/faults.xsd.6 Example 7–14 shows that imported
schema.

Example 7–14 The Imported Schema Referenced by the wsdl:part of the inputFault
wsdl:message

 4 <xs:schema targetNamespace="http://www.example.com/faults"
5 xmlns:faults="http://www.example.com/faults" elementFormDefault="qualified"
 6 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 7 <xs:element name="inputMessageValidationFault"
 8 type="faults:InputMessageValidationFaultType"/>
 9 <xs:complexType name="InputMessageValidationFaultType">
10 <xs:attribute name="msg" type="xs:string"/>
11 </xs:complexType>
12 </xs:schema>

book-code/chap07/endpoint-sei/examples/faults.xsd

The name of the element mapped to the fault bean is inputMessage-
ValidationFault. As you can see in this example, the schema is very sim-
ple—containing an attribute named msg that holds an xs:string, which is
intended to hold a description of the fault. Of course, in the real world, the
schema used might be much more complex to hold detailed information

6. The WSDL used in this example, shown in Example 7–29, is discussed along with a
detailed explanation of WSDL in Chapter 4, Section 4.1. In that part of the book, you will
also find a general discussion of how and why to import external schemas into your WSDL.

336 JAX-WS 2.0—Server-Side Development

about the cause of a particular fault. In this case, the importance of using
this wsdl:fault is not the information it carries, but the fact that its type
(i.e., an instance of InputMessageValidationFaultType) tells the user
receiving it that there was a validation failure and the SOAP message
received by the Web service is not valid with respect to the WSDL.

Example 7–15 shows the fault bean generated from the imported
schema.7 This fault bean class contains a single property corresponding to
the msg attribute in the schema from which it was generated.

Example 7–15 The Fault Bean InputMessageValidationFaultType
Generated by JAX-WS

 27 @XmlAccessorType(AccessType.FIELD)
 28 @XmlType(name = "InputMessageValidationFaultType")
 29 public class InputMessageValidationFaultType {
 30
 31 @XmlAttribute
 32 protected String msg;
 33
 34 public String getMsg() {
 35 return msg;
 36 }
 37
 38 public void setMsg(String value) {
 39 this.msg = value;
 40 }
 41
 42 }

book-code/chap07/endpoint-sei/examples
/InputMessageValidationFaultType.java

Putting these steps together, it should now make sense what is happen-
ing in Example 7–11. The code there identifies several input validation fail-
ures (i.e., null customer number, missing purchasing information, an empty
item list) that might occur. In each case, the msg property of the fault bean
(InputMessageValidationFaultType) is set with an appropriate message.
Then, from the fault bean, an instance of InputFault is constructed with

7. The JAXB annotations used here are described in detail in Chapter 5.

7.5 Validation and Fault Processing 337

the generic error message “Input parameter failed validation.” When JAX-
WS marshals this InputFault exception out to a SOAP 1.1 fault message,
the InputFault.getMessage() and the InputMessageValidationFault-
Type.getMsg() strings get mapped to different places. You will see exactly
how these map into the SOAP fault in a minute, but before doing that, I am
going to step back and discuss another way you can return a SOAP fault
message from inside a service implementation bean.

In addition to using a fault bean, you can construct an instance of the
SAAJ class javax.xml.ws.soap.SOAPFaultException. When you throw a
SOAPFaultException from inside a service implementation bean, the JAX-
WS runtime converts it to a SOAP fault message and returns it to the client.

Figure 7–2 shows how the various types of Java exceptions get mapped
by JAX-WS to SOAP fault messages. The numbers in this illustration do not
indicate steps in a process, but rather components of the mapping.

Figure 7–2 How JAX-WS maps exceptions to a SOAP 1.1 fault message structure.

SOAPFaultException

SOAPFault

QName getFaultCodeAsQName()

String getFaultString()

SOAP 1.1 Fault Message

<SOAP-ENV:Fault xmlns:SOAP-ENV=
 "http://schemas.xmlsoap.org/soap/envelope/">

 <faultstring>Business logic exception
 </faultstring>

 <faultcode>SOAP-ENV:Client</faultcode>

 <faultactor> ... </faultactor>

 <detail>
 <expiredCC
 xmlns="http://www.example.com/req">
 Credit card has expired</expiredCC>
 </detail>
</SOAP-ENV:Fault>

@java.xml.ws.WebFault

SOAP-ENV:Server

String getMessage()

wsdl:fault

String toString() one or the other

String getFaultActor()

Detail

FaultBean

Other Exception

String getMessage()

String toString()

SOAP-ENV:Server

one or the other

1

2

3

4

5

6

7

338 JAX-WS 2.0—Server-Side Development

The following describes each numbered component of the JAX-WS
fault mapping:

1. A SOAPFaultException wraps a javax.xml.soap.SOAPFault that
has a straightforward mapping to a SOAP 1.1 fault message. The
getFaultString method maps to the faultstring element.

2. Similarly, the getFaultCodeAsQName method maps to the faultcode.
3. getFaultActor method maps to the faultactor element.
4. The SOAPFault class references an instance of javax.xml.soap-

.Detail, which represents the detail element of a SOAP fault mes-
sage. A Detail object is a container for javax.xml.soap.Detail-
Entry instances—each of which maps to a child element of the
SOAP fault’s detail element.

5. The components labeled 5, 6, and 7 show how a mapped exception
corresponds to a SOAP fault message. This is a visual illustration of
the discussion surrounding Example 7–11 through Example 7–15.
@WebFault annotates a mapped exception. The fault bean wrapped
by the mapped exception corresponds to the detail element of the
SOAP fault message.

6. The faultcode corresponding to a mapped exception is always
SOAP-ENV:Server. This can be misleading, especially when the fault
was generated by a poorly constructed SOAP request. Notice in the
diagram that other exceptions (besides SOAPFaultExceptions and
@WebFault mapped exceptions) are also transformed by JAX-WS into
SOAP fault messages. In the case of a general exception, the fault-
code also gets the default value of ENV:Server.

7. The faultstring corresponding to a mapped exception or a general
exception is mapped from the getMessage() method, unless that
returns null, in which case it is mapped from getString().

Having gone through the JAX-WS SOAP fault message mapping in detail,
it is now time to look at how you can use the SAAJ API to generate a SOAP-
FaultException to send useful information back to the client. This approach is
helpful in two cases: if you are not working with a SEI and don’t have any
mapped exceptions to take advantage of, and if you are working with a SEI but
you have to handle an exception that doesn’t correspond to a wsdl:fault.

Example 7–16 shows an example of the first variety. This snippet comes
from a Provider implementation of the WSDL contract8 that I have been

8. See Example 7–29 for the full WSDL document.

7.5 Validation and Fault Processing 339

discussing throughout this section. This code can be used when the mapped
InputFault is not available. It gets transformed by JAX-WS to a SOAP fault
message with the same structure.

Example 7–16 Building and Returning a wsdl:fault Using SOAPFaultException within
a Provider<T> Implementation

 98 String errorMsg = validateAgainstWSDL(payload);
 99 if (errorMsg != null) {
100 SOAPFactory fac = SOAPFactory.newInstance();
101 SOAPFault sf = fac.createFault(
102 "SOAP payload is invalid with respect to WSDL.",
103 new QName("http://schemas.xmlsoap.org/soap/envelope/", "Client"));
104 Detail d = sf.addDetail();
105 SOAPElement de = d.addChildElement(new QName(
106 "http://www.example.com/faults", "inputMessageValidationFault"));
107 de.addAttribute(new QName("", "msg"), errorMsg.replaceAll("\"",""));
108 throw new SOAPFaultException(sf);
109 }

book-code/chap07/endpoint-provider/modules/endpoint/src/java/samples
/RequestOrderEndpoint.java

This code snippet starts by getting the results of the vali-
dateAgainstWSDL() method. This method contains the validation code illus-
trated in Example 7–10. If the method returns a non-null string, the
validation failed and the string contains the error message. To turn that mes-
sage into a SOAP fault, the first step is to get a javax.xml.soap.SOAPFac-
tory and use it to construct a SOAPFault. As you can see here, the
faultstring passed to the constructor is "SOAP payload is invalid with
respect to WSDL."—explaining the general cause of failure (i.e., input vali-
dation failure). The other parameter passed to the constructor is the fault-
code – ENV:Client (indicating that the client is responsible for the fault).

Having constructed a SOAPFault, the detail is added using the add-
Detail() method to create an empty Detail object. Next, a SOAPElement is
created that will be added as a child to the detail element. This child is the
faults:inputMessageValidationFault shown in Example 7–14. Here,
instead of creating it using a fault bean (as in Example 7–11), I am con-
structing it by manipulating XML with the SAAJ API.

340 JAX-WS 2.0—Server-Side Development

At this point, you may be wondering what happens when the client
receives the SOAP fault message we have constructed in this manner. If the
SOAP client is written with JAX-WS and uses the SEI generated from the
WSDL, the client will map this SOAP fault to the InputFault mapped
exception. This happens regardless of how the SOAP fault was created on
the server side (i.e., from an InputFault instance or from a SOAPFault-
Exception). Example 7–17 shows a log message printed by such a Java cli-
ent after receiving the exception.

Example 7–17 The wsdl:fault Received by the Client As an InputFault

 3 InputFault.getMessage() =
 4
 5 SOAP payload is invalid with respect to WSDL.
 6
 7 InputFault.getFaultInfo.getMsg() =
 8
9 validation error: cvc-complex-type.2.4.a: Invalid content was found starting
10 with element 'ns1:ccard'. One of '{http://www.example.com/req:CUST_NO}'
11 is expected.

book-code/chap07/endpoint-provider/examples/wsdlfault_from_validation.xml

Looking at Example 7–17, you can see that the InputFault.getFault-
Info.getMsg() returns the detail element with the error message from
the server-side validation. In this case, the message received is a parse error
telling you that the SOAP request did not contain the required element
req:CUST_NO—in other words, no customer number was supplied. To run
this example, do the following:

1. Start GlassFish (if it is not running already).
2. Go to <book-code>/chap07/endpoint-provider.
3. Enter mvn install.

Example 7–18 shows another snippet of code that will cause JAX-WS
to return a SOAP fault message. In this case, the code throws a general
javax.xml.ws.WebServiceException—the base exception class for all
JAX-WS run-time exceptions. The error that occurred in this case is not a
SOAP message validation error, but a business logic error: an expired

7.5 Validation and Fault Processing 341

credit card. In an ideal world, such an exception would map to one of the
wsdl:fault messages. However, when you start from WSDL, it is often
the case that not all your business logic exceptions are going to map neatly
into a mapped exception. The code in Example 7–18 illustrates a simple
way to get JAX-WS to produce a SOAP fault that conveys some of the
information relevant to the business logic exception. In this case, you
could simply construct a WebServiceException with the fault string
"Expired ccard."

Example 7–18 A WebServiceException Is Mapped to a SOAP Fault by the Container

 172 Element expireDateElt = (Element) ccardElt.getElementsByTagNameNS(
 173 OMS_NS, "CC_EXPIRE_DATE").item(0);
 174 String expireDateStr =
 175 ((Text) expireDateElt.getFirstChild()).getNodeValue();
 177 String today = dateAsString(new GregorianCalendar());
 177 if (expireDateStr.compareTo(today) < 0) {
 178 throw new WebServiceException("Expired ccard.");
 179 }

book-code/chap07/endpoint-provider/modules/endpoint/src/java/samples
/RequestOrderEndpoint.java

Example 7–19 shows the SOAP fault message the JAX-WS creates from
this WebServiceException. When you follow the previous instructions to
run the sample code, you will also see the client-side output for this SOAP
fault message.

Example 7–19 The SOAP Fault Resulting from a WebServiceException Has No Detail
Elements

3 <SOAP-ENV:Fault xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 4 <faultstring>Expired ccard.</faultstring>
 5 <faultcode>SOAP-ENV:Server</faultcode>
 6 </SOAP-ENV:Fault>

book-code/chap07/endpoint-provider/examples
/soapfault_from_webserviceexception.xml

342 JAX-WS 2.0—Server-Side Development

You may have noticed that the faultcode in Example 7–19 is
SOAP_ENV:Server. This is the default mapping for WebServiceException,
but in this case it is misleading since the fault results from a client-side data
problem—an expired credit card. So, if you want to produce a more accu-
rate SOAP fault message, you have to again go to the trouble of using the
SAAJ API to create a SOAPFaultException. A snippet of code for doing that
is shown in Example 7–20.

Example 7–20 Mapping the Same Credit Card Error to a SOAP Fault with Detail Using
SOAPFaultException

103 if (hasExpired(ccard)) {
104 try {
105 SOAPFactory fac = SOAPFactory.newInstance();
106 SOAPFault sf = fac.createFault("Business logic exception",
107 new QName("http://schemas.xmlsoap.org/soap/envelope/", "Client"));
108 Detail d = sf.addDetail();
109 DetailEntry de = d.addDetailEntry(
110 new QName("", "expiredCC"));
111 de.setValue("Credit card has expired");
112 throw new SOAPFaultException(sf);
113 } catch (SOAPException e) {
114 throw new RuntimeException(
115 "Failed to create SOAPFault: " + e.getMessage());
116 }
117 }

book-code/chap07/endpoint-sei/modules/endpoint/src/java/samples
/RequestOrder.java

This will produce a more accurate fault code (i.e., SOAP-ENV:Client),
and put the detailed explanation of the problem (expired credit card) in the
detail element where it belongs. The SOAP fault message produced from
this code is shown in Example 7–21.

Example 7–21 A Better SOAP Fault Explains the Credit Card Exception

 3 <SOAP-ENV:Fault xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 4 <faultstring>Business logic exception</faultstring>
 5 <faultcode>SOAP-ENV:Client</faultcode>

7.6 Server-Side Handlers 343

 6 <detail>
 7 <expiredCC>Credit card has expired</expiredCC>
 8 </detail>
 9 </SOAP-ENV:Fault>

book-code/chap07/endpoint-sei/examples/soapfault_from_soapfaultexception.xml

To run this example, do the following:

1. Start GlassFish (if it is not running already).
2. Go to <book-code>/chap07/endpoint-sei.
3. Enter mvn install.

That wraps up a fairly detailed explanation of how to take advantage of
the JAX-WS exception handling and SOAP fault mapping capabilities. If
you have read through it all, congratulations—you have a lot of patience!
The payoff is that you now have a good understanding of how to get JAX-
WS to generate the SOAP faults required by high-quality Web services.

In the next section, I move on to another component of the JAX-WS
runtime illustrated in Figure 7–1 from the beginning of this chapter:
handler processing.

7.6 Server-Side Handlers

As I discussed briefly in Section 7.1, handlers are used to implement pre-
and post-processing of a MessageContext before the invocation of the ser-
vice implementation bean. In this section, I walk you through an example of
how to write a server-side handler and configure a SIB with the handler.
The handler I consider in this example encapsulates the WSDL validation
illustrated in Example 7–10. In that example, the validation code is embed-
ded in the SIB. Here, I show you how to configure that same code to do the
validation in a handler. The advantage of this approach is that you can reuse
such a handler across multiple endpoints.

In JAX-WS, server-side handlers are configured using the @HandlerChain
annotation, which references a configuration file that describes the handlers
that are included in the chain. Example 7–22 illustrates how the @Handler-
Chain annotation is used. As you can see, this is a simple annotation that is

344 JAX-WS 2.0—Server-Side Development

included, along with @WebService or @WebServiceProvider, on the service
implementation bean declaration.

Example 7–22 The @HandlerChain Annotation

44 @HandlerChain(file="handlerchain.xml")
45 @WebService(name = "targetNamespace = "http://www.example.com/req",
46 endpointInterface="com.example.req.RequestOrderPort",
47 wsdlLocation="WEB-INF/wsdl/RequestOrder.wsdl")
48 public class RequestOrder implements RequestOrderPort {

book-code/chap07/endpoint-sei-handler/modules/endpoint/src/java
/samples/RequestOrder.java

The packaging location for the @HandlerChain.file attribute, which ref-
erences the configuration file, is specified by the WSEE and WS-Metadata
specifications. Basically, the @HandlerChain.file attribute can reference the
configuration file as a URL or as a relative file location from the SIB class file.
Alternatively, the configuration file can be packaged anywhere such that it is
accessible as a resource from the classpath. I look at packaging issues like this
in more detail in the next chapter.

Example 7–23 shows what the handler chain configuration file looks
like. This is a simple XML file where the handler-chain element repre-
sents a handler chain, and its children, all handler elements, represent the
handlers in the order they should be executed at runtime (reverse order for
output SOAP responses). As per the JAX-WS specification (Section 9.2.1.2),
however, if you have a mixture of Logical and Protocol Handlers, the Logi-
cal Handlers are executed before the protocol handlers, but the relative
order within the two groups is preserved.

As described in the JAX-WS specification (Section 9 of [JSR 224]), Logi-
cal Handlers “only operate on message context properties and message pay-
loads. Logical Handlers are protocol-agnostic and are unable to affect
protocol specific parts of a message. Logical Handlers are handlers that
implement javax.xml.ws.handler.LogicalHandler.” Likewise, Protocol
Handlers “operate on message context properties and protocol specific mes-
sages. Protocol Handlers are specific to a particular protocol and may access
and change protocol specific aspects of a message. Protocol Handlers are
handlers that implement any interface derived from javax.xml.ws.hand-
ler.Handler except javax.xml.ws.handler.LogicalHandler.”

7.6 Server-Side Handlers 345

The LogicalHandler interface, for example, gives you access only to
the payload via a javax.xml.ws.LogicalMessage. With respect to a SOAP
binding, this would mean access to the SOAP Body element, but not its
headers. A Protocol Handler (e.g., SOAPHandler), on the other hand, gives
you access to the entire SOAP message.

Example 7–23 The @HandlerChain Configuration File

 4 <handler-chains xmlns:jws="http://java.sun.com/xml/ns/javaee">
 5 <handler-chain>
 6 <handler>
 7 <handler-class>samples.ValidationHandler</handler-class>
 8 </handler>
 9 </handler-chain>
 10 </handler-chains>

book-code/chap07/endpoint-sei-handler/modules/endpoint/src/webapp/WEB-INF
/classes/samples/handlerchain.xml

Example 7–24 shows the implementation of the ValidationHandler
class referenced in the preceding handler chain configuration file. Notice that
this handler implements javax.xml.ws.handler.soap.SOAPHandler<SOAP-
MessageContext>. That is the standard handler for the SOAP protocol bind-
ing, and the javax.xml.ws.handler.soap.SOAPContext is the standard
extension of MessageContext used with the SOAP protocol binding.

The purpose of this handler is to validate the SOAP message against the
WSDL. Since I want to do that only on the inbound SOAP message,9 the first
step in this handler is to check the direction of message flow using the
MessageContext.MESSAGE_OUTBOUND_PROPERTY.

Example 7–24 The Validation Handler Implementation

55 public class ValidationHandler implements SOAPHandler<SOAPMessageContext> {
56
57 public boolean handleMessage(SOAPMessageContext context) {
58

9. Of course, there is no reason not to validate the outbound message, but that case is not
shown in this example.

346 JAX-WS 2.0—Server-Side Development

59 if (((Boolean)context.get(MessageContext.MESSAGE_OUTBOUND_PROPERTY)).
60 booleanValue()) return true;
61 try {
62 SOAPMessage message = context.getMessage();
63 SOAPBody body = message.getSOAPBody();
64 SOAPElement requestElt =
65 (SOAPElement) body.getFirstChild();
66 String errMsg = validateAgainstWSDL(context, requestElt);
67 if (errMsg == null) {
68 return true;
69 }
70 SOAPFactory fac = SOAPFactory.newInstance();
71 SOAPFault sf = fac.createFault(
72 "SOAP payload is invalid with respect to WSDL.",
73 new QName("http://schemas.xmlsoap.org/soap/envelope/", "Client"));
74 Detail d = sf.addDetail();
75 SOAPElement de = d.addChildElement(new QName(
76 "http://www.example.com/faults", "inputMessageValidationFault"));
77 de.addAttribute(new QName("", "msg"), errMsg.replaceAll("\"",""));
78 throw new SOAPFaultException(sf);
79
80 } catch (Exception e) {
81 e.printStackTrace();
82 throw new WebServiceException(e);
83 }
84
85 }

book-code/chap07/endpoint-sei-handler/modules/endpoint/src/java/samples/
ValidationHandler.java

Having determined that this is an inbound message, the next step is to
use the SAAJ API to extract the payload from the SOAP body. Since I know
that I’m using the document/literal wrapped style of WSDL,10 I can cheat a
little bit here and grab only the first child of the SOAP body. With that style,
there is only one child. Having obtained the payload, the next step is to vali-
date it and pass it to the validateAgainstWSDL() method. From this point,
the processing is the same as the validation discussed in Example 7–10 and

10. See Chapter 4 for a detailed discussion of the different WSDL styles.

7.7 Java SE Deployment with javax.xml.ws.Endpoint 347

the fault processing discussed in Example 7–16. At the end of the validation
processing, if there is an error, the handler throws a SOAPFaultException.
Just as inside the service implementation bean, such exceptions thrown
from the handler will be converted by the JAX-WS runtime to a SOAP fault
message using the mapping described in the preceding section.

To run this example, do the following:

1. Start GlassFish (if it is not running already).
2. Go to <book-code>/chap07/endpoint-sei-handler.
3. Enter mvn install.

7.7 Java SE Deployment with javax.xml.ws.Endpoint

Up to this point, I have been discussing the server-side behavior of JAX-WS
within a Java EE 5 container. Container-based deployment, however, is not
the only means of implementing Web services supported by JAX-WS. The
javax.xml.ws.Endpoint class is designed to enable you to deploy Web ser-
vices from a Java SE application.

Java SE 5.0 does not include an implementation of Endpoint. To get
such an implementation, and to run the example in this section, you need to
download Java SE 6, and set the Maven property jdk6.home to point to the
directory where you installed it.11

The amazing thing about working with Endpoint deployment is that
you can use the same SEI and service implementation bean you would use
for a Java EE deployment. Example 7–25 shows the SIB used in this exam-
ple. It is basically the same one we have used throughout this chapter.

Example 7–25 The SEI Implementation to Be Published with javax.xml.ws.Endpoint

44 @WebService(name = "RequestOrder",
45 targetNamespace = "http://www.example.com/req",
46 endpointInterface="com.example.req.RequestOrderPort")
47 public class RequestOrder implements RequestOrderPort {
48

11. See Appendix B for a detailed explanation of how to install Java SE 6 and configure it for
this example.

348 JAX-WS 2.0—Server-Side Development

49 public OrderType requestOrder(String custNum, String poNum, BUSOBJCCARD ccard,
50 List<BUSOBJITEM> itemList) throws InputFault {

book-code/chap07/endpoint-endpoint/src/java/samples/RequestOrder.java

One slight difference between how the service implementation bean is
annotated here versus the example in Section 7.2 is that here there is no
wsdlLocation attribute specified in the @WebService annotation. As you will
see, with an Endpoint instance, you can dynamically configure a pre-defined
WSDL. Of course, you don’t have to supply a WSDL to the Endpoint
instance if you don’t want to. Just like in the Java EE case, the Endpoint class
can generate WSDL from SEI or SIB annotations. The JAX-WS and JAXB
run-time annotation processing system is included in Java SE 6.

Example 7–26 shows the main class that creates and deploys the End-
point instance used for this example. Deploying a Web service this way is a
two-stage process. First, you create an Endpoint instance and then you
publish it.

Example 7–26 Creating and Publishing a Web Service with javax.xml.ws.Endpoint

45 public static void main(String[] args) throws Exception {
46
47 Endpoint endpoint = Endpoint.create(new RequestOrder());
48 InputStream wsdlStream =
49 Client.class.getClassLoader().getResourceAsStream("RequestOrder.wsdl");
50 URL wsdlURL =
51 Client.class.getClassLoader().getResource("RequestOrder.wsdl");
52 if (wsdlStream == null) {
53 throw new RuntimeException("Cannot find WSDL resource file.");
54 }
55 ArrayList<Source> metadata = new ArrayList<Source>();
56 Source wsdlSource = new StreamSource(wsdlStream);
57 String wsdlId = wsdlURL.toExternalForm();
58 wsdlSource.setSystemId(wsdlId);
59 metadata.add(wsdlSource);
60 endpoint.setMetadata(metadata);
61 endpoint.publish("http://localhost:8680/oms");

book-code/chap07/endpoint-endpoint/src/java/samples/Client.java

7.7 Java SE Deployment with javax.xml.ws.Endpoint 349

As you can see here, all you have to do to create the Endpoint instance is:

Endpoint endpoint = Endpoint.create(new RequestOrder());

I think that is pretty cool. No deployment descriptors or even a con-
tainer is needed! Of course, there is some sleight of hand going on here.
Taking a peek at the Java SE 6 source code used to implement Endpoint
reveals that a simple HttpServer class under the covers is instantiated when
an Endpoint is created this way.

The next thing to notice in Example 7–26 is how you can set the meta-
data to supply your own WSDL to the Endpoint. As mentioned, if you do
not do this, the endpoint will return the JAX-WS-generated WSDL. If you
do supply the WSDL, you need to use the Endpoint.setMetadata()
method as shown. This method takes an instance of List<Source>. The
meta-data included in this list can include XML schema and WSDL. As you
can see in this code, when you supply a WSDL as a Source instance, you
may also have to set its system ID. That step is required whenever the
WSDL contains references (e.g., imported or included schema) that need
to be resolved by an XML parser.

The last step in this process is to invoke the Endpoint.publish()
method and supply an endpoint URL. It’s that simple!

Example 7–27 shows the client code used to invoke the Endpoint.
The first few lines of this code simply get the WSDL and print it out
(using the printWSDL() method shown in Example 7–28). I have included
this simply to demonstrate that the Endpoint we created publishes its
WSDL correctly.

Example 7–27 Invoking the Published Endpoint

65 URL wsdlDeployURL = new URL("http://localhost:8680/oms/requestOrder?wsdl");
66 System.out.println("Endpoint Returns this WSDL");
67 System.out.println("===");
68 printWSDL(wsdlDeployURL);
69 QName serviceQName =
70 new QName("http://www.example.com/req", "RequestOrderService");
71 QName portQName =
72 new QName("http://www.example.com/req", "RequestOrderPort");
73 Service service = Service.create(wsdlURL, serviceQName);
74 RequestOrderPort port =
75 (RequestOrderPort) service.getPort(portQName, RequestOrderPort.class);

350 JAX-WS 2.0—Server-Side Development

76 BUSOBJCCARD ccard = createCreditCard();
77 ArrayList<BUSOBJITEM> itemList = createItemList();
78 OrderType order = port.requestOrder(
79 "ENT0072123", null, ccard, itemList);
80 System.out.println();
81 System.out.println();
82 System.out.println("Webservice Returns this Order");
83 System.out.println("===");
84 printReturnedOrder(order);
85 endpoint.stop();
86
87 }

book-code/chap07/endpoint-endpoint/src/java/samples/Client.java

The second part of the code in Example 7–28 shows that you can create
a JAX-WS client to invoke this Endpoint just as I illustrate in Chapter 6.
You can get a Service built from the WSDL URL and create a dynamic
proxy using the RequestOrderPort SEI. The process is exactly the same as
for invoking any Web service. To run this example, do the following:

1. Go to <book-code>/chap07/endpoint-endpoint.12

2. Enter mvn install.

Example 7–28 Utility to Print the WSDL from the Published Endpoint

151 private static void printWSDL(URL wsdlURL) throws Exception {
152
153 HttpURLConnection con = (HttpURLConnection) wsdlURL.openConnection();
154 con.setRequestMethod("GET");
155 con.connect();
156 InputStream wsdlInput = con.getInputStream();
157 int b = wsdlInput.read();
158 while (b > -1) {
159 System.out.print((char) b);
160 b = wsdlInput.read();
161 }
162 wsdlInput.close();

12. GlassFish does not need to be running for this example.

7.7 Java SE Deployment with javax.xml.ws.Endpoint 351

163 con.disconnect();
164
165 }

book-code/chap07/endpoint-endpoint/src/java/samples/Client.java

Example 7–29 shows the WSDL that is supplied to the Endpoint
instance using the setMetaData method in Example 7–26. Even though it is
a long listing, I include it here because it is referenced in a number of
places in this chapter where I discuss WSDL. This is the WSDL used in
most of the examples in this chapter.

Example 7–29 WSDL Supplied As Meta-data to the Endpoint

 4 <wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 5 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 6 xmlns:xs="http://www.w3.org/2001/XMLSchema"
7 xmlns:oms="http://www.example.com/oms" xmlns:req="http://www.example.com/req"
 8 xmlns:faults="http://www.example.com/faults"
 9 targetNamespace="http://www.example.com/req">
10 <wsdl:types>
11 <xs:schema targetNamespace="http://www.example.com/oms">
12 <xs:include schemaLocation="http://soabook.com/example/oms/orders.xsd"/>
13 </xs:schema>
14 <xs:schema targetNamespace="http://www.example.com/faults">
15 <xs:include schemaLocation="http://soabook.com/example/faults/faults.xsd"
16 />
17 </xs:schema>
18 <xs:schema targetNamespace="http://www.example.com/req"
19 elementFormDefault="qualified">
20 <xs:element name="requestOrder">
21 <xs:complexType>
22 <xs:sequence>
23 <xs:element name="CUST_NO">
24 <xs:simpleType>
25 <xs:restriction base="xs:string">
26 <xs:maxLength value="10"/>
27 </xs:restriction>
28 </xs:simpleType>
29 </xs:element>
30 <xs:element minOccurs="0" name="PURCH_ORD_NO">

352 JAX-WS 2.0—Server-Side Development

31 <xs:simpleType>
32 <xs:restriction base="xs:string">
33 <xs:maxLength value="35"/>
34 </xs:restriction>
35 </xs:simpleType>
36 </xs:element>
37 <xs:element type="oms:BUSOBJ_CCARD" minOccurs="0" name="ccard"/>
38 <xs:element type="oms:BUSOBJ_ITEM" name="item" maxOccurs="unbounded"
39 />
40 </xs:sequence>
41 </xs:complexType>
42 </xs:element>
43 <xs:element name="requestOrderResponse">
44 <xs:complexType>
45 <xs:sequence>
46 <xs:element ref="oms:Order"/>
47 </xs:sequence>
48 </xs:complexType>
49 </xs:element>
50 </xs:schema>
51 </wsdl:types>
52 <wsdl:message name="request">
53 <wsdl:part element="req:requestOrder" name="parameters"/>
54 </wsdl:message>
55 <wsdl:message name="response">
56 <wsdl:part element="req:requestOrderResponse" name="parameters"/>
57 </wsdl:message>
58 <wsdl:message name="inputFault">
59 <wsdl:part element="faults:inputMessageValidationFault" name="parameters"/>
60 </wsdl:message>
61 <wsdl:portType name="RequestOrderPort">
62 <wsdl:operation name="requestOrder">
63 <wsdl:input message="req:request"/>
64 <wsdl:output message="req:response"/>
65 <wsdl:fault message="req:inputFault" name="requestOrderInputFault"/>
66 </wsdl:operation>
67 </wsdl:portType>
68 <wsdl:binding type="req:RequestOrderPort" name="RequestOrderSOAPBinding">
69 <soap:binding style="document"
70 transport="http://schemas.xmlsoap.org/soap/http"/>
71 <wsdl:operation name="requestOrder">
72 <wsdl:input>
73 <soap:body use="literal"/>
74 </wsdl:input>

7.7 Java SE Deployment with javax.xml.ws.Endpoint 353

75 <wsdl:output>
76 <soap:body use="literal"/>
77 </wsdl:output>
78 <wsdl:fault name="requestOrderInputFault">
79 <soap:fault name="requestOrderInputFault"/>
80 </wsdl:fault>
81 </wsdl:operation>
82 </wsdl:binding>
83 <wsdl:service name="RequestOrderService">
84 <wsdl:port binding="req:RequestOrderSOAPBinding" name="RequestOrderPort">
85 <soap:address location="http://localhost:8680/oms/requestOrder"/>
86 </wsdl:port>
87 </wsdl:service>
88 </wsdl:definitions>

book-code/chap07/endpoint-endpoint/examples/generatedwsdl.xml

Example 7–30 shows the WSDL that is returned by the code in Exam-
ple 7–27 when it queries the URL http://localhost:8680/oms/request-
Order?wsdl. This is also a long listing, but I include it because I want you to
notice some of the subtle differences between this and the WSDL that was
included as meta-data supplied to the Endpoint instance. In particular, look
at the schema import definitions and you will notice that the schemaLoca-
tion has changed in each case.

Example 7–30 WSDL Generated by JAX-WS within the Endpoint (When No Meta-data Is
Supplied)

 4 <definitions xmlns:tns="http://www.example.com/req"
 5 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 6 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 7 xmlns="http://schemas.xmlsoap.org/wsdl/"
 8 targetNamespace="http://www.example.com/req" name="RequestOrderService">
 9 <types>
10 <xsd:schema>
11 <xsd:import namespace="http://www.example.com/req"
12 schemaLocation="http://localhost:8680/oms/requestOrder?xsd=1"/>
13 </xsd:schema>
14 <xsd:schema>
15 <xsd:import namespace="http://www.example.com/oms"
16 schemaLocation="http://localhost:8680/oms/requestOrder?xsd=2"/>

354 JAX-WS 2.0—Server-Side Development

17 </xsd:schema>
18 <xsd:schema>
19 <xsd:import namespace="http://www.example.com/faults"
20 schemaLocation="http://localhost:8680/oms/requestOrder?xsd=3"/>
21 </xsd:schema>
22 </types>
23 <message name="requestOrder">
24 <part element="tns:requestOrder" name="parameters"/>
25 </message>
26 <message name="requestOrderResponse">
27 <part element="tns:requestOrderResponse" name="parameters"/>
28 </message>
29 <message name="inputMessageValidationFault">
30 <part xmlns:ns1="http://www.example.com/faults"
31 element="ns1:inputMessageValidationFault"
32 name="inputMessageValidationFault"/>
33 </message>
34 <portType name="RequestOrderPort">
35 <operation name="requestOrder">
36 <input message="tns:requestOrder"/>
37 <output message="tns:requestOrderResponse"/>
38 <fault message="tns:inputMessageValidationFault"
39 name="inputMessageValidationFault"/>
40 </operation>
41 </portType>
42 <binding type="tns:RequestOrderPort" name="RequestOrderPortBinding">
43 <soap:binding style="document"
44 transport="http://schemas.xmlsoap.org/soap/http"/>
45 <operation name="requestOrder">
46 <soap:operation soapAction=""/>
47 <input>
48 <soap:body use="literal"/>
49 </input>
50 <output>
51 <soap:body use="literal"/>
52 </output>
53 <fault name="inputMessageValidationFault">
54 <soap:fault use="literal" name="inputMessageValidationFault"/>
55 </fault>
56 </operation>
57 </binding>
58 <service name="RequestOrderService">
59 <port binding="tns:RequestOrderPortBinding" name="RequestOrderPort">
60 <soap:address location="http://localhost:8680/oms/requestOrder"/>

7.8 Conclusions 355

61 </port>
62 </service>
63 </definitions>

book-code/chap07/endpoint-endpoint/examples/originalwsdl.xml

The references to the corporate schema repositories13 (e.g., http://soa-
book.com/example/oms/orders.xsd) are missing and have been replaced by
local references (e.g., http://localhost:8680/oms/requestOrder?xsd=1).
The point I am making here is that, even if you provide a WSDL contract as
meta-data to the Endpoint, you do not have a guarantee that it will be repro-
duced exactly.

7.8 Conclusions

This and the preceding chapter focused on the JAX-WS API and run-time
behavior. Chapter 6 explored the client side uses of JAX-WS, and this chap-
ter addressed the server side. My goal was to show you lots of examples so
that you can experiment with them and modify them to create your own
JAX-WS applications. You can read and reread this book, and even read the
JAX-WS specification in depth, but you won’t start to get an intuitive under-
standing for how JAX-WS works until you start writing your own code.

If you were familiar with JAX-RPC before reading this, you can proba-
bly see that JAX-WS is a big improvement. The JAXB framework is much
more flexible than the old JAX-RPC Java/XML binding. Plus, it is great to
have a single XML binding technology for all of Java. Now, you can write
classes, using the JAXB (and JAX-WS) annotations, with deployment as
Web services in mind. And there is no longer any need for the complex and
confusing JAX-RPC type mapping deployment descriptor that was previ-
ously required.

Another big improvement is the Provider<T> interface for creating and
deploying Web services that work directly with XML. As you might remem-
ber, in JAX-RPC to create something similar, you had to generate a SEI
from a generic WSDL interface using the <xs:any/> element and then
build the service implementation around that SEI.

13. Schema repositories are discussed in Chapter 4.

356 JAX-WS 2.0—Server-Side Development

But the biggest improvement, in my mind, is the introduction of anno-
tations to simplify the writing and deployment of services. In the preceding
chapter and this one, I used annotations in the examples, and explained
them as necessary, but didn’t really discuss them in depth or push the limits
of how they can be used. Related to annotations is the improvement in
deployment descriptors. It is now possible, in many cases, to deploy a JAX-
WS service implementation bean, as a servlet or an EJB endpoint, without
any deployment descriptors.

In the next chapter, I discuss annotations and deployment in depth. The
focus is on the two specifications that define most of the annotations and
deployment methods: WS-Metadata [JSR 181] and WSEE [JSR 109].

357

C H A P T E R 8

Packaging and Deployment
of SOA Components
(JSR-181 and JSR-109)

This chapter describes the nuts and bolts of packaging and deploying SOA
applications with Java Web Services (JWS). The two specifications that pro-
vide most of the detail regarding packaging and deployment are Web Services
Metadata for the Java Platform (WS-Metadata) [JSR 181] and Implementing
Enterprise Web Services (WSEE) [JSR 109].

WS-Metadata defines a set of standard annotations programmers use to
configure how the container will deploy a Java class as a Web service. Dur-
ing deployment, the JWS container interprets those annotations to generate
artifacts and configure itself to deploy the specified Web service. For exam-
ple, the container may construct a WSDL representation of a Web service
based on the WS-Metadata annotations.

Java EE 5, through WS-Metadata, defines a much simpler program-
ming model for the development and deployment of Web Services than
J2EE.1 J2EE requires the developer to use configuration files, particularly
the webservices.xml file, to provide much of the information about how
to configure a Java class as a Web service. In contrast, WS-Metadata uses
annotations to declaratively specify the Web services a Java class provides
and the webservices.xml file is no longer required. This simplifies the
developer’s life considerably, but it does create the same problems you
always have when you use annotations—namely, that by encoding the def-
inition of the Web service inside the Java class definition itself, if you want
to deploy the same class, with different Web service representations, in dif-
ferent contexts, you need to override those annotations with deployment

1. J2EE means versions 1.4 and earlier of the J2EE specification.

358 Packaging and Deployment of SOA Components (JSR-181 and JSR-109)

descriptors.2 For example, you are still free to use the webservices.xml file
as, even though its use is optional, it continues to be supported. Section 7.4.2
of [JSR 181] defines the mapping of annotations to the webservices.xml file.
If you choose to use both webservices.xml and annotations, the webser-
vices.xml configuration information overrides the annotations. The JAX-RPC
mapping file, required when using JAX-RPC in J2EE environments, is no
longer needed since JAX-WS uses JAXB for all its data binding requirements.

WSEE defines a service architecture to ensure portability of Web Ser-
vices applications across Java EE application server implementations. It
defines requirements for each major integration point for Web services in
Java EE, including client, server, and deployment models. WSDL bindings
and security are also addressed. Whereas WS-Metadata specifies how to
describe the Web service to be deployed from a Java class, WSEE clarifies
how annotations must be used, and how the Java class and other artifacts
must be packaged, to ensure proper deployment to any Java EE implemen-
tation. For this reason, WSEE is often referred to as the “portability specifi-
cation”—compliance ensures that Web services are portable. It defines the
types of objects that can be deployed as Web services, how to package those
objects, and what annotations and/or deployment descriptors are required
for deployment. For example, WSEE tells us that a Web service can be
deployed either as a servlet endpoint or as an EJB endpoint.3 WSEE
describes the requirements for packaging either type of endpoint, and what
deployment descriptors are necessary (if any). WSEE version 1.1 is
included in J2EE, but has been extensively modified to work with WS-
Metadata and JAX-WS in version 1.2. In this chapter, I use WSEE to refer
to WSEE version 1.2.

To summarize the roles of these specifications, WS-Metadata simplifies
the development and deployment of Web services through the use of anno-
tations, and WSEE defines the proper use and packaging of WS-Metadata
annotated classes. For many common deployment scenarios, no deploy-
ment descriptors are required. However, there are situations where you will
want to use deployment descriptors, so it pays to understand how they

2. Only the WS-Metadata annotations can be overridden by deployment descriptors. The
JAXB annotations, for example, that determine the XML Schema definitions in the deployed
endpoint’s WSDL, cannot be overridden.
3. Although stateless session beans are the only type of EJB that can be deployed as a Web
service, in this book I follow common industry practice and refer to this as an EJB endpoint.
Throughout this book, wherever you see EJB used to refer to a Web service implementation,
I am writing specifically about the stateless session bean variety of EJB component. So, an
EJB endpoint is always implemented using a stateless session bean.

8.1 Web Services Packaging and Deployment Overview 359

work. In addition, it is important to realize that even though, as a developer,
you may not have to deal much with deployment descriptors in JWS, your
container is probably generating them (based on the annotations) and using
them behind the scenes. So, understanding how annotations and deploy-
ment descriptors interact is important to understanding the behavior of
Web Services deployment in general.

In the following sections, I provide examples that illustrate various types
of deployment (e.g., servlet endpoint, EJB endpoint, with descriptors, with-
out descriptors) and how the WS-Metadata annotations influence the
behavior and WSDL contract definition of the Web service. But before diving
into those details, I provide an overview of the JWS deployment process.

8.1 Web Services Packaging and Deployment Overview

WSEE defines the concept of a port component to refer to the component
that gets packaged and deployed to the container to implement a Web ser-
vice. A port component is an addition to the Java EE platform defined by
WSEE and should be thought of in the same manner as other deployable
components such as servlets and JSPs (Web container) or EJBs (EJB con-
tainer). Like those other components, a port component depends on the
functionality provided by the Web and EJB containers. WSEE does not
specify how a Java EE container should implement port components. How-
ever, it is sensible for implementors to rely heavily on servlets, because that
approach leverages the investment they have already made in developing
servlet technology. The use of servlets for deployment in the GlassFish
implementation is discussed in detail in Sections 8.1.1 and 8.1.2.

A port component defines the programming model artifacts that make
up a portable Web service application. These components are defined in
detail by the WSEE specification. A port component must include a service
implementation bean. A service implementation bean (SIB) is a Java class
that contains the business logic of a JAX-WS Web service. The SIB may also
be a wrapper that invokes other classes containing the business logic. Either
way, it is annotated with @WebService or @WebServiceProvider and its
methods can be exposed as Web service operations. The service implemen-
tation bean is fully defined in the WS-Metadata specification. A SIB is the
only required artifact in a port component.

However, a port component may also include a service endpoint inter-
face (SEI), a WSDL document, security role references, and a Web Services
deployment descriptor. a SEI is a Java interface that is mapped to a

360 Packaging and Deployment of SOA Components (JSR-181 and JSR-109)

wsdl:portType according to the JAX-WS WSDL/Java Mapping.4 When you
include a SEI in a port component, the container uses that SEI (including
its annotations) to generate the WSDL representation of the resulting Web
service. If no SEI is present, the container generates the WSDL represen-
tation directly from the SIB.

A WSDL document can also be provided as part of the port compo-
nent. In this case, the container does not generate WSDL, but rather
uses the document supplied. When a WSDL is supplied, the endpoint
address specified in the WSDL may be modified by the container to be
consistent with the endpoint address where the resulting Web service is
deployed. For example, the soap:address in the provided WSDL may
be changed in the deployed WSDL to reflect the context root and path of
the deployment.

Security role references are logical role names declared by the port
component using the deployment descriptors for the Web or EJB compo-
nent. Examples of how these descriptors are used for this purpose are dis-
cussed in Section 8.5.

The Web services deployment descriptor (webservices.xml) was
required by JAX-RPC 1.1. It is no longer required, as the information it
contains can be specified with annotations. However, you may want to use a
webservices.xml descriptor if you need to deploy legacy classes that are
not annotated or that override the value of some annotations.

Other deployment artifacts that may be used include web.xml (for
deploying a servlet endpoint), ejb-jar.xml (for deploying an EJB end-
point), and implementation-specific descriptors (e.g., GlassFish’s sun-ejb-
jar.xml for specifying the context root of the endpoint URL for EJB
deployment).

Per WSEE, port components may be packaged in a WAR file or EJB JAR
file. Port components packaged in a WAR file are referred to in WSEE as
JAX-WS Service Endpoints. These are simply service implementation beans
that do not have the @Stateless annotation. “JAX-WS Service Endpoint” is a
confusing term because it sounds a lot like “JAX-WS service endpoint inter-
face (SEI).” In fact, a SEI can be implemented by either a JAX-WS Service
Endpoint or a Stateless Session EJB in an EJB container.

Port components packaged in an EJB-JAR file must use a stateless
session bean for the service implementation bean and be annotated
@Stateless. Packaging is specified in Section 5.4 of [JSR 109]. I have
always found packaging to be confusing, especially to programmers who

4. For a detailed discussion of the service endpoint interface, see Chapter 6, Section 6.1.

8.1 Web Services Packaging and Deployment Overview 361

do not have a lot of experience writing and deploying EJBs. So, in the next
two subsections, I provide a detailed explanation of how to package a Web
service for deployment as either a WAR or an EJB-JAR.

8.1.1 Packaging a Servlet Endpoint Using a WAR

When you package a SIB for deployment as a servlet endpoint, your WAR is
structured as shown in Figure 8–1. Each component of the package is num-
bered in this diagram and discussed.

1. Service Implementation Bean [required] is contained in the WEB-
INF/classes/<package-path>/, where <package-path> is deter-
mined by the class’s package name. This location is not mandatory, but
customary. Alternatively, the SIB could be contained in a JAR under
the WEB-INF/lib or even in an extension JAR installed in the Web
container and referenced by the WAR’s MANIFEST Class-Path. As
long as the SIB is on the application classpath, the packaging will work.
See Section 9.7 of Servlets 2.5 [JSR 154] for a complete description of

Figure 8–1 Servlet endpoint packaging.

WAR

Service
Endpoint
Interface

Service
Implementation
Bean

Handler Chain
Descriptor

web.xml sun-web.xml

WSDL

webservices.xml

WEB-INF

classes wsdl

lib

1 2
3

4

5

7

8

jax-ws-catalog.xml
6

JAR
Dependent
Classes 9

362 Packaging and Deployment of SOA Components (JSR-181 and JSR-109)

what locations are contained on the classpath of a WAR application.
This class file must be annotated with @WebService or @WebService-
Provider. Its methods contain the business logic that implements the
Web service operations.

2. Service endpoint interface [optional] is contained in the WEB-
INF/classes/<package-path>/ where <package-path> is deter-
mined by the class’s package name. This location is customary, but
not mandatory. The SEI class file may be located anywhere on the
application classpath (see classpath description in item 1). When
used, the SIB’s @WebService.endpointInterface attribute’s value
must equal the complete name of this SEI.

3. WSDL [optional] is contained in the WEB-INF/wsdl directory. This is
not a mandatory location, but is customary. When used, the SIB’s
@WebService.wsdlLocation attribute’s value must equal the relative
location of this file.5 Any files (e.g., XML Schema definitions) refer-
enced by the WSDL must be referenced relative to the WSDL’s loca-
tion. For example, if the WSDL is in the META-INF/wsdl directory and
it references a schema as myschema.xsd, then myschema.xsd should be
in META-INF/wsdl. If the schema is referenced as ../myschema.xsd,
myschema.xsd should be in META-INF.

4. web.xml [optional] is contained in the WEB-INF/ directory.
5. webservices.xml [optional] is contained in the WEB-INF/ directory.
6. jax-ws-catalog.xml [optional] is contained in the WEB-INF/ direc-

tory. This descriptor is used in connection with OASIS XML Catalog
1.1 usage as described in Section 8.6.

7. sun-web.xml [optional] is contained in the WEB-INF/ directory.
This is the GlassFish-specific Web application descriptor.

8. Handler Chain File [optional] is contained under the WEB-INF/
classes directory where it will be available as a resource on the appli-
cation classpath. There is no standard name for this file. This is not a
mandatory location—it may also be specified as an external URL.
Specifically, when used, the SIB’s @HandlerChain.file attribute’s
value must equal either:
■ An absolute java.net.URL in external form (e.g., http://myhan-

dlers.foo.com/handlerfile1.xml)
■ A relative path from the source file or class file (e.g., bar/

handlerfile1.xml) specifying the location of this file

5. The wsdlLocation can also be an absolute URL, but for the WAR packaging shown
here, you would use the relative path within the WAR.

8.1 Web Services Packaging and Deployment Overview 363

9. Dependent Classes [optional] are bundled in a JAR and contained
under the WEB-INF/lib directory where they are available on the
application classpath. These are any classes the SIB or SEI depend
on. This is not a mandatory location, but one possible approach when
the SIB depends on a library of classes that may already be packaged
in a JAR. The dependent classes may be located anywhere on the
application classpath (see classpath description in item 1).

Most Java container implementations provide development tools that
include packaging utilities to create and package a servlet endpoint WAR, as
described earlier. However, you do not need to use such tools to create the
WAR file if you do not want to. In fact, if you want WAR generation code
that is portable across platforms, you may want to avoid vendor-specific util-
ities for packaging. That is because vendor-specific tools may include vendor-
specific deployment descriptors or add vendor-specific features within the
packaging. Many tools do not have such side effects, but some do. So, make
sure you understand how your vendor’s packaging tool works.

As an alternative, deployment packaging can be done in a portable man-
ner using third-party, open source tools, such as Apache Ant or Apache
Maven. In this book, all the packaging is done with Ant and Maven.

8.1.2 Packaging an EJB Endpoint Using an EJB-JAR

When you package a SIB for deployment as a stateless session bean end-
point, your EJB-JAR may be structured as shown in Figure 8–2. Each com-
ponent of the package is numbered in this diagram and discussed.

1. Service implementation bean [required] is contained in the
<package-path>/ directory where <package-path> is determined by
the class’s package name. This location is not mandatory, but custom-
ary. Alternatively, the SIB could be contained in another JAR (e.g.,
bundled within an EAR with this same EJB-JAR) and referenced by
the EJB-JAR’s manifest file Class-Path attribute. You could even have
the SIB located in an installed library and referenced by the EJB-JAR’s
manifest file Extension-List attribute. As long as the SIB is on the
application classpath, the packaging will work. See Section EE.8.2 of
the Java EE 5 specification [JSR 244] for a complete description of
what locations are contained on the classpath of a portable application.
This class file must be annotated with @Stateless, and @WebService
or @WebServiceProvider. Its methods contain the business logic that
implements the Web service operations.

364 Packaging and Deployment of SOA Components (JSR-181 and JSR-109)

2. Service endpoint interface [optional] is contained in the <pack-
age-path>/ where <package-path> is determined by the class’s
package name. This location is customary, but not mandatory. The
SEI class file may be located anywhere on the application classpath
(see classpath description in item 1). When used, the SIB’s @WebSer-
vice.endpointInterface attribute’s value must equal the complete
name of this SEI.

3. WSDL [optional] is contained in the META-INF/wsdl directory. See
the WSDL description in Section 8.1.1—WAR and EJB-JAR usage
is the same.

4. ejb-jar.xml [optional] is contained in the META-INF/directory.
5. webservices.xml [optional] is contained in the META-INF/directory.
6. jax-ws-catalog.xml [optional] is contained in the META-INF/

directory. This descriptor is used in connection with OASIS XML
Catalog 1.1 usage as described in Section 8.6.

7. sun-ejb-jar.xml [optional] is contained in the META-INF/direc-
tory. This is the GlassFish-specific EJB deployment descriptor.

Figure 8–2 Stateless session bean endpoint packaging.

EAR

EJB-JAR

ejb-jar.xml sun-ejb-jar.xml

WSDL
webservices.xml

META-INF

wsdl

3
jax-ws-catalog.xml

JAR
Dependent
Classes

<package-path>

Service
Endpoint
Interface

Service
Implementation
Bean

Handler Chain
Descriptor

1 2 8

4

5

7

6

9

8.1 Web Services Packaging and Deployment Overview 365

8. Handler Chain File [optional] is contained under the <package-
path>/directory (<package-path> is determined by the SIB class’s
package name) where it is available as a resource on the application
classpath. See the Handler Chain File description in Section 8.1.1—
WAR and EJB-JAR usage is the same.

9. Dependent Classes [optional] are contained in a separate JAR file
at the root of the enclosing EAR where they will be available on the
application classpath. These are any classes the SIB or SEI depends
on. This is not a mandatory location. The dependent classes may be
located anywhere on the application classpath (see classpath descrip-
tion in item 1).

8.1.3 Auto-Deployment

WS-Metadata envisions, but does not require, an auto-deployment mecha-
nism that provides “drag and drop” functionality.6 The specification suggests
that this could be a special server-side directory monitored by the container.
When a WS-Metadata annotated class file is copied to this directory, the
container examines the annotations, builds the WSDL, and configures the
run-time machinery required for dispatching.

GlassFish implements such an auto-deployment mechanism. I provide
an illustrative example of how to use it in Section 8.4.

8.1.4 Overview of the Container’s Deployment Processing

This section provides an overview of the process by which a JWS container
deploys a Web service. To some extent, this description delves into implemen-
tation issues that are outside the scope of the JSR specifications. In addition to
the JSR specifications (particularly Section 8 of [JSR 109]), it is based on my
review of the GlassFish V1 source code and discussions with developers at Sun.
As GlassFish evolves, some of these details will become outdated. However,
the general principles described here are applicable to all JWS containers.

A JWS deployable module is anything the container can deploy as a
Web service. As described in the previous paragraphs of Section 8.1, it
can be a WAR module or an EJB-JAR module. In the case of auto-
deployment, it can be a single annotated class file. A JWS container
includes a deployment subsystem that is responsible for deployment.
This subsystem may contain some components (e.g., a command-line
deployment utility) that are outside of the actual container. Note that the

6. Section 2.4 of [JSR 181].

366 Packaging and Deployment of SOA Components (JSR-181 and JSR-109)

actual deployment may involve an EAR that contains multiple deployable
modules. For simplicity, I just focus on what happens during deployment
of a single module.

First, the deployment subsystem validates the contents of the deploy-
able module (e.g., checking that EJB Web service endpoints are deployed
in EJB-JARs and not WARs). It may collect some binding information
from the deployer (e.g., a context root for a WAR deployment may be pro-
vided as a command-line option). The deployment subsystem then
deploys the components and Web services defined in the deployable mod-
ule, publishes the WSDL documents representing the deployed Web ser-
vices, deploys any clients using Web services, configures the server, and
starts the application.

The deployment tool starts the deployment process by identifying the
Web services using the Web service meta-data annotations or webser-
vices.xml deployment descriptor file contained within the module. Per
WSEE, deployment of services occurs before resolution of service refer-
ences. This is done to allow deployment to update the WSDL port
addresses before the service references to them are processed. This is nec-
essary since the port addresses may be determined by information (e.g.,
context root) supplied at deployment time.

The processing of annotations is critical for an understanding of deploy-
ment, so I’m going to focus a bit on exactly how that works inside the Glass-
Fish7 [GLASSFISH] implementation. In GlassFish V1, the deployment
subsystem loads all deployment descriptors (if any), and then the annota-
tions are processed8 by an annotation framework. On seeing an @WebSer-
vice, for example, the annotation framework calls WebServiceHandler,
which processes the annotation. While processing the annotation, the
framework checks whether a deployment descriptor entry is already avail-
able (e.g., from webservices.xml), and if so, the annotation values will not
override the equivalent defined in the descriptor.9 At the end of the annotation

7. The discussion that follows, relative to the GlassFish internals, is based on GlassFish Ver-
sion 1, UR1 (https://glassfish.dev.java.net/downloads/v1_ur1-p01-b02.html), that is used in
Sun’s Java System Application Server Platform Edition 9.0 Update 1 Patch 1. Class names
and other details discussed here are subject to change in future versions of GlassFish.
8. The GlassFish classes that process Web Services annotations at deployment time are
found in appserv-commons/src/java/com/sun/enterprise/deployment/annotation/handlers.
For example, the WebServiceHandler class processes the @WebService annotation.
9. Per Section 5.3 of [JSR-109], “A deployment descriptor may be used to override or
enhance the information provided in the service implementation bean annotation.”

8.1 Web Services Packaging and Deployment Overview 367

processing phase, all the information has been gathered that is required to
generate the WSDL and other portable artifacts (if not packaged).10

For servlet endpoint deployment, GlassFish generates a web.xml,11

which directs the HTTP request containing the payload (SOAP/HTTP, or
just XML in the case of a RESTful service deployed with the XML/HTTP
binding) to an instance of the JAXWSServlet class—a wrapper servlet class
that dispatches requests to endpoints. More specifically, when you deploy a
WAR with a servlet endpoint:

1. The GlassFish container creates a web.xml to deploy an instance of
JAXWSServlet. If your WAR contained a web.xml, the generated
web.xml is built from your original web.xml, but the servlet-class
is replaced with JAXWSServlet. In addition, the webservices.xml
deployment descriptor is generated (if it doesn’t already exist) and
the service-endpoint-interface references the class being
deployed that you specified in your web.xml’s servlet-class. Note
that webservices.xml is not required by JAX-WS, but generated for
internal use by GlassFish.

2. When the JAXWSServlet instance is deployed, and initialized, the
following happens:
■ An instance of the endpoint implementation class (com.sun-

.enterprise.webservice.monitoring.JAXWSEndpointImpl) is cre-
ated from the port component as defined by the deployment
descriptors and annotations. The description of this port compo-
nent is represented internally as an instance of com.sun.enter-
prise.deployment.WebServiceEndpoint. This JAXWSEndpointImpl
instance is what processes the MessageContext containing the
SOAP request/response.

■ The deployment subsystem registers the endpoint implementa-
tion with the JAX-WS runtime. The registry is an instance of
com.sun.enterprise.webservice.JAXWSRuntimeEpiRegistry.
The endpoint object that gets registered is an instance of com-
.sun.xml.ws.spi.runtime.RuntimeEndpointInfo, and it includes
(among other things) an instance of the application-defined class

10. GlassFish can generate, for example, a web.xml or ejb-jar.xml, as needed for deploy-
ment. This is not required by the JSR specifications, but it is a sensible approach and other
implementations will probably work similarly.
11. You can see the generated web.xml and other deployment artifacts if you look in
$GLASSFISH_HOME/domains/domain1/generated/xml/j2ee-modules/WEB-INF after
you have deployed an endpoint.

368 Packaging and Deployment of SOA Components (JSR-181 and JSR-109)

implementing the endpoint (i.e., the one class annotated with @Web-
Service or @WebServiceProvider), a WebServiceContext instance,
an associated WSDL file (either packaged or generated from anno-
tations), an instance of the protocol binding (i.e., javax.xml-
.ws.Binding), and the handler chain.

Once the endpoint has been deployed in this manner, the JAXWSServ-
let wrapper is registered with the servlet container and is listening for
requests. When the JAXWSServlet instance receives a SOAP/HTTP or
XML/HTTP message (as HTTPServletRequest), it does the following:

1. Creates the MessageContext (including a reference to the Servlet-
Context).

2. Passes the HTTP request/response objects, along with the Run-
timeEndpointInfo, to an instance of com.sun.xml.ws.spi.run-
time.Tie—the entry point for the JAX-WS run-time system.

3. The JAX-WS runtime decodes the SOAP request, applying the JAX-
WS and JAXB XML/Java bindings, to get the parameters that are
used to invoke the endpoint implementation class.

4. Then, the flow is reversed and the returned object is serialized back
out to the HTTP response.

The internal deployment mechanism of GlassFish for servlet endpoints
starts with the artifacts provided in the WAR and then creates (or modifies)
the internally used descriptors. Figure 8–3 illustrates this process for the
internally generated web.xml, webservices.xml, and WSDL files. These
internally generated files (e.g., web.xml) are generated in an application
specific location within the directory tree rooted at $GLASSFISH_HOME/
domains/domain1/generated/xml. When you deploy a WAR, you can look
in that directory to see the files that have been generated.

To some extent, the reason for this internal descriptor generation process12

is to map the JAX-WS/WS-Metadata deployment model to the preexisting
J2EE (i.e., JAX-RPC) deployment model that requires a webservices.xml
file. It is also required in order to generate a web.xml that deploys the wrapper

12. Also, as Vijay Ramachandran at Sun explained to me, GlassFish generates these internal
descriptors at deployment time so that “GlassFish can seamlessly support earlier Sun App
Server implementations, keep changes low, and most importantly, avoid the costly process of
annotation processing at the time of server restart. Once deployment is over, everything is
available in descriptors” [Ramachandran] and GlassFish doesn’t need to process the annota-
tions again.

8.1 Web Services Packaging and Deployment Overview 369

servlet (JAXWSServlet) discussed earlier. In any event, this approach allows
GlassFish to support the JAX-WS/WS-Metadata deployment approach, and
the legacy J2EE (i.e., JAX-RPC) approach. It is also consistent with the guide-
lines provided in Section 8 of [JSR 109].

In Figure 8–3, the numbered items illustrate how the generated arti-
facts are created either from annotations or from the web.xml supplied with
the WAR (if any).

1. The servlet-name of the generated web.xml comes from the name
of the class being deployed. This is because it is associated with the
servlet-link element in the generated webservices.xml (see item
6). Furthermore, if you package a web.xml with the SIB, its serv-
let-name must also match the name of the SIB class.

2. The servlet-class of the generated web.xml is the com.sun-
.enterprise.webservice.JAXWSServlet wrapper class—as discussed
earlier.

3. The url-pattern is the simple name of the endpoint class + “Service”
(i.e., the default value of the @WebService.serviceName attribute),
unless it is overridden by the servlet-pattern in a web.xml you pro-
vide—as shown here, /Hello. (The context root is a parameter pro-
vided to the deployer or a proprietary deployment descriptor.)

4. The generated wsdl:service name is specified by the @WebSer-
vice.serviceName attribute, and

5. this also provides the value for the generated webservices.xml
wsdl-service element. If you provided a webservices.xml (which
is optional), the wsdl-service element’s value would override the
annotation to determine the wsdl:service name. But in this case,
the webservice.xml is generated, so they are the same.

6. The servlet-link in the generated webservices.xml comes from
the name of the class being deployed,13 which is the same as the gen-
erated web.xml servlet-name.

7. The generated wsdl-port in the webservices.xml comes from the
@WebService.name attribute. In this case, that attribute is not speci-
fied, so the default value (i.e., class name plus “Port”) is used.

8. This wsdl-port provides the wsdl:port value. So, if you had pro-
vided a webservices.xml, the value you gave for wsdl-port would
override the @WebService.name annotation.

13. See Section 5.3.2.1 of [JSR 109].

370 Packaging and Deployment of SOA Components (JSR-181 and JSR-109)

Figure 8–3 Internal descriptor generation for servlet endpoints.

@WebService(serviceName="Hello")
public class Hello {

 public String sayHello(String s) {
 return "Hello: " + s;

 }
}

<web-app ...>
 <servlet>
 <servlet-name>Hello</servlet-name>
 <servlet-class>
 samples.Hello
 </servlet-class>
 <load-on-startup>0</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>Hello</servlet-name>
 <url-pattern>/Hello</url-pattern>
 </servlet-mapping>
 <session-config>
 <session-timeout>60</session-timeout>
 </session-config>
</web-app>

<definitions
 targetNamespace="http://samples/"
 xmlns:tns="http://samples/" ...>

 <portType name="Hello">
 <operation name="sayHello"> ...
 </operation>
 </portType>
 <binding name="HelloPortBinding"
 type="tns:Hello">
 <soap:binding ... />
 <operation name="sayHello"> ...
 </operation>
 </binding>
 <service name="Hello">
 <port name="HelloPort"
 binding="tns:HelloPortBinding">
 <soap:address
 location="host/context-root/Hello"/>
 </port>
 </service>
</definitions>

<web-app >
 <servlet>
 <servlet-name>Hello</servlet-name>
 <servlet-class>
com.sun.enterprise.webservice.JAXWSServlet
 </servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>Hello</servlet-name>
 <url-pattern>/Hello</url-pattern>
 </servlet-mapping>
 ...
</web-app>

<webservices ...>
 <webservice-description>
 <display-name>Hello</display-name>
 <webservice-description-name>Hello</webservice-description-name>
 <wsdl-file>WEB-INF/wsdl/Hello.wsdl</wsdl-file>
 <port-component>
 <port-component-name>Hello</port-component-name>
 <wsdl-service xmlns="http://samples/">Hello</wsdl-service>
 <wsdl-port xmlns:ns1="http://samples/">ns1:HelloPort</wsdl-port>
 <service-endpoint-interface>samples.Hello</service-endpoint-interface>
 <service-impl-bean>
 <servlet-link>Hello</servlet-link>
 </service-impl-bean>
 </port-component>
 </webservice-description>
</webservices>

Service Implementation Bean web.xml (generated)

web.xml

webservices.xml (generated)

WSDL (generated)
ov

er
rid

es

2

3

4

5

6

7

8

1

1

8.1 Web Services Packaging and Deployment Overview 371

WSEE [JSR 109] places an additional constraint on these mapping for
the @WebServiceProvider case. It states that “For servlet based end-
points using this [@WebServiceProvider] annotation, the fully qualified
name of the service implementation bean class must be used as the
<servlet-link> element in the deployment descriptor to map the Port
component to the actual servlet.” As a consequence of this constraint, if
you want to use a web.xml deployment descriptor with a Provider<T>
implementation, the <servlet-name> must also equal the fully qualified
name of the service implementation bean class. If you try to use another
value for <servlet-name>, the results can be unpredictable. While this
situation may seem like an arcane nuisance, I spent many hours pulling
my hair out trying to debug such a service once, before realizing that the
problem was with the <servlet-name>. It also means that you cannot
deploy a Provider<T> implementation more than once (e.g., using differ-
ent url-patterns). I mention it here in an effort to spare others from sim-
ilar frustration.

8.1.5 EJB Endpoint Deployment and Dispatching

The deployment of stateless session bean (EJB) endpoints is similar, but
has some differences, as discussed here. Like the servlet endpoint case, a
wrapper servlet class—EjbWebServiceServlet14—is used to handle
requests to services deployed as EJB endpoints. EjbWebServiceServlet
uses an instance EjbMessageDispatcher to dispatch HTTP requests con-
taining the payload (SOAP/HTTP, or just XML in the case of a RESTful
service deployed with the XML/HTTP binding) requests to the appropri-
ate endpoint.

At the time of deployment of an EJB-JAR, the Web service endpoint is
registered. When the EJB Web service endpoint is registered, a listener (an
instance of EjbWebServiceRegistryListener) registers the endpoint’s path
(i.e., the endpoint-address-uri from the generated deployment descrip-
tor) as an ad hoc path with the Web container, along with the ad hoc servlet
(i.e., EjbWebServiceServlet) responsible for servicing any requests on this
path. An ad-hoc path is the GlassFish term for a servlet path that is
mapped to a servlet not declared in the Web module’s deployment descrip-
tor.15 GlassFish calls a Web module all of whose mappings are for ad hoc

14. The classes that handle the EJB endpoint’s run-time behavior are found in the same place as
the servlet endpoint classes: appserv-core/src/java/com/sun/enterprise/webservice.
15. The ad hoc registration of servlets is an internal GlassFish capability not prescribed by
the Java EE 5 specifications.

372 Packaging and Deployment of SOA Components (JSR-181 and JSR-109)

paths an ad hoc web module. The EjbWebServiceServlet instance that
receives SOAP or XML over HTTP on behalf of an EJB endpoint is
deployed in an ad hoc Web module. As a result, you won’t find a web.xml
for this servlet or see it on the GlassFish Admin Console.

More specifically, when you deploy an EJB-JAR with an EJB endpoint,
among other things, the following occur:

1. The GlassFish container creates the deployment descriptors neces-
sary for deployment, including:
■ An ejb-jar.xml to deploy your service implementation bean (i.e.,

the class you have annotated with @Stateless and @WebService).
If your EJB-JAR already contains an ejb-jar.xml, the generated
ejb-jar.xml is built from your original ejb-jar.xml as a starting
point. In the generated ejb-jar.xml, the ejb-class references
your service implementation bean, and the ejb-name is the value
specified by @Stateless.name.

■ A webservices.xml where the service-endpoint-interface
references the service implementation bean unless the @WebSer-
vice.endpointInterface annotation indicates a service endpoint
interface. The port-component-name is the name of the Web ser-
vice and it comes from the @WebService.name annotation
(wsdl:portType for WSDL1.1). Note that webservices.xml is
not required by JAX-WS, but is generated for internal use.

■ A sun-ejb-jar.xml (created from the one supplied with your EJB-
JAR, if any). This is a GlassFish-specific descriptor. The ejb-name is
the value specified by the @Stateless.name. The endpoint-
address-uri specifies the endpoint path. You can change the
default deployment path of an EJB endpoint by providing a
sun-ejb-jar.xml with this information in your EJB-JAR. You
can also configure security (see Section 8.5) using this deploy-
ment descriptor.

2. To handle security, an instance of com.sun.enterprise.webser-
vice.EjbContainerPreHandler is created and inserted first in the
handler chain for the endpoint.16 This class performs the security
authorization, prior to invoking any deployed handlers or the end-
point itself. This is a requirement specified by Section 9 of [JSR 109].

16. Once again, to emphasize the point made earlier about references to GlassFish classes,
these class names and implementation details are GlassFish Version 1 UR1-specific. The
details are subject to change in subsequent versions.

8.1 Web Services Packaging and Deployment Overview 373

When the EjbWebServiceServlet instance receives a SOAP/HTTP or
XML/HTTP message (as HTTPServletRequest), it does the following:

1. Looks up the endpoint descriptor (EjbRuntimeEndpointInfo) from
the EJB endpoint registry (WebServiceEjbEndpointRegistry)

2. Performs authentication as described in JSR-109 Section 9
3. Passes the HTTPServletRequest and HttpServletResponse, along

with the endpoint descriptor, to a dispatcher (EjbMessageDis-
patcher) for processing

The EjbMessageDispatcher processing is similar to the dispatching
performed by JAXWSServlet, and includes the following steps:

1. Creates the MessageContext (without a reference to the Servlet-
Context).

2. Passes the HTTP request/response objects, along with the Run-
timeEndpointInfo, to an instance of com.sun.xml.ws.spi.run-
time.Tie—the entry point for the JAX-WS run-time system.

3. The JAX-WS runtime decodes the SOAP request, applying the JAX-
WS and JAXB XML/Java bindings, to get the parameters that are
used to invoke the endpoint implementation class.

4. Then, the flow is reversed and the returned object is serialized back
out to the HTTP response.

As with servlet endpoints, the internal deployment mechanism of Glass-
Fish for EJB endpoints starts with the artifacts provided in the EJB-JAR
and then creates (or modifies) the internally used descriptors. Figure 8–4
illustrates this process for the internally generated ejb-jar.xml, webser-
vices.xml, and WSDL files. As in the servlet case, these internally gener-
ated files (e.g., ejb-jar.xml) are located within the directory tree rooted at
$GLASSFISH_HOME/domains/domain1/generated/xml.

The numbered items in the figure illustrate how the various compo-
nents of the generated artifacts are created from either annotations or the
sun-ejb-jar.xml supplied with the EJB-JAR (if any).

1. The ejb-name of the generated ejb-jar.xml is taken from the
@Stateless.name. If you are supplying a sun-ejb-jar.xml in order
to specify the endpoint-address-uri, the ejb-name must match the
@Stateless.name. Note also that the ejb-link of the generated
webservices.xml is taken from this @Stateless.name value.

374 Packaging and Deployment of SOA Components (JSR-181 and JSR-109)

Figure 8–4 Internal descriptor generation for EJB endpoints.

@WebService(
 serviceName="MyHelloService",
 name="MyHelloPortType",
 portName="MyHelloServicePort")
@Stateless(name="MyHelloEJB")
public class Hello {

 public String sayHello(String s) {
 return "Hello: " + s;

 }
}

<sun-ejb-jar>
 <enterprise-beans>
 <ejb>
 <ejb-name>
 MyHelloEJB
 </ejb-name>
 <webservice-endpoint>
 <port-component-name>
 MyHelloPortType
 </port-component-name>
 <endpoint-address-uri>
 /deployssb/Hello
 </endpoint-address-uri>
 </webservice-endpoint>
 </ejb>
 </enterprise-beans>
</sun-ejb-jar>

<definitions
 xmlns:tns="http://samples/" ...>
 ...
 <portType name="MyHelloPortType">
 <operation name="sayHello">
 <input message=
 "tns:sayHello"/> ...
 </operation>
 </portType>
 <binding ...
 type="tns:MyHelloPortType">
 <soap:binding ... />
 <operation name="sayHello"> ...
 </binding>
 <service name="MyHelloService">
 <port name=
 "MyHelloServicePort" ...
 <soap:address location=
"http://soabookdev.scarsdale.
javector.com:8080/deployssb/Hello"/>
 </port> ...

<sun-ejb-jar>
 <enterprise-beans>
 <unique-id>74861956539940864</unique-id>
 <ejb>
 <ejb-name>MyHelloEJB</ejb-name>
 ...
 <webservice-endpoint>
 <port-component-name>MyHelloPortType
 </port-component-name>
 <endpoint-address-uri>
 /deployssb/Hello</endpoint-address-uri>
 <service-qname>
 <namespaceURI>
 http://samples/</namespaceURI>
 <localpart>MyHelloService</localpart>
 </service-qname>
 <debugging-enabled>
 true</debugging-enabled>
 </webservice-endpoint>
 </ejb>
 </enterprise-beans>
</sun-ejb-jar>

<webservices ...>
 <webservice-description>
 <display-name>MyHelloService</display-name>
 <webservice-description-name>
 MyHelloService</webservice-description-name>
 <wsdl-file>META-INF/wsdl/MyHelloService.wsdl
 </wsdl-file>
 <port-component>
 <port-component-name>MyHelloPortType
 </port-component-name>
 <wsdl-service xmlns="http://samples/">
 MyHelloService</wsdl-service>
 <wsdl-port xmlns:ns1="http://samples/">
 ns1:MyHelloServicePort</wsdl-port>
 <service-endpoint-interface>
 samples.Hello</service-endpoint-interface>
 <service-impl-bean>
 <ejb-link>MyHelloEJB</ejb-link>
 </service-impl-bean>
 </port-component>
 </webservice-description>
</webservices>

Service Implementation Bean

sun-ejb-jar.xml (generated)sun-ejb-jar.xml

webservices.xml (generated)

WSDL (generated)

<ejb-jar ...">
 <enterprise-beans>
 <session>
 <display-name>MyHelloEJB</display-name>
 <ejb-name>MyHelloEJB</ejb-name>
 <service-endpoint>
 samples.Hello
 </service-endpoint>
 <ejb-class>samples.Hello</ejb-class>
 <session-type>Stateless</session-type>
 ...
 </session>
 </enterprise-beans>
</ejb-jar>

ejb-jar.xml (generated)

1

2

3

4

4

5

5

5

3

6

7

1

6

3

1

match

8.1 Web Services Packaging and Deployment Overview 375

2. The ejb-class of the generated ejb-jar.xml is the full name of the
class annotated with @WebService.

3. The @WebService.name attribute’s value becomes the port-com-
ponent-name in the generated sun-ejb-jar.xml, and in the gen-
erated webservices.xml. Most important, however, it is the
wsdl:portType name in the generated WSDL. Note that this
value needs to match the port-component-name in the sun-ejb-
jar.xml (if you supply one in order to specify the endpoint
address).

4. As mentioned earlier, you can specify the endpoint address of your
Web service by supplying a sun-ejb-jar.xml file with the end-
point-address-uri value set to the desired endpoint path. As you
can see in this diagram, the WSDL soap:address location is taken
from this value. If you do not supply an endpoint address, the default
is composed from the serviceName / portName. As with anything
related to the sun-ejb-jar.xml file, this behavior is GlassFish-specific,
and other implementations may use different mechanisms for speci-
fying the endpoint.

5. The @WebService.serviceName supplies the wsdl:service name
for the generated WSDL file. It also corresponds to the service-
qname in the generated sun-ejb-jar.xml and the webservice-
description-name for the generated webservices.xml.

6. The @WevService.portName specifies the service port (wsdl:port
name value) in the generated WSDL. It also corresponds to the
wsdl-port in the generated webservices.xml.

7. The operation name in the generated WSDL corresponds to the
method name in the @WebService annotated class.

That concludes a rather detailed overview of how deployment and
descriptor generation works in the GlassFish implementation. If you got a
little confused during that, don’t worry about it. I provide these details for
those readers who are curious about the internals of the deployment pro-
cess. In the remaining sections of this chapter, I go through concrete exam-
ples that show how to deploy Web services in specific scenarios. If, after
going through the examples, you are curious about how the internal imple-
mentation works, I suggest you come back and re-read this section. At that
point, it will probably seem much less confusing.

376 Packaging and Deployment of SOA Components (JSR-181 and JSR-109)

8.2 Deployment without Deployment Descriptors

One of the great simplifications for Web Services in Java EE 5 is that you no
longer need to use any deployment descriptors for a wide range of scenar-
ios. In this section, I show examples of deploying a servlet endpoint without
deployment descriptors using only a service implementation bean (SIB),
using a service endpoint interface (SEI) with a SIB, and supplying your own
WSDL (as when doing “Start from WSDL and Java” development of SOA
integration services).

8.2.1 Using Only a Service Implementation Bean

The simplest possible deployment scenario is to use nothing but a SIB
annotated with @WebService. Example 8–1 shows such a SIB.

Example 8–1 A SIB Deployed without Descriptors

 23 @WebService
 24 public class Hello {
 25
 26 public String sayHello(String s) {
 27 return "Hello: " + s;
 28 }
 29
 30 }

book-code/chap08/nodescriptor-sibonly/endpoint/src/main/java/samples/
Hello.java

If you bundle this SIB in a WAR, without any descriptors (since the
Servlet 2.5 specification, WARs do not require the web.xml descriptor), and
deploy it, you get a Web service with the WSDL shown in Example 8–2. As
you will notice, the key parameters in this WSDL are populated with the
default values as follows:

■ The wsdl:portType name (Hello) comes from the simple name of
the SIB. This is the default value of @WebService.name.

■ The wsdl:serviceName (HelloService) comes from the simple
name of the SIB + “Service.” This is the default value of @WebSer-
vice.serviceName.

8.2 Deployment without Deployment Descriptors 377

■ The wsdl:port name (HelloPort) comes from the simple name of the
SIB + “Port.” This is the default value of @WebService.portName.

■ The soap:address location (http://soabookdev.scarsdale.ja-
vector.com:8080/nodescriptor-sibonly-endpoint/HelloService)
is constructed from the name of the WAR file deployed (in this
case, nodescriptor-sibonly-endpoint.war), plus the wsdl:ser-
viceName. This default is not prescribed by WS-Metadata or
WSEE, but rather is a GlassFish default. The form of the hostname
used (in this case, soabookdev.scarsdale.javector.com) is also
determined by GlassFish.17

Example 8–2 The WSDL Generated from a SIB without Deployment Descriptors

21 <portType name="Hello">
22 <operation name="sayHello">
23 <input message="tns:sayHello"/>
24 <output message="tns:sayHelloResponse"/>
25 </operation>
26 </portType>
27 <binding name="HelloPortBinding" type="tns:Hello">
28 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"
29 style="document"/>
30 <operation name="sayHello">
31 <soap:operation soapAction=""/>
32 <input>
33 <soap:body use="literal"/>
34 </input>
35 <output>
36 <soap:body use="literal"/>
37 </output>
38 </operation>
39 </binding>
40 <service name="HelloService">
41 <port name="HelloPort" binding="tns:HelloPortBinding">
42 <soap:address
43 location="http://soabookdev.scarsdale.javector.com:8080/nodescriptor-
sibonly-endpoint/HelloService"

17. At the time of this writing, there is no way in GlassFish to use a different hostname rep-
resentation (e.g., localhost). But it is expected that such a capability will be provided in the
near future.

378 Packaging and Deployment of SOA Components (JSR-181 and JSR-109)

44 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"/>
45 </port>
46 </service>

book-code/chap08/nodescriptor-sibonly/examples/generated.wsdl

To run the sample code in this section, do the following:

1. Start GlassFish (if it is not already running).
2. Go to <book-code>/chap08/nodescriptor-sibonly.
3. Enter mvn install.18

8.2.2 Using a Service Endpoint Interface

You can modify the preceding example to use a SEI with the SIB. This
approach is useful, for example, when you have a predefined Java inter-
face you would like the Web service to implement, regardless of the other
purposes the SIB is used for, or whether the SIB is deployed as an EJB or
servlet endpoint. In this example, I implement the deployment as an EJB
endpoint. You will notice that the SIB contains extra methods that are not
deployed as Web service operations. Only the method defined on the SEI
is deployed.

Example 8–3 shows a SIB that references a SEI using the @WebSer-
vice.endpointInterface attribute. Notice that this SIB has two methods:
sayHello and sayGoodbye.

Example 8–3 A SIB Using a SEI and Deployed without Descriptors

 24 @WebService(endpointInterface="samples.HelloInf")
 25 @Stateless
 26 public class Hello {
 27
 28 public String sayHello(String s) {
 29 return "Hello: " + s;
 30 }
 31
 32 public String sayGoodbye(String s) {

18. This will build and deploy the service, run a client to invoke it, and undeploy the service
when the client finishes running. The client that tests the endpoint is run as a JUnit test case.

8.2 Deployment without Deployment Descriptors 379

 33 return "Goodbye: " + s;
 34 }
 35
 36 }

book-code/chap08/nodescriptor-sei/modules/endpoint/src/java/samples
/Hello.java

Example 8–4 shows the SEI that is referenced by the SIB shown in
Example 8–3. As you can see, the SEI also needs to be annotated with
@WebService. You can also see that this SEI implements only one
method—sayHello. This method is the only one from the corresponding
SIB that gets deployed as an operation on the resulting Web service.

Example 8–4 The Service Endpoint Interface (SEI)

 24 @WebService
 25 public interface HelloInf {
 26
 27 public String sayHello(String s);
 28
 29 }

book-code/chap08/nodescriptor-sei/modules/endpoint/src/java/samples
/HelloInf.java

If you bundle this SIB and SEI together in a WAR, without any descrip-
tors, and deploy it, you get a Web service with the WSDL shown in Exam-
ple 8–5. As you will notice, the key parameters in this WSDL are populated
with the default values as follows:

■ The wsdl:portType name (HelloInf) comes from the simple name
of the SEI. This is the default value of @WebService.name applied to
the SEI class, as opposed to the SIB. When a SEI is used, its annota-
tions and their default values define the Web service, rather than the
annotations on the SIB. The exceptions to this are the @WebService
attributes serviceName and portName. Because these attributes are
not allowed on interfaces (per WS-Metadata), their values always
come from the SIB.

380 Packaging and Deployment of SOA Components (JSR-181 and JSR-109)

■ The wsdl:serviceName (HelloService) comes from the simple
name of the SIB + “Service.” This is the default value of @WebSer-
vice.serviceName.

■ The wsdl:port name (HelloPort) comes from the simple name of the
SIB + “Port.” This is the default value of @WebService.portName.

■ The soap:address location (http://soabookdev.scarsdale.jav-
ector.com:8080/HelloService/Hello) is constructed from the ser-
viceName attribute value (in this case, the default HelloService), plus
the simple name of the SIB Java class. This default is not prescribed by
WS-Metadata or WSEE, but rather is a GlassFish default. Notice that it
is different from the behavior described in Section 8.2.1. That is
because in this example I am using an EJB-JAR to deploy the service as
an EJB endpoint. In the previous example, I used a WAR to deploy the
Web service as a servlet endpoint. GlassFish generates endpoint URLs
differently for these two types of deployment.

Example 8–5 WSDL Generated from SIB and SEI without Deployment Descriptors

21 <portType name="HelloInf">
22 <operation name="sayHello">
23 <input message="tns:sayHello"/>
24 <output message="tns:sayHelloResponse"/>
25 </operation>
26 </portType>
27 <binding name="HelloPortBinding" type="tns:HelloInf">
28 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"
29 style="document"/>
30 <operation name="sayHello">
31 <soap:operation soapAction=""/>
32 <input>
33 <soap:body use="literal"/>
34 </input>
35 <output>
36 <soap:body use="literal"/>
37 </output>
38 </operation>
39 </binding>
40 <service name="HelloService">
41 <port name="HelloPort" binding="tns:HelloPortBinding">
42 <soap:address
43 location="http://soabookdev.scarsdale.javector.com:8080/HelloService/
Hello"

8.2 Deployment without Deployment Descriptors 381

44 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"/>
45 </port>
46 </service>

book-code/chap08/nodescriptor-sei/examples/generated.wsdl

To run the sample code in this section, do the following:

1. Start GlassFish (if it is not already running).
2. Go to <book-code>/chap08/nodescriptor-sei.
3. Enter mvn install.

8.2.3 Including a WSDL Artifact

You can also bundle a WSDL file with your WAR or EJB-JAR, rather than
have the container generate the WSDL description of the Web service for
you. This can be done even when no deployment descriptors are used. In
this section, I show an example of including a WSDL artifact in a WAR with
a SIB only (no SEI is used).

Example 8–6 shows how to specify the use of a bundled WSDL file
using the @WebService.wsdlLocation attribute. Notice that the location of
the WSDL within the WAR package is WEB-INF/wsdl as discussed in Sec-
tion 8.1.1.

Example 8–6 A SIB Deployed without Descriptors and Specifying a User-
Defined WSDL

24 @WebService(wsdlLocation="WEB-INF/wsdl/hello.wsdl")
25 public class Hello {
26 @WebResult(targetNamespace="http://samples/")
27 public String sayHello(
28 @WebParam(targetNamespace="http://samples/") String arg0) {
29 return "Hello: " + arg0;
30 }
31 }

book-code/chap08/nodescriptor-wsdl/modules/endpoint/src/java/samples
/Hello.java

382 Packaging and Deployment of SOA Components (JSR-181 and JSR-109)

The hello.wsdl file, specified by the wsdlLocation attribute, is shown
in Example 8–7. This is pretty much the same as the WSDL generated pre-
viously (see Example 8–2), except for a couple of differences:

■ The <types> section includes element definitions for the wrapper
types required by this document/literal wrapped style WSDL. In the
generated WSDL from Example 8–2, these element definitions do
not appear because they are imported from a separate schema. In
my opinion, that is a drawback of the generated WSDL—it causes it
to be much less readable.

■ The soap:address location attribute has the value “TBD” (to be
determined). There is no need to specify a URL at this point,
because it will be changed depending on how the Web service is
deployed. In fact, as discussed in Example 8–8, when you query the
Web service for its WSDL, this soap:address location gets replaced
with a value created at deployment time.

Example 8–7 The WSDL Artifact Bundled in the WAR

 8 <types>
9 <xs:schema elementFormDefault="qualified" targetNamespace="http://samples/">
10 <xs:element name="sayHello">
11 <xs:complexType>
12 <xs:sequence>
13 <xs:element name="arg0" type="xs:string" minOccurs="0"/>
14 </xs:sequence>
15 </xs:complexType>
16 </xs:element>
17 <xs:element name="sayHelloResponse">
18 <xs:complexType>
19 <xs:sequence>
20 <xs:element name="return" type="xs:string" minOccurs="0"/>
21 </xs:sequence>
22 </xs:complexType>
23 </xs:element>
24 </xs:schema>
25 </types>
26 <message name="sayHello">
27 <part name="parameters" element="tns:sayHello"/>
28 </message>
29 <message name="sayHelloResponse">
30 <part name="parameters" element="tns:sayHelloResponse"/>

8.2 Deployment without Deployment Descriptors 383

31 </message>
32 <portType name="Hello">
33 <operation name="sayHello">
34 <input message="tns:sayHello"/>
35 <output message="tns:sayHelloResponse"/>
36 </operation>
37 </portType>
38 <binding name="HelloPortBinding" type="tns:Hello">
39 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"
40 style="document"/>
41 <operation name="sayHello">
42 <soap:operation soapAction=""/>
43 <input>
44 <soap:body use="literal"/>
45 </input>
46 <output>
47 <soap:body use="literal"/>
48 </output>
49 </operation>
50 </binding>
51 <service name="HelloService">
52 <port name="HelloPort" binding="tns:HelloPortBinding">
53 <soap:address location="TBD"/>
54 </port>
55 </service>

book-code/chap08/nodescriptor-wsdl/modules/endpoint/src/webapp/WEB-INF/wsdl/
hello.wsdl

When you bundle this SIB in a WAR, without any descriptors, and
deploy it, you get a Web service with the WSDL shown in Example 8–7,
except that the soap:address location gets changed as illustrated in
Example 8–8. The new value, http://soabookdev.scarsdale.javec-
tor.com:8080/nodescriptor-wsdl-endpoint/HelloService, is the actual
deployment URL, and its form is determined by the GlassFish defaults dis-
cussed in Section 8.2.1.

Example 8–8 The WSDL Generated from a SIB without Deployment Descriptors

51 <service name="HelloService">
52 <port name="HelloPort" binding="tns:HelloPortBinding">

384 Packaging and Deployment of SOA Components (JSR-181 and JSR-109)

53 <soap:address
54 location="http://soabookdev.scarsdale.javector.com:8080/nodescriptor-
wsdl-endpoint/HelloService"

55 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"/>
56 </port>
57 </service>

book-code/chap08/nodescriptor-wsdl/examples/generated.wsdl

When you package a WSDL in the module as described here, it is
important to ensure that the annotation values for the serviceName and
portName match those in the WSDL. If not, run-time errors will occur
because of the mismatch.

To run the sample code in this section, do the following:

1. Start GlassFish (if it is not already running).
2. Go to <book-code>/chap08/nodescriptor-wsdl.
3. Enter mvn install.

8.3 Using Deployment Descriptors

As shown in the preceding section, Java EE 5 Web Services are a big
improvement over J2EE in terms of ease of deployment and packaging. As
illustrated, in many cases, no deployment descriptors are required. There
are still situations, however, where you will want to use deployment descrip-
tors. In this section, I provide examples for a number of these scenarios.
Some of the use cases for deployment descriptors illustrated here include:

■ Customizing the endpoint URL where a service gets deployed
■ Passing deployment-specific environment information to the SIB or

its handlers
■ Overriding the value of an annotation

8.3.1 web.xml for Servlet Endpoints

This section focuses on how to use the web.xml file to customize the endpoint
URL for a servlet-based Web service, and pass deployment-specific environ-
ment information to the SIB. The use of the web.xml descriptor for deploying

8.3 Using Deployment Descriptors 385

JAX-WS endpoints is described in the SRV.14.4.2 of [JSR 154] JavaTM servlet
2.5 and further elaborated on in Section 5.3 of WSEE [JSR 109].

The most interesting deviation from its use for deploying servlets is
that, when used for Web Services deployment, the servlet-class element
references the SIB rather than a servlet class. As described in Section 8.1.4,
inside GlassFish, this usage gets translated into a more traditional looking
web.xml that is used internally when deployment occurs.

Section 8.1 of WSEE [JSR 109] provides an illustrative process of
deployment that is not required, but is by and large followed by the Glass-
Fish implementation and others. In Section 8.1, it states that “The WSDL
port address for the Port component is the combination of the web app
context-root and url-pattern of the servlet-mapping.” In Example 8–9,
you can see how I’ve used the web.xml in this example to specify a url-
pattern of /my-pattern. Per WSEE, “no more than one servlet-mapping
may be specified for a servlet that is linked to by a port-component. The url-
pattern of the servlet-mapping must be an exact match pattern (i.e., it must
not contain an asterisk (“*”)).”

Example 8–9 Using web.xml to Specify a URL Pattern

 4 <web-app xmlns="http://java.sun.com/xml/ns/javaee"
 5 xmlns:j2ee="http://java.sun.com/xml/ns/javaee"
 6 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="2.5"
 7 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 8 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">
 9 <servlet>
10 <servlet-name>Hello</servlet-name>
11 <servlet-class>samples.Hello</servlet-class>
12 <load-on-startup>0</load-on-startup>
13 </servlet>
14 <servlet-mapping>
15 <servlet-name>Hello</servlet-name>
16 <url-pattern>/my-pattern</url-pattern>
17 </servlet-mapping>
18 <env-entry>
19 <env-entry-name>appendedString</env-entry-name>
20 <env-entry-type>java.lang.String</env-entry-type>
21 <env-entry-value>ZipZapZang!</env-entry-value>
22 </env-entry>
23 </web-app>

book-code/chap08/descriptor-webxml/modules/endpoint/src/webapp/WEB-INF/web.xml

386 Packaging and Deployment of SOA Components (JSR-181 and JSR-109)

You may have noticed that the url-pattern provided in the web.xml
does not completely determine the endpoint URL. The context-root and
hostname/port must also be specified. The various JSRs do not provide a com-
mon approach for specifying these parameters. One method, which is Glass-
Fish-specific, for specifying the context-root is to use the --context-root
option with the asadmin deploy command.

Example 8–10 shows an alternative approach for specifying the context-
root. In this case, I have used the GlassFish specific sun-web.xml descrip-
tor. This descriptor is discussed in more detail in Section 8.3.4.

Example 8–10 The GlassFish-Specific sun-web.xml Deployment Descriptor Lets You
Specify the Context Root

 5 <sun-web-app>
 6 <context-root>my-context</context-root>
 7 </sun-web-app>

book-code/chap08/descriptor-webxml/examples/sun-web.xml

Unfortunately, I do not have any examples of how to manipulate the host-
name that gets used by GlassFish to generate the soap:address location in
the WSDL published with the deployed Web service. There does not seem to
be any mechanism, at the time of this writing, to control that parameter. In my
case, running on Debian Linux, I have a number of names defined in my /etc/
hosts, and GlassFish picks soabookdev.scarsdale.javector.com. Example
8–11 shows what the WSDL generated for this example looks like after using
the previous techniques for specifying the context-root and url-parameter.

Example 8–11 The soap:address location Specifies the Endpoint Address

40 <service name="HelloService">
41 <port name="HelloPort" binding="tns:HelloPortBinding">
42 <soap:address
43 location="http://soabookdev.scarsdale.javector.com:8080/my-context/
my-pattern"

44 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"/>
45 </port>
46 </service>

book-code/chap08/descriptor-webxml/examples/generated.wsdl

8.3 Using Deployment Descriptors 387

Wrapping up this discussion of the URL endpoint, Example 8–12 shows
how the client code in this example looks. As you can see, the endpoint URL,
plus the ?wsdl suffix, is used to retrieve the WSDL. In this case, I’ve substi-
tuted the hostname localhost (via the system variable glassfish.host) for
soabookdev.scarsdale.javector.com—and this works fine since I’m run-
ning the client on the same machine for these tests.

Example 8–12 The Client Code Uses the soap:address Location with the Specified
context-root and url-pattern

44 String hostVal = System.getProperty("glassfish.host");
45 String portVal = System.getProperty("glassfish.deploy.port");
46 URL wsdlURL =
47 new URL("http://"+hostVal+":"+portVal+"/chap08-descriptor-webxml-
endpoint/my-pattern?wsdl");

48 printWSDL(wsdlURL);
49 QName serviceQName = new QName("http://samples/", "HelloService");
50 QName portQName = new QName("http://samples/", "HelloPort");
51 Service service = Service.create(wsdlURL, serviceQName);
52 Hello port = (Hello) service.getPort(portQName, Hello.class);
53 String result = port.sayHello("Java Programmer");
54 System.out.println(result);

book-code/chap08/descriptor-webxml/modules/client/src/test/java/samples/
TestClient.java

In addition to using the web.xml to modify the endpoint URL for a
Web service, you can use it to pass environment information to the han-
dlers. As you may have noticed, in Example 8–9, the web.xml supplies
env-entry information. As described in Section 6.2.3 of WSEE [JSR
109], “With JAX-WS, a Handler may access the env-entrys of the com-
ponent it is associated with by using JNDI to lookup an appropriate sub-
context of java:comp/env. It may also access these if they are injected
using the @Resource annotation.”

Example 8–13 shows the handler (HelloHandler) used in this exam-
ple. The @Resource annotation indicates that the variable injected-
String receives the value ZipZapZang! specified in the web.xml env-
entry element.

388 Packaging and Deployment of SOA Components (JSR-181 and JSR-109)

Example 8–13 The Handler Accesses env-entry Information Using the @Resource
Annotation

29 public class HelloHandler implements SOAPHandler<SOAPMessageContext> {
30
31 public static final String APPEND_STRING = "samples.HelloHandler.appendStrg";
32
33 @Resource(name="appendedString")
34 String injectedString = "undefined";
35
36 public boolean handleMessage(SOAPMessageContext context) {
37
38 if (((Boolean)context.get(MessageContext.MESSAGE_OUTBOUND_PROPERTY)).
39 booleanValue()) return true;
40 try {
41 context.put(APPEND_STRING, injectedString);
42 context.setScope(APPEND_STRING, MessageContext.Scope.APPLICATION);
43 System.out.println("HelloHandler has appendedString = " +
injectedString);

44 return true;
45 } catch (Exception e) {
46 e.printStackTrace();
47 throw new WebServiceException(e);
48 }
49
50 }

book-code/chap08/descriptor-webxml/modules/endpoint/src/java/samples
/HelloHandler.java

All this handler does is take the injected value and store it the mes-
sage context so that it can be used by the SIB that implements the Web
service. This is just a toy example, of course, but you could imagine use
cases where it would be helpful to have deployment-specific information
available to the endpoint’s business logic. For example, this might be a
file path used for logging.

Although, not strictly speaking a deployment descriptor, by using a
handler in this example, I’ve introduced another configuration file—the
Handler Chain Configuration File shown in Example 8–14. Handler con-
figuration is described in more detail in Chapter 7, Section 7.6.

8.3 Using Deployment Descriptors 389

Example 8–14 Handler Chain Configuration File

 4 <handler-chains xmlns:jws="http://java.sun.com/xml/ns/javaee">
 5 <handler-chain>
 6 <handler>
 7 <handler-class>samples.HelloHandler</handler-class>
 8 </handler>
 9 </handler-chain>
10 </handler-chains>

book-code/chap08/descriptor-webxml/modules/endpoint/src/webapp/WEB-INF/classes/
samples/myhandler.xml

Lastly, Example 8–15, shows what the SIB (Hello.java) does with the
env-entry information received in this manner. In this case, it simply
appends it to the message that is being echoed back to the client.

Example 8–15 The Endpoint SIB Accesses env-entry Information Stored in the Web-
ServiceContext

26 @HandlerChain(file="myhandler.xml")
27 @WebService
28 public class Hello {
29
30 @Resource
31 WebServiceContext context;
32
33 public String sayHello(String s) {
34 String appendString =
35 (String) context.getMessageContext().get(HelloHandler.APPEND_STRING);
36 return "Hello: " + s + "[appended by handler: " + appendString + "]";
37 }
38
39 }

book-code/chap08/descriptor-webxml/modules/endpoint/src/java/samples/Hello.java

To run the sample code in this section, do the following:

390 Packaging and Deployment of SOA Components (JSR-181 and JSR-109)

1. Start GlassFish (if it is not already running).
2. Go to <book-code>/chap08/descriptor-webxml.
3. Enter mvn install.

8.3.2 ejb-jar.xml for Stateless Session Bean Endpoints

In this section, I show how you can use the ejb-jar.xml file to customize the
deployment of annotated EJB endpoints. EJB 3.0 allows for partial deploy-
ment descriptors to augment or override the behavior of source code annota-
tions. The use of such partial deployment descriptors can be helpful for
adapting an annotated EJB for deployment-specific circumstances without
having to edit its source code and annotations, recompile, and redeploy.

In the example shown here, I show how the env-entry element can be
used to provide deployment-specific data to the endpoint (in the same man-
ner as via the web.xml discussed in the preceding section). I also show how
the service-ref element can be used to override the contents of an @Web-
ServiceRef annotation within the endpoint EJB.

Example 8–16 shows the EJB endpoint used in this discussion
(Hello.java). As you can see, it is similar to the servlet endpoint discussed in
the preceding section (see Example 8–15), but with some additional function-
ality added to demonstrate different features and the removal of the handlers.19

First, notice the port variable annotated with @WebServiceRef. This is a refer-
ence to a Web service—so this Hello Web service endpoint is calling another
Web service. Second, notice the goodbye variable annotated with @EJB. This is
a reference to a remote view of another EJB. The Hello Web service invokes
another EJB using this reference. Third, notice the variable injectedString
annotated with @Resource. This is a basic example of dependency injection
used to provide deployment-specific information to the endpoint.

Example 8–16 The Hello EJB Endpoint

29 @WebService
30 @Stateless
31 @TransactionAttribute(TransactionAttributeType.NOT_SUPPORTED)
32 public class Hello {
33
34 @WebServiceRef(value = MyWebService.class,
35 wsdlLocation="http://someplace/myService?wsdl")

19. The @TransactionAttribute is used here simply to prevent certain implementations
of JAX-WS 2.1 from generating WSDL that contains transaction assertions.

8.3 Using Deployment Descriptors 391

36 MyWeb port;
37
38 @EJB
39 Goodbye goodbye;
40
41 @Resource(name="myString")
42 String injectedString = "undefined";
43
44 public String sayHello(String s) {
45 String webServiceString = port.saySomething(s);
46 String goodbyeString = goodbye.sayGoodbye(s);
47 return "Hello: " + s + "[injectedString: " + injectedString + "]" +
48 System.getProperty("line.separator") + webServiceString +
49 System.getProperty("line.separator") + goodbyeString;
50 }
51
52 }

book-code/chap08/descriptor-ejbjar/modules/endpoint/src/java/samples/Hello.java

Consider the @WebServiceRef annotation that injects a proxy instance
of the port component interface MyWeb into the port variable. Further down
in the code, that Web service is invoked using the method port.saySome-
thing()—and a String is returned. In this manner, the Hello EJB end-
point depends on another Web service, and as indicated in the
@WebServiceRef annotation, the WSDL for that service is found at http://
someplace/myService?wsdl. But what happens if the WSDL address
changes? Then this reference will be invalid and the Hello endpoint will be
broken. Example 8–17 shows how you can use the ejb-jar.xml descriptor
to deal with such a change in the WSDL address.

Notice the service-ref element at the bottom of Example 8–17. That
element is used to override the @WebServiceRef.wsdlLocation attribute
from the annotated code. You can see that the service-ref-name refers to
samples.Hello/port—in other words, the port variable annotated by
@WebServiceRef. Furthermore, the wsdl-file element provides a URL for
the Web service’s WSDL (http://localhost:8080/myweb/MyWebSer-
vice.wsdl). Using this deployment descriptor, the port variable will be
instantiated with a proxy constructed from the WSDL at the location speci-
fied by wsdl-file, rather than by the @WebServiceRef.wsdlLocation
annotation. In this manner, you can see that the ejb-jar.xml descriptor
can be used as a change management tool to compensate when the refer-
ences provided by annotations become out of date.

392 Packaging and Deployment of SOA Components (JSR-181 and JSR-109)

Example 8–17 The ejb-jar.xml Deployed with the Hello EJB Endpoint

 4 <ejb-jar xmlns="http://java.sun.com/xml/ns/javaee"
 5 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 6 metadata-complete="false" version="3.0"
 7 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 8 http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd">
 9 <enterprise-beans>
 10 <session>
 11 <ejb-name>Hello</ejb-name>
 12 <service-endpoint>samples.Hello</service-endpoint>
 13 <ejb-class>samples.Hello</ejb-class>
 14 <session-type>Stateless</session-type>
 15 <env-entry>
 16 <env-entry-name>myString</env-entry-name>
 17 <env-entry-type>java.lang.String</env-entry-type>
 18 <env-entry-value>ZipZapZang!</env-entry-value>
 19 </env-entry>
 20 <service-ref>
 21 <service-ref-name>samples.Hello/port</service-ref-name>
 22 <service-interface>samples.MyWebService</service-interface>
23 <wsdl-file>http://localhost:8080/chap08-descriptor-ejbjar-
mywebservice-nowebxml/MyWebService?wsdl</wsdl-file>

 24 </service-ref>
 25 </session>
 26 </enterprise-beans>
 27 </ejb-jar>

book-code/chap08/descriptor-ejbjar/modules/endpoint/src/ejb/META-INF/ejb-jar.xml

Next, consider the @EJB annotation on the goodbye variable in Exam-
ple 8–16. I’ve included this example simply to show how a remote view
of an EJB can easily be invoked inside a Web service endpoint. Example
8–18 shows the EJB (GoodbyeEJB) that is invoked by using the goodbye
variable. This EJB is deployed without any descriptors—simply using the
@Stateless annotation.

Example 8–18 The EJB Invoked from within the Hello Web Service

 23 @Stateless
 24 public class GoodbyeEJB implements Goodbye {

8.3 Using Deployment Descriptors 393

 25
 26 public String sayGoodbye(String s) {
 27 return "Goodbye: " + s;
 28 }
 29
 30 }

book-code/chap08/descriptor-ejbjar/modules/goodbyebean/src/java/samples
/GoodbyeEJB.java

To provide the remote view for GoodbyeEJB, the interface Goodbye is
annotated with @Remote, as shown in Example 8–19. Again, no deployment
descriptor is used for this interface.

Example 8–19 The Interface that Provides the Remote View

 23 @Remote
 24 public interface Goodbye {
 25
 26 public String sayGoodbye(String s);
 27
 28 }

book-code/chap08/descriptor-ejbjar/modules/goodbyebean/src/java/samples/
Goodbye.java

So, in this @EJB example, no deployment descriptor information is
required to deploy the GoodbyeEJB bean, or to reference it. You can see
in Example 8–17 that there is no ejb-ref specifying the EJB reference.
With the annotations, it is not required. However, if you look at the ejb-
jar.xml that is generated by GlassFish at deployment time,20 you will see
that such an ejb-ref element is created from the annotations. Example
8–20 shows a snippet from the GlassFish-generated (internal use)
descriptor that contains the ejb-ref element related to the @EJB annota-
tion in this example.

20. The generation of internally used deployment descriptors by GlassFish is discussed in
Section 8.1.

394 Packaging and Deployment of SOA Components (JSR-181 and JSR-109)

Example 8–20 GlassFish Generates an ejb-ref Element for Internal Use

 25 <ejb-ref>
 26 <ejb-ref-name>samples.Hello/goodbye</ejb-ref-name>
 27 <ejb-ref-type>Session</ejb-ref-type>
 28 <remote>samples.Goodbye</remote>
 29 <injection-target>
 30 <injection-target-class>samples.Hello</injection-target-class>
 31 <injection-target-name>goodbye</injection-target-name>
 32 </injection-target>
 33 </ejb-ref>

book-code/chap08/descriptor-ejbjar/examples/generated-ejb-jar.xml

The final point I discuss in this example related to the use of the ejb-
jar.xml deployment descriptor concerns the env-entry element as a
mechanism for providing deployment-specific data to the endpoint and its
handlers (if any). The use of env-entry illustrated in Example 8–17 is simi-
lar to the web.xml case discussed in the previous section (see Example 8–9).
However, in the web.xml case, I showed how to use env-entry to inject a
value into a handler, and here, I am using it to inject a value directly into the
endpoint.

In Example 8–17, the env-entry-name value of myString corresponds
to the @Resource.name attribute in the endpoint code (Example 8–16).
When the endpoint is instantiated, and before it is invoked, the Java EE
container injects the value provided in the ejb-jar.xml env-entry-value
element (i.e., ZipZapZang!) into the injectedString variable.

To run the sample code in this section, do the following:

1. Start GlassFish (if it is not already running).
2. Go to <book-code>/chap08/descriptor-ejbjar.
3. Enter mvn install.

When you run the example, you will see a listing of the WSDL gener-
ated for this endpoint, along with the results from invoking the Web service
implemented at this endpoint. Notice that the return value from the Web
service contains information obtained through all the mechanisms dis-
cussed in this section: the @WebServiceRef referenced service, the @EJB ref-
erenced bean, and the @Resource dependency injection.

8.3 Using Deployment Descriptors 395

8.3.3 When to Use webservices.xml

The webservices.xml deployment descriptor file was introduced by the first
version of [JSR 109] to define the set of Web services that are to be deployed
in a container. However, with JAX-WS, the use of webservices.xml is optional
since the annotations can be used to specify most of the information specified
in this deployment descriptor. When you are deploying JAX-WS Web Services,
the only reason you should use webservices.xml is to override or augment
the annotation member attributes—or when you do not want to use annota-
tions because you don’t want to modify the Java source code.

One situation, illustrated in this section, where you might want to override
or augment annotations, occurs when you want to deploy a handler with a Web
service endpoint that hasn’t been annotated for a handler. Alternatively, the
endpoint may have been annotated for a handler, but you wish to use a differ-
ent handler. One way to deal with this is to edit the source code to update or
add the @HandlerChain annotation. But perhaps you do not have access or
authority to modify the source code. Or perhaps you think it is a bad idea to
have multiple versions of the same source code just so you can support using
the endpoint with different handlers. In such a situation, you can deploy the
endpoint with a custom webservices.xml to specify the handler chain.

Example 8–21 shows the Hello Web service endpoint with an @Handler-
Chain annotation that specifies the myhandler.xml handler configuration file.

Example 8–21 The Hello Web Service Endpoint with @HandlerChain

 26 @HandlerChain(file="myhandler.xml")
 27 @WebService
 28 public class Hello {
 29
 30 @Resource
 31 WebServiceContext context;
 32
 33 public String sayHello(String s) {
 34 String appendString =
35 (String) context.getMessageContext().get(HelloHandler.APPEND_STRING);

 36 return "Hello: " + s + "[appended by handler: " + appendString + "]";
 37 }
 38
 39 }

book-code/chap08/descriptor-webservice/modules/endpoint/src/java/samples
/Hello.java

396 Packaging and Deployment of SOA Components (JSR-181 and JSR-109)

The myhandler.xml file is shown in Example 8–22. Notice that it speci-
fies the handler class samples.HelloHandler.

Example 8–22 The myhandler.xml Handler Chain Configuration File

 4 <handler-chains xmlns:jws="http://java.sun.com/xml/ns/javaee">
 5 <handler-chain>
 6 <handler>
 7 <handler-class>samples.HelloHandler</handler-class>
 8 </handler>
 9 </handler-chain>
10 </handler-chains>

book-code/chap08/descriptor-webservice/modules/endpoint/src/webapp/WEB-INF
/classes/samples/myhandler.xml

Now, suppose you would prefer to deploy this endpoint with the han-
dler class samples.ImprovedHelloHandler. You could do that by bundling
the webservices.xml file shown in Example 8–23 in the WEB-INF direc-
tory of the WAR module (or, if this were an EJB endpoint, in the META-
INF directory).

Example 8–23 A webservices.xml to Override the @HandlerChain Annotation

 4 <webservices xmlns="http://java.sun.com/xml/ns/javaee"
 5 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="1.2"
 6 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 7 http://www.ibm.com/webservices/xsd/javaee_web_services_1_2.xsd">
 8 <webservice-description>
 9 <webservice-description-name>HelloService</webservice-description-name>
10 <port-component>
11 <port-component-name>Hello</port-component-name>
12 <wsdl-service xmlns:ns1="http://samples/">ns1:HelloService</wsdl-service>
13 <wsdl-port xmlns:ns1="http://samples/">ns1:HelloPort</wsdl-port>
14 <service-impl-bean>
15 <servlet-link>Hello</servlet-link>
16 </service-impl-bean>
17 <handler-chains>
18 <handler-chain>
19 <handler>
20 <handler-name>myhandler</handler-name>

8.3 Using Deployment Descriptors 397

21 <handler-class>samples.ImprovedHelloHandler</handler-class>
22 </handler>
23 </handler-chain>
24 </handler-chains>
25 </port-component>
26 </webservice-description>
27 </webservices>

book-code/chap08/descriptor-webservice/modules/endpoint/src/webapp/WEB-INF
/webservices.xml

In this webservices.xml deployment descriptor, notice the handler-
chains element in the bottom half of the listing. Here, the handler-class
element specifies samples.ImprovedHelloHandler. To run this example,
do the following:

1. Start GlassFish (if it is not already running).
2. Go to <book-code>/chap08/descriptor-webservice.
3. Enter mvn install.

In the output generated by the example, you will notice the text “NEW
& IMPROVED!!!.” This indicates that the samples.ImprovedHelloHan-
dler class has been used as the handler, rather than the samples.Hello-
Handler class specified by the annotation.

When using the webservice.xml as discussed in this section, it is
important to understand how the port-component names match up with
the annotations. In other words, port-component-name relates to @WebSer-
vice.name; wsdl-service relates to @WebService.serviceName; wsdl-
port relates to @WebService.portName; and service-endpoint-interface
relates to @WebService.endpointInterface. See Section 5.3.2.1 of [JSR
109] for all the details.

8.3.4 Platform-Specific Deployment Descriptors

Java EE 5 implementations each contain certain deployment descriptors
that are not specified by the JSRs, but provide necessary or helpful
deployment functionality in a nonportable manner. In this section, I take a
quick look at how the sun-web.xml and sun-ejb-jar.xml files can be use-
ful for Web services deployment with GlassFish. These descriptors are the
GlassFish-specific files used for servlet and EJB endpoint deployment,
respectively.

398 Packaging and Deployment of SOA Components (JSR-181 and JSR-109)

My recommendation is to use these platform-specific descriptors as lit-
tle as possible, because they limit portability. One application that I have
found where it is necessary to use them, however, is for the specification of
a context root when not bundling modules inside an EAR package. When
you deploy a Web service using SOAP over HTTP, its address has the fol-
lowing shape when deployed as a servlet endpoint:

http://<machine-name>:<port>/<context-root>/<url-pattern>

Using the web.xml, as discussed in Section 8.3.1, you can specify the
url-pattern. Using the platform-specific descriptor sun-web.xml, you can
specify the context-root. Consider the SIB shown in Example 8–24.

Example 8–24 Defining a Servlet Endpoint

 24 @WebService(serviceName="MyHelloService")
 25 public class Hello {
 26
 27 public String sayHello(String s) {
 28 return "Hello: " + s;
 29
 30 }
 31
 32 }

book-code/chap08/descriptor-sunweb/modules/endpoint/src/java/samples/Hello.java

Without providing a sun-web.xml or a web.xml, the endpoint address is
as shown in this snippet from the generated WSDL. As you can see, the
<context-root> in Example 8–25 is descriptor-sunweb-endpoint. That
happens to be the name of the module (WAR file) deployed, and is the
default value for <context-root>. The <url-pattern>, on the other hand,
is MyHelloService. That value is taken from the @WebService.service-
Name attribute shown in Example 8–24.

Example 8–25 The WSDL Generated without a sun-web.xml

 39 <service name="MyHelloService">
 40 <port name="HelloPort" binding="tns:HelloPortBinding">
 41 <soap:address

8.3 Using Deployment Descriptors 399

 42 location="http://soabookdev.scarsdale.javector.com:8080/descriptor-
sunweb-endpoint/MyHelloService"

 43 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"/>
 44 </port>
 45 </service>

book-code/chap08/descriptor-sunweb/examples/generated-without-sunweb.wsdl

Now, consider what happens when you deploy this same SIB using the
sun-web.xml deployment descriptor shown in Example 8–26.

Example 8–26 Using sun-web.xml to Define the context-root

 4 <sun-web-app>
 5 <context-root>my-context</context-root>
 6 </sun-web-app>

book-code/chap08/descriptor-sunweb/modules/endpoint/src/webapp/WEB-INF
/sun-web.xml

In that case, you get an endpoint address where the <context-root> is
my-context. The results that illustrate this are shown in the snippet of gen-
erated WSDL in Example 8–27.

Example 8–27 WSDL Generated with a sun-web.xml

 39 <service name="MyHelloService">
 40 <port name="HelloPort" binding="tns:HelloPortBinding">
 41 <soap:address
 42 location="http://soabookdev.scarsdale.javector.com:8080/my-context/
MyHelloService"

 43 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"/>
 44 </port>
 45 </service>

book-code/chap08/descriptor-sunweb/examples/generated-with-sunweb.wsdl

To run the sample code in this section, do the following:

400 Packaging and Deployment of SOA Components (JSR-181 and JSR-109)

1. Start GlassFish (if it is not already running).
2. Go to <book-code>/chap08/descriptor-sunweb.
3. Enter mvn install.

Running this example will show you the WSDL and the results of an
invocation of the Web service as deployed with the sun-web.xml shown in the
preceding text. If you would like to deploy it without the sun-web.xml, you
will need to go into the chap08/descriptor-sunweb/modules/endpoint/
src/webapp directory and remove or rename the sun-web.xml file.

Next, I discuss the situation where the SIB is deployed as an EJB end-
point. Interestingly, the shape of the endpoint address is different in this
case than for a servlet endpoint. When deployed as an EJB endpoint, the
address for a Web service using SOAP over HTTP has the following shape:

http://<machine-name>:<port>/<endpoint-address-uri>

Using the platform-specific descriptor sun-ejb-jar.xml, you can spec-
ify the endpoint-address-uri. Consider the same SIB with the @State-
less annotation, as shown in Example 8–28.

Example 8–28 Defining an EJB Endpoint

 24 @WebService(serviceName="MyHelloService")
 25 @Stateless(name="MyHelloEJB")
 26 @TransactionAttribute(TransactionAttributeType.NOT_SUPPORTED)
 27 public class Hello {
 28
 29 public String sayHello(String s) {
 30 return "Hello: " + s;
 31
 32 }
 33
 34 }

book-code/chap08/descriptor-sunejbjar/modules/endpoint/src/java
/samples/Hello.java

When a sun-ejb-jar.xml descriptor is not provided, the endpoint
address takes the form shown in the snippet of generated WSDL appearing
in Example 8–29. As you can see, the <endpoint-address-uri> in this case
is MyHelloService/Hello. That happens to be the value of @WebSer-

8.3 Using Deployment Descriptors 401

vice.serviceName (MyHelloService), followed by the value of @WebSer-
vice.name (Hello—this defaults to the simple class name), which is also
the wsdl:portType.

Example 8–29 WSDL Generated without a sun-ejb-jar.xml

 40 <service name="MyHelloService">
 41 <port name="HelloPort" binding="tns:HelloPortBinding">
 42 <soap:address
 43 location="http://soabookdev.scarsdale.javector.com:8080/
MyHelloService/Hello"

 44 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"/>
 45 </port>
 46 </service>

book-code/chap08/descriptor-sunejbjar/examples/generated-without-sunejbjar.wsdl

Now, consider what happens when you deploy this same SIB using the
sun-ejb-jar.xml deployment descriptor shown in Example 8–30.

Example 8–30 Using sun-ejb-jar.xml to Define the endpoint-address-uri

 4 <sun-ejb-jar>
 5 <enterprise-beans>
 6 <ejb>
 7 <ejb-name>MyHelloEJB</ejb-name>
 8 <webservice-endpoint>
 9 <port-component-name>Hello</port-component-name>
 10 <endpoint-address-uri>/my/endpoint/url</endpoint-address-uri>
 11 </webservice-endpoint>
 12 </ejb>
 13 </enterprise-beans>
 14 </sun-ejb-jar>

book-code/chap08/descriptor-sunejbjar/modules/endpoint/src/java/META-INF
/sun-ejb-jar.xml

In that case, you get an endpoint address where the <endpoint-
address-uri> is my/endpoint/url. The results illustrating that are shown
in the snippet of generated WSDL in Example 8–31.

402 Packaging and Deployment of SOA Components (JSR-181 and JSR-109)

Example 8–31 The WSDL Generated with a sun-ejb-jar.xml

39 <service name="MyHelloService">
40 <port name="HelloPort" binding="tns:HelloPortBinding">
41 <soap:address
42 location="http://soabookdev.scarsdale.javector.com:8080/my/endpoint/url"
43 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"/>
44 </port>
45 </service>

book-code/chap08/descriptor-sunejbjar/examples/generated-with-sunejbjar.wsdl

To run the sample code in this section, do the following:

1. Start GlassFish (if it is not already running).
2. Go to <book-code>/chap08/descriptor-sunejbjar.
3. Enter mvn install.

Running this example will show you the WSDL and the results of an
invocation of the Web service as deployed with the sun-ejb-jar.xml
shown in the preceding text. If you would like to deploy it without the sun-
ejb-jar.xml, you will need to go into the chap08/descriptor-sunweb/
modules/endpoint/src/ejb directory and remove or rename the sun-ejb-
jar.xml file.

If you have read through this section, congratulations! You have just run
through a fairly exhaustive explanation of the various Web service deploy-
ment scenarios defined by WS-Metadata and WSEE. If you just skimmed
this section, that is fine also. I put all the detail here so that you can use it as
a reference when writing and deploying your own Web Services. Hopefully,
it will prove useful to you in your work.

8.4 Automatic Deployment with GlassFish

In this section, I look at a feature of GlassFish that is not required by WSEE,
but is described in Section 2.4 (a) of WS-Metadata [JSR 181] as “Automatic
deployment to a server directory—This is a ‘drag and drop’ deployment
model, similar to that used by JSPs.” GlassFish provides such “drag and drop”

8.4 Automatic Deployment with GlassFish 403

deployment. Using this mechanism to deploy a Web service, all you need to
do is copy a class or module file to the GlassFish automatic deployment direc-
tory. The following example illustrates how it works.

Example 8–32 shows the (by now very familiar) Hello.java that is
deployed in this example. In this auto-deploy scenario, it is deployed as a
WAR without any descriptors. However, you can also deploy it with descrip-
tors, and you can even deploy it simply as a class file without having to pack-
age it in a WAR.

Example 8–32 The Endpoint to Auto-Deploy

 23 @WebService(serviceName="Hello")
 24 public class Hello {
 25
 26 public String sayHello(String s) {
 27 return "Hello: " + s;
 28
 29 }
 30
 31 }

book-code/chap08/autodeploy/modules/endpoint/src/java/samples/Hello.java

You can simply copy the compiled class file generated from Example 8–32
into the auto-deploy directory—that is all there is to it! In my examples, I
always bundle the class files into a WAR, but it’s not necessary. Example 8–33
shows the Ant script used to deploy the WAR. Notice that this script does not
invoke the GlassFish asadmin utility. Instead, it simply copies the WAR file to
the auto-deploy directory.21

Example 8–33 Script for Auto-Deployment

 14 <target name="auto_deploy" depends="setenv">
 15 <echo message="deploying: ${war}"/>
 16 <copy file="${war}" todir="${autodeploy.dir}"/>

21. In this script, the WAR file’s path is stored in the ${war} property, and the path for the
auto-deploy directory is stored in ${autodeploy.dir}.

404 Packaging and Deployment of SOA Components (JSR-181 and JSR-109)

 17 <waitfor maxwait="100" maxwaitunit="second" checkevery="100">
 18 <or>
 19 <available file="${autodeploy.dir}/${module}.war_deployed"/>
 20 <available file="${autodeploy.dir}/${module}.war_deployFailed"/>
 21 </or>
 22 </waitfor>
 23 </target>

book-code/chap08/autodeploy/modules/client/build.xml

In my GlassFish installation, the auto-deploy directory is located at
$GLASSFISH_HOME/domains/domain1/autodeploy. Of course, your installa-
tion may be different, depending on the name of the domain you are using.
I am using the default domain name—domain1—as described in Appendix B,
Section B.3.

You have probably also noticed that the script in Example 8–33 contains
a waitfor task. This is needed to give GlassFish time to process files copied
into its auto-deploy directory. GlassFish polls this directory periodically to
check for changes.22 When it detects a new file, it attempts to process and
deploy it. Hence, you need to include the waitfor task to prevent any other
tasks from trying to use the Web service until GlassFish has had a chance to
finish deploying it. In this example, the filename copied to the auto-deploy
directory is ${service}.war. If it deploys successfully, GlassFish creates a
file named ${service}.war_deployed. If deployment fails, GlassFish cre-
ates a file named ${service}.war_deployFailed. You can run this example
by doing the following:

1. Start GlassFish (if it is not already running).
2. Go to <book-code>/chap08/autodeploy.
3. Enter mvn install.

I encourage you to play around with this auto-deploy capability and try
different scenarios (e.g., deploy a class file, an EJB_JAR, etc.). This is a
great tool for rapid prototyping of Web services.

22. The polling interval is determined by the autodeploy-polling-interval-in-seconds
property in the domain’s domain.xml configuration file.

8.5 Web Services Security 405

8.5 Web Services Security

Security is treated very briefly in Section 9 of WSEE. The specification
deals with authentication, authorization, and encryption (integrity and
confidentiality). The security methods specified are HTTP-specific. There
is no specification of how security should be supported for non-HTTP
protocol bindings.

To support authentication, WSEE specifies that compliant servers must
support both BASIC-AUTH and Symmetric HTTPS. Support for BASIC-
AUTH is specified in Java servlet 2.5 [JSR 154] using the login-config ele-
ment of the web.xml as illustrated in the snippet of a web.xml shown in
Example 8–34.

Example 8–34 Specifying BASIC-AUTH Authentication

<web-app>

 <login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>...</realm-name>
 </login-config>

</web-app>

When deploying a Web service using an EJB endpoint, you use a similar
method for specifying BASIC-AUTH, except that you have to use the imple-
mentation-specific deployment descriptor for enterprise beans. Example 8–35
shows a snippet from a sun-ejb-jar.xml, the descriptor used with GlassFish.

Example 8–35 Specifying BASIC-AUTH Authentication Using sun-ejb-
jar.xml

<sun-ejb-jar>
 <enterprise-beans>
 <ejb>
 ...
 <webservice-endpoint>
 <port-component-name>...</port-component-name>
 <endpoint-address-uri>...</endpoint-address-uri>

406 Packaging and Deployment of SOA Components (JSR-181 and JSR-109)

 <login-config>
 <auth-method>BASIC</auth-method>
 </login-config>
 </webservice-endpoint>
 </ejb>
 <webservice-description>
 ...
 </webservice-description>
 </enterprise-beans>
</sun-ejb-jar>

When a client calls a Web service using BASIC-AUTH, the basic
authentication information is contained in the HTTP headers and is verified
(using a server-specific method) by the container. WSEE requires that the
EJB and Web containers support deploy time configuration of credential
information to use for Web services requests using BASIC-AUTH. Again,
the mechanism for this support is provider-specific.

Roles can also be specified to provide varying levels of security access.
WSEE calls these “Security Role References,” and they are contained in
the provider-specific application deployment file (see Example 8–36).

Example 8–36 Specifying Security Role References Using sun-applica-
tion.xml

<sun-application>
 <web>
 ...
 </web>
 <security-role-mapping>
 <role-name>User</role-name>
 <group-name>staff</group-name>
 </security-role-mapping>
 <security-role-mapping>
 <role-name>Admin</role-name>
 <group-name>staff</group-name>
 <group-name>eng</group-name>
 <group-name>mgr</group-name>
 <group-name>guest</group-name>
 </security-role-mapping>
</sun-application>

8.6 OASIS XML Catalogs 1.1 407

WSEE uses the term “Symmetric HTTPS” to refer to the scenario
where authentication of both client and server using digital certificates is
supported. Support for client authentication using a digital certificate in this
manner is required by Java EE 5. WSEE is simply extending that to any
other platform that claims to be WSEE-compliant.

Using encryption with a WSEE-deployed Web service is simply a mat-
ter of using HTTPS (HTTP over SSL) instead of HTTP. To do that, a
WSEE server implementation must support using https: instead of http:
to specify the WSDL port address. As you are probably aware, using an
https: URL indicates that HTTP is to be used on a different default port
(443) where the Web server provides support for Secure Sockets Layer
(SSL) encryption/authentication layer between HTTP and TCP. In this
manner, there is nothing special you need to do to deploy a Web service that
supports encryption other than deploy it to an endpoint specified with
https:. The specifics of specifying the endpoint address at deployment
time are implementation-specific.

It is worth noting that there is a WS-Security [WS-Security] standard
published by OASIS that handles security at the SOAP message level. This
approach has the advantage that it can be used with non-HTTP bindings.
However, WS-Security support is not required by WSEE or Java EE 5. (JAX-
WS 2.1, however, is being designed with WS-Security support in mind.)

In addition, the upcoming [JSR 196] standardizes authentication for
containers. One goal of this specification is to make Web service security
completely portable.

8.6 OASIS XML Catalogs 1.1

In this section, I look at the OASIS XML Catalogs [XML Catalog 1.1] feature
supported by JAX-WS. XML Catalogs let you map WSDL or XML references
according to mapping rules defined in a catalog. This capability is useful if you
are writing a Web service that will access WSDL at runtime, but you don’t yet
know where that WSDL will be deployed. Using XML Catalogs, you can use a
placeholder WSDL when writing your service, and then resolve it at deploy-
ment time by including a catalog in your WAR or EJB JAR.

According to WSEE, “JAX-WS requires support for an OASIS XML
Catalogs 1.1 specification to be used when resolving any Web service docu-
ment that is part of the description of a Web service, specifically WSDL and
XML Schema documents. Refer to Section 4.4 of the JAX-WS specification.
The catalog file jax-ws-catalog.xml must be co-located with the module

408 Packaging and Deployment of SOA Components (JSR-181 and JSR-109)

deployment descriptor (WEB-INF/jax-ws-catalog.xml for web modules
and META-INF/jax-ws-catalog.xml for the rest).”

To understand how this works, consider the Web service shown in
Example 8–37. Notice that the @WebServiceRef.wsdlLocation attribute
refers to the URL http://someplace/myService?wsdl. That is a place-
holder URL. It doesn’t point to a real WSDL document, and will be
mapped to a real WSDL address at deployment time.

Example 8–37 Web Service with WSDL Placeholder

 27 @WebService
 28 @Stateless
 29 @TransactionAttribute(TransactionAttributeType.NOT_SUPPORTED)
 30 public class Hello {
 31
 32 @WebServiceRef(value = MyWebService.class,
 33 wsdlLocation="http://someplace/myService?wsdl")
 34 MyWeb port;
 35
 36 public String sayHello(String s) {
 37 String webServiceString = port.saySomething(s);
 38 return "Hello: " + s +
 39 System.getProperty("line.separator") + webServiceString;
 40
 41 }
 42
 43 }

book-code/chap08/catalog/modules/endpoint/src/java/samples/Hello.java

Example 8–38 shows the XML catalog that resolves the placeholder. As
you can see, it maps the placeholder to http://localhost:8080/chap08-
catalog-mywebservice-nowebxml/MyWebService?wsdl—which is the real
location where the referenced service’s WSDL is published.

Example 8–38 The XML Catalog That Resolves the Placeholder

3 <catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog" prefer="system">
 4 <system
 5 systemId="http://someplace/myService?wsdl"

8.7 Wrapping Up 409

 6 uri="http://localhost:8080/chap08-catalog-mywebservice-nowebxml/
MyWebService?wsdl"/>

 7 </catalog>

book-code/chap08/catalog/modules/endpoint/src/ejb/META-INF/jax-ws-catalog.xml

To run the sample code in this section, do the following:

1. Start GlassFish (if it is not already running).
2. Go to <book-code>/chap08/catalog.
3. Enter mvn install.

XML Catalogs are extremely useful for change management. This is
particularly true if you follow the best practices discussed in Chapter 4, and
keep the XML Schema documents used in your WSDLs stored in a central
repository. In such a case, when you deploy a Web service, the references to
these XML Schema documents can be resolved using an XML Catalog. The
XML Catalog gives you flexibility to change the published location of refer-
enced documents without having to make changes to the code used to
implement your Web services. All you need to do to implement the
changed location is update the XML Catalog.

8.7 Wrapping Up

This chapter wraps up the overview of the JWS JSRs (i.e., JAXB, JAX-WS,
WS-Metadata, and WSEE) presented in Chapters 5–8. In this chapter, I
walked you through a detailed discussion of the packaging and deployment
process used for JWS Web Services. I hope that all the examples presented
here will help as you tackle the deployment challenges that will inevitably
arise as you build and deploy your own JWS applications.

In the next two chapters, I show how to use JWS to develop an SOA-
style application that integrates online shopping services from eBay, Yahoo!
Shopping, and Amazon. The code examples in Chapters 9 and 10 are longer
and more involved than the snippets used here to illustrate various features.
But having mastered the JWS basics, at this point you should be ready to
take on the development of a real application.

411

C H A P T E R 9

SOAShopper: Integrating
eBay, Amazon, and Yahoo!
Shopping

This chapter pulls together the techniques from Chapters 3–8 and demon-
strates how to develop a real SOA Integration application using JWS. The
application—SOAShopper—is an online shopping system that integrates
eBay, Amazon, and Yahoo! Shopping.1 SOAShopper also demonstrates how
to build an Ajax front-end that integrates with Java EE 5 Web Services. The
topic of Ajax and JAX-WS is explored in depth in Chapter 10.

9.1 Overview of SOAShopper

Although SOAShopper is a demo application, the techniques it illustrates
are powerful. If you understand how to build SOAShopper, you are ready to
start building your own enterprise-quality SOA applications with Java Web
Services. To summarize, the SOAShopper application uses the following
technologies, APIs, and techniques discussed in preceding chapters:

■ Consuming RESTful Services (Chapter 3): RESTful services are
consumed from Yahoo! Shopping.

■ Deploying RESTful Services (Chapter 3): A REST API is
designed and deployed to enable integrated product search across
eBay, Amazon, and Yahoo!.

■ Consuming WSDL/SOAP Services (Chapter 4): WSDL/SOAP
services are consumed from eBay and Amazon.

1. For instructions on how to build and run SOAShopper, see Appendix B, Section B.9.

412 SOAShopper: Integrating eBay, Amazon, and Yahoo! Shopping

■ Deploying WSDL/SOAP Services (Chapter 4): A WSDL API is
designed and deployed to enable integrated product search across
eBay, Amazon, and Yahoo!.

■ JAXB 2.0 Type Mappings and Data Transformation (Chapter
5): JAXB 2.0 is used to bind the eBay, Amazon, and Yahoo! Shopping
APIs to a Java interface. Data transformation is used to map that
interface to the SOAShopper data model.

■ JAX-WS 2.0 Client Development (Chapter 6): JAX-WS 2.0 pro-
vides the client interface to consume Web services from eBay and
Amazon.

■ JAX-WS 2.0 Service Development (Chapter 7): JAX-WS 2.0 tech-
nology is used to provide the SOAP and REST services that consum-
ers use to access SOAShopper. These services are also consumed by
the Ajax front-end that provides a human interface for SOAShopper.

■ Packaging and Deployment with JSR-181 and JSR-109 (Chap-
ter 8): SOAShopper is packaged using Java EE 5 standards so that it
can be deployed on any application server supporting Java EE 5.

■ Ajax and JAX-WS (Chapter 10): An Ajax front-end to SOAShopper
provides the human interface that integrates with the services it pro-
vides using JAX-WS.

The use of all these different technologies and techniques is not con-
trived. Each has a useful and important role in the SOAShopper applica-
tion. As a result, SOAShopper provides a good illustration of how the Java
Web Services components work together to enable SOA Integration. Figure
9–1 provides a high-level illustration of the SOAShopper architecture.

SOAShopper runs inside a Java EE 5 container as shown by the shaded
box in the center of Figure 9–1. The container running SOAShopper serves as
an intermediary between clients, shown at the top of the diagram and the shop-
ping services shown at the bottom. Three types of Web Services consumers are
shown: Web Browser, REST-based, and WSDL/SOAP-based. The Web
Browser provides a human client interface that uses Ajax technology to com-
municate with SOAShopper using POX.2 The REST-based consumer is any
other type of application that communicates using POX. The WSDL/SOAP-
based consumer is an application that is WSDL-aware (i.e., can interpret the
ports and bindings defined in the WSDL) and communicates using SOAP.

SOAShopper provides SOAP and REST style Web services to handle
these consumers. On the other side, SOAShopper is also a consumer of

2. POX stands for “Plain Old XML” and refers to the XML/HTTP style of messaging used
by REST. POX is described in detail in Chapter 3.

9.1 Overview of SOAShopper 413

Web services. SOAShopper uses APIs generated by JAX-WS from the eBay
and Amazon WSDLs to communicate with those services. In addition, a
manually created API is used to communicate with the Yahoo! Shopping
RESTful services.

Figure 9–1 SOAShopper architecture.

Java EE 5 Container

SOAP Services

WSDL

@WebService

SEI

Web Browser
(Ajax)

3

REST Services

@WebServiceProvider

Provider<Source>

SOAShopper Standard
XML Schema

eBay API
(SOAP)

S
O

AS
ho

pp
er

 A
PI

In
te

gr
at

io
n

La
ye

r
(T

yp
e

M
ap

pi
ng

s)

Amazon API
(SOAP)

Yahoo! API
(REST)

POX

eBay Web
Services

Amazon Web
Services

Yahoo! Shopping
Web Services

4

5

7 8

9

Internet

Internet

1

2

REST-based
Consumer

WSDL/SOAP-
based Consumer

SOAP
S

er
vi

ce
s

Im
pl

em
en

ta
tio

n

6

10

414 SOAShopper: Integrating eBay, Amazon, and Yahoo! Shopping

To understand how SOAShopper works, consider a search request such
as “find all Lenovo laptop computers costing less than $800.00.” Such a
request would be processed as follows:

1. If the request is sent from a WSDL/SOAP-based consumer, the search
request is embedded in a SOAP message that is received at the URL
where the SOAShopper SOAP Services have been deployed.

2. If the request is sent from an Ajax or other REST-based consumer,
the search request is embedded in a plain XML message, or in the
HTTP parameters or URL request string (or some combination of
these), and it is received at the URL where the SOAShopper REST
Services have been deployed.

3. In the SOAP case, the appropriate SEI (service endpoint interface)
method is invoked. The method chosen is the one that corresponds
to the port and operation from the SOAShopper WSDL that is spec-
ified by the SOAP message.

4. In the REST case, the Provider<Source> implementation at the
center of SOAShopper’s REST Services module is invoked.

5. In both the SOAP and REST cases, the request message and the ulti-
mate response are built from XML that corresponds to the SOAShop-
per standard XML schema.

6. Within either the SEI deployment, or the Provider<Source>
invoke() method, the request message is serialized into Java objects
that are bound to the SOAShopper standard XML schema. These
objects are passed as parameters to the Service Implementation. The
Service Implementation provides the Web Services functionality by
building the services on top of the baselevel SOAShopper API. In
this case, the Service Implementation interprets the search request
and invokes the proper SOAShopper API methods to make the
search happen.

7. The SOAShopper API provides a common wrapper around the
source shopping services. The SOAShopper methods invoke the
Integration Layer to translate the operations into the syntax and
semantics of the source systems: eBay, Amazon, and Yahoo!. A
great deal of analysis of each source system is required in order to
design and implement this wrapper and its corresponding Inte-
gration Layer.

8. The Integration Layer implements the interfaces defined by the
SOAShopper API by invoking methods from the eBay, Amazon, and
Yahoo! APIs. The business logic used to translate the semantics of
SOAShopper into each source system is embedded here along with

9.1 Overview of SOAShopper 415

the type mappings that translate SOAShopper instances into source
system instances.

9. The eBay and Amazon APIs use SOAP to invoke the translated
search request on their respective services. These APIs are bound to
the WSDLs of the services and were automatically generated using
JAX-WS tools.

10. The Yahoo! API uses REST to invoke the Yahoo! Shopping Web ser-
vice. Since no WSDL is available for such RESTful services, this API
was implemented by hand based on the description in the Yahoo!
documentation.

Those steps provide a high-level overview of how the SOAShopper
application is implemented. JWS provides all the tools necessary to deploy
the SOAShopper services on the front-end and consume the eBay, Amazon,
and Yahoo! services on the back-end. In particular, I was very impressed at
how well the JAX-WS schema compiler handled the eBay and Amazon
WSDLs. The eBay WSDL is more than 3 MB and compiles into more than
700 classes. But the SOAShopper application is able to use the classes gen-
erated from this WSDL with no problem. Admittedly, figuring out what all
these classes are used for is difficult, but that is a problem related to the
complexity of the eBay Web services themselves and not a reflection on the
JAX-WS binding.

Being able to automatically generate Java bindings for the eBay and
Amazon WSDLs points out one advantage of WSDL/SOAP versus REST.
For the Yahoo! Shopping RESTful services, it was not possible to automati-
cally generate Java binding classes. That is because there is no WSDL defi-
nition standard for REST. The approach I took was to use the JAXB schema
compiler to generate Java classes that are bound to the XML responses. The
requests, in the Yahoo! cases, are all specified using HTTP parameters. I
mapped those parameters to message signatures to create a Java binding for
the Yahoo! services. This approach is explained in full detail further along in
this chapter. One immediate drawback of this approach that jumped out at
me is change management. In the WSDL/SOAP case, if the services inter-
face changes, that change is reflected in the WSDL. Such a change can be
propagated into SOAShopper by recompiling the WSDL using the JAX-WS
tools. Simply load the newly generated classes into your favorite IDE and
you can see right away where the code no longer compiles and you need to
refactor or write new code to accommodate the changes. In the REST case,
there is no way to similarly automate the change management processes.
Instead, you have to read the REST service documentation for each release,
hope that all changes are noted, manually update the API code related to

416 SOAShopper: Integrating eBay, Amazon, and Yahoo! Shopping

those changes, and then turn to your IDE to propagate the changes
throughout the rest of SOAShopper.

One of the themes in this book is that when developing SOA-based
applications, it is important to be able to integrate an existing WSDL
with an existing Java API; in other words, the “Start from WSDL and
Java” development mode. SOAShopper illustrates this theme because it
provides a WSDL interface to its consumers that must be integrated
with the Java representations of the shopping services provided by eBay,
Amazon, and Yahoo!. Actually, as you will see, the WSDL is integrated
with an internal SOAShopper Java model that integrates these three
source shopping systems. Both the WSDL and the SOAShopper Java
model must be able to change independently. The WSDL changes as
new consumer requirements are identified and new features are added
to the REST and WSDL/SOAP interfaces. The Java model changes inde-
pendently as the source shopping systems change and as new features
and capabilities are added. In SOAShopper, the Service Implementation
(labeled 6 in Figure 9–1) handles the integration of the WSDL (and
SOAShopper standard XML schema) with the SOAShopper API. Like-
wise, the SOAShopper API is mapped to the source system WSDL/XML
interfaces via the Integration Layer.

To get started with the investigation of the SOAShopper details, I will
first examine the WSDL and REST services provided by SOAShopper.
Next, I’ll show you how those services are exposed by the Java EE 5 con-
tainer using JAX-WS. After that, the Service Implementation is explained.
From there, we go back to the source systems and look at the different ser-
vices provided by eBay, Amazon, and Yahoo!. In particular, I walk through
some of the business analysis to identify commonality across these three sys-
tems. From this commonality, I show how the SOAShopper API is defined
as a wrapper for these source systems. Finally, I wrap things up by showing
how the Integration Layer links the SOAShopper API with the source sys-
tems using the Bridge design pattern defined in [Go4].

As I walk through these components of the SOAShopper application, I
focus on only a small portion of the functionality. The idea is to illustrate
how Java EE 5 Web Services can be used effectively, while not overwhelm-
ing you with the details of SOAShopper. For those who are interested in
digging deeper into the workings of SOAShopper, the source code for the
entire application can be found in the <book-code>/chap09/soashopper
directory of the book example code.3

3. See Appendix B for detailed instructions on downloading and installing the book code.

9.2 SOAShopper SOAP Services 417

9.2 SOAShopper SOAP Services

The SOAShopper application provides SOAP services that are defined by a
WSDL document as described in items 1 and 3 in Figure 9–1. This WSDL
document has been created by design—not generated from the SOAShopper
API by JAX-WS. The reasons why this “Start from WSDL and Java” approach
makes the most sense for SOAShopper are as follows:

■ The SOAShopper WSDL should reuse standard XML schemas from
existing libraries instead of generating unique schemas based on the
JAX-WS binding. This is a best practice discussed in Chapter 4, Sec-
tion 4.1.

■ The SOAShopper WSDL should be insulated from the SOAShopper
API so that each can be revised independently of the other.

■ The SOAShopper WSDL should expose only certain operations as
Web services—not the entire SOAShopper API.

Because the WSDL is independent from the SOAShopper API, a mid-
dle layer—labeled “Service Implementation” (item 6 in Figure 9–1)—is
required to mediate between the JAX-WS service endpoint interface (SEI)
and the SOAShopper API. In this section, the design and implementation
of the WSDL and SOAP services are briefly discussed. Then, the next sec-
tion looks at how the same services are made available using REST.

Example 9–1 shows the type definitions and one of the operations—
offerSearch—defined by the WSDL. Notice that the wsdl:types section
includes two standard schemas from the http://soabook.com/example
library. The retail.xsd schema defines standard types (e.g., Currency-
Type) used for online shopping. The faults.xsd schema, first discussed in
Chapter 4, defines standard types that are used for SOAP faults.

Example 9–1 A Snippet of the SOAShopper WSDL Showing the xs:schema Definitions
and wsdl:portType Defining the offerSearch Operation

11 <wsdl:types>
12 <xs:schema targetNamespace="http://www.example.com/faults">
13 <xs:include schemaLocation="http://soabook.com/example/faults/faults.xsd"
14 />
15 </xs:schema>
16 <xs:schema elementFormDefault="qualified"

418 SOAShopper: Integrating eBay, Amazon, and Yahoo! Shopping

17 targetNamespace="http://soabook.com/soashopper">
18 <xs:import namespace="http://www.example.com/retail"
19 schemaLocation="http://soabook.com/example/retail/retail.xsd"/>
20 <xs:element name="offerSearch">
21 <xs:complexType>
22 <xs:sequence>
23 <xs:element name="keywords" type="xs:string"/>
24 <xs:element name="category" type="retail:CategoryType"
25 minOccurs="0"/>
26 <xs:element name="lowprice" type="retail:PriceType" minOccurs="0"/>
27 <xs:element name="highprice" type="retail:PriceType" minOccurs="0"/>
28 </xs:sequence>
29 </xs:complexType>
30 </xs:element>
31 <xs:element name="offerSearchReturn">
32 <xs:complexType>
33 <xs:sequence>
34 <xs:element ref="retail:offer" minOccurs="0" maxOccurs="unbounded"/>
35 </xs:sequence>
36 </xs:complexType>
37 </xs:element>
38 </xs:schema>
39 </wsdl:types>
40 <wsdl:message name="offerSearchRequest">
41 <wsdl:part name="parameters" element="tns:offerSearch"/>
42 </wsdl:message>
43 <wsdl:message name="offerSearchResponse">
44 <wsdl:part name="parameters" element="tns:offerSearchReturn"/>
45 </wsdl:message>
46 <wsdl:message name="inputFault">
47 <wsdl:part name="parameters" element="faults:inputMessageValidationFault"/>
48 </wsdl:message>
49 <wsdl:portType name="ShopperPort">
50 <wsdl:operation name="offerSearch">
51 <wsdl:input message="tns:offerSearchRequest"/>
52 <wsdl:output message="tns:offerSearchResponse"/>
53 <wsdl:fault name="offerSearchInputFault" message="tns:inputFault"/>
54 </wsdl:operation>
55 </wsdl:portType>

book-code/chap09/soashopper/soashopper-services-soap/src/main/webapp/WEB-INF
/wsdl/soashopper.wsdl

9.2 SOAShopper SOAP Services 419

Like the other WSDL documents defined in this book, the SOAShop-
per WSDL uses the document/literal wrapped style. The wrapper element
for the request—tns:offerSearch—is defined in the wsdl:types section.
As you can see there, it defines four parameters: keywords (for keyword
search), category (e.g., Computers, Cellphones, etc.), lowprice, and high-
price (defining a price range). The keywords parameter is simply a string—
interpreted as space-delimited search keywords. The category parameter
is an instance of retail:CategoryType—an xs:simpleType defined by an
enumeration of valid categories, as shown in Example 9–2.

Example 9–2 The CategoryType Defines a List of Valid Categories (A Search Can Be
Restricted to a Category)

 75 <xs:simpleType name="CategoryType">
 76 <xs:restriction base="xs:string">
 77 <xs:enumeration value="COMPUTERS"/>
 78 <xs:enumeration value="CELLPHONES"/>
 79 <xs:enumeration value="MOVIES"/>
 80 </xs:restriction>
 81 </xs:simpleType>

book-code/chap09/soashopper/soashopper-services-soap/src/main/webapp/WEB-INF
/wsdl/retail.xsd

The lowprice and highprice parameters are instances of
retail:PriceType—an xs:complexType that specifies an amount and a
currency. An instance of retail:PriceType representing $9.89 (U.S. dol-
lars) looks like this:

<lowprice currencyId="USD">9.89</lowprice>

The schema for retail:PriceType is shown in Example 9–3.

Example 9–3 The PriceType Defines a Price in Terms of a Decimal Amount (with Two
Digits after the Decimal Place) and a Currency Identifier

 50 <xs:complexType name="PriceType">
 51 <xs:simpleContent>
 52 <xs:extension base="tns:HundrethsType">

420 SOAShopper: Integrating eBay, Amazon, and Yahoo! Shopping

 53 <xs:attribute name="currencyId" type="tns:CurrencyType"/>
 54 </xs:extension>
 55 </xs:simpleContent>
 56 </xs:complexType>
 57
 58 <xs:simpleType name="HundrethsType">
 59 <xs:restriction base="xs:decimal">
 60 <xs:fractionDigits value="2"/>
 61 </xs:restriction>
 62 </xs:simpleType>
 63
 64 <xs:simpleType name="CurrencyType">
 65 <xs:restriction base="xs:string">
 66 <xs:enumeration value="USD"/>
 67 <xs:enumeration value="GBP"/>
 68 <xs:enumeration value="EUR"/>
 69 <xs:enumeration value="JPY"/>
 70 </xs:restriction>
 71 </xs:simpleType>

book-code/chap09/soashopper/soashopper-services-soap/src/main/webapp/WEB-INF
/wsdl/retail.xsd

The SOAShopper WSDL in Example 9–1 also defines the SOAP
response for the offerSearch operation. Its wrapper element, tns:offer-
SearchReturn, contains a list of zero or more retail:offer element
instances. These are the online shopping offers found on eBay, Amazon, or
Yahoo! Shopping that satisfy the search criteria. The XML Schema defini-
tion of retail:offer is shown Example 9–4.

Example 9–4 OfferType Contains the Summary Information for an Online Shopping
Offer from eBay, Amazon, or Yahoo! Shopping

 7 <xs:element name="offerList">
 8 <xs:complexType>
 9 <xs:sequence>
10 <xs:element ref="tns:offer" minOccurs="0" maxOccurs="unbounded"/>

 11 </xs:sequence>
 12 </xs:complexType>
 13 </xs:element>
 14

9.2 SOAShopper SOAP Services 421

 15 <xs:element name="offer" type="tns:OfferType"/>
 16
 17 <xs:complexType name="OfferType">
 18 <xs:sequence>
 19 <xs:element name="offerId" type="xs:string" nillable="true"/>
 20 <xs:element name="productId" type="xs:string" minOccurs="0"/>
 21 <xs:element name="source" type="tns:SourceType"/>
 22 <xs:element name="thumbnail" type="tns:PictureType" minOccurs="0"/>
 23 <xs:element name="price" type="tns:PriceType"/>
 24 <xs:element name="merchantName" type="xs:string" minOccurs="0"/>
 25 <xs:element name="summary" type="xs:string"/>
 26 <xs:element name="offerUrl" type="xs:anyURI"/>
 27 </xs:sequence>
 28 </xs:complexType>

book-code/chap09/soashopper/soashopper-services-soap/src/main/webapp/WEB-INF
/wsdl/retail.xsd

These schema definitions are all from retail.xsd, which is discussed
further in the next section on the REST interface. Before going there, let’s
look at how this WSDL gets mapped to Java. Example 9–5 shows the inter-
face ShopperPort that is generated from the wsdl:portType named Shop-
perPort (see Example 9–1).

Example 9–5 The SEI—ShopperPort—Is Generated from the WSDL by the JAX-WS
WSDL Compiler

 38 @WebService(name = "ShopperPort",
 39 targetNamespace = "http://soabook.com/soashopper")
 40 @XmlSeeAlso({ com.example.faults.ObjectFactory.class,
 41 com.soabook.soashopper.ObjectFactory.class,
 42 com.example.retail.ObjectFactory.class })
 43 public interface ShopperPort {
 44
 45 @WebMethod
 46 @WebResult(name = "offer", targetNamespace = "http://www.example.com/
retail")

 47 @RequestWrapper(localName = "offerSearch",
 48 targetNamespace = "http://soabook.com/soashopper",
 49 className = "com.soabook.soashopper.OfferSearch")
 50 @ResponseWrapper(localName = "offerSearchReturn",

422 SOAShopper: Integrating eBay, Amazon, and Yahoo! Shopping

 51 targetNamespace = "http://soabook.com/soashopper",
 52 className = "com.soabook.soashopper.OfferSearchReturn")
 53 public List<OfferType> offerSearch(
 54 @WebParam(name = "keywords",
 55 targetNamespace = "http://soabook.com/soashopper")
 56 String keywords,
 57 @WebParam(name = "category",
 58 targetNamespace = "http://soabook.com/soashopper")
 59 CategoryType category,
 60 @WebParam(name = "lowprice",
 61 targetNamespace = "http://soabook.com/soashopper")
 62 PriceType lowprice,
 63 @WebParam(name = "highprice",
 64 targetNamespace = "http://soabook.com/soashopper")
 65 PriceType highprice) throws InputFault;
 66
 67 }

book-code/chap09/soashopper/soashopper-services-generated/edited
/ShopperPort.java

To deploy a Web service corresponding to the wsdl:portType named
ShopperPort, an @WebService annotated class that implements the Shopper-
Port SEI is created, and the code inside the offerSearch() method invokes
methods from the Service Implementation Layer. This @WebService anno-
tated class—named ShopperPortImp—is deployed to implement the SOAP
endpoint corresponding to the wsdl:portType named ShopperPort. Using
JAX-WS like this, to design and deploy a Web service with a SEI, is described
in detail in Chapter 7, Section 7.2, and in Chapter 8, Section 8.2. The annota-
tions appearing in Example 9–5 (e.g., @WebService), and the JAX-WS WSDL
to Java mapping, are described in detail in Chapter 6, Section 6.1.

As you look through the generated code in Example 9–5, notice that the
classes used for the parameters (e.g., CategoryType) and the return type (i.e.,
OfferType) are JAXB-generated classes compiled from the schemas included
in the WSDL. Of course, these generated classes are different from those
used in the SOAShopper API. So, one job of the Service Implementation
Layer (item 6 in Figure 9–1) is to implement type mappings that translate
from these generated types to the types used by the SOAShopper API.

To deploy the SOAP endpoint, an implementation of the SEI shown
in Example 9–5 is created. That implementation, ShopperPortImp, is
shown in Example 9–6.

9.3 An SOAShopper RESTful Service and the Standard XML Schema 423

Example 9–6 ShopperPortImp implements the ShopperPort SEI (This Class Gets
Deployed by JAX-WS As the SOAP Endpoint)

32 @WebService(wsdlLocation = "WEB-INF/wsdl/soashopper.wsdl",
33 endpointInterface = "com.soabook.soashopper.ShopperPort")
34 public class ShopperPortImp implements ShopperPort {
35
36 public List<OfferType> offerSearch(String keywords, CategoryType category,
37 PriceType lowprice, PriceType highprice) throws InputFault {
38 return (new ShopperService()).offerSearch(keywords, category.toString(),
39 lowprice.getCurrencyId().toString(), lowprice.getValue().doubleValue(),
40 highprice.getValue().doubleValue());
41 }
42
43 }

book-code/chap09/soashopper/soashopper-services-soap/src/main/java/com/javector
/soashopper/endpoint/soap/ShopperPortImp.java

As you can see, this implementation is simply a wrapper that invokes
the offerSearch() method from the ShopperServices class. ShopperSer-
vices is part of the ServicesImplementation layer and serves as a go-
between that insulates the WSDL and REST endpoint implementations
from the SOAShopper API. As I discuss in the next section, this same Shop-
perServices class is used to service the REST endpoint requests.

9.3 An SOAShopper RESTful Service and the Standard
XML Schema

Analogous to the SOAP services just discussed, the SOAShopper applica-
tion provides RESTful services as described in items 2 and 4 of Figure 9–
1. However, since REST (as defined and discussed in Chapter 3) has no
standard interface definition language, there is no corresponding WSDL-
like document from which a Java API can be generated by the JAX-WS
compiler. Fortunately, in this case, the RESTful service’s response mes-
sages can be defined by XML Schema. The schema instances used in this
case are the same as those used in the SOAP/WSDL case—the SOAShop-
per Standard XML Schema labeled as item 5 in Figure 9–1. These stan-
dard schemas, http://soabook.com/example/retail/retail.xsd and

424 SOAShopper: Integrating eBay, Amazon, and Yahoo! Shopping

http://soabook.com/example/faults/faults.xsd, are imported/included
into the WSDL types section as shown in Example 9–1.

So, for RESTful services, instead of generating Java from a WSDL, we
have to write our own endpoint classes based on a human-readable descrip-
tion of the services. Figure 9–2 shows the type of documentation that could
be provided for the REST version of the offerSearch service.

Figure 9–2 The documentation for the REST offerSearch operation is provided in
human-readable format.

Request URL
http://javector.com/soashopper/endpoint/rest/offerSearch

Summary
The SOAShopper offerSearch Web service lets you search for product offers
across eBay, Amazon, and Yahoo! Shopping. The keywords request parameter is
required and the rest are optional. Here is an example search that returns all prod-
uct offers containing the keywords “laptop” and “thinkpad” with prices between
600.00 and 800.00 U.S. dollars:

http://javector.com/soashopper/endpoint/rest/offerSearch?
keywords=laptop%20thinkpad&
currencyId=USD&lowprice=600.00&highprice=800.00

Request Parameters

Response Elements
The SOAShopper offerSearch REST response is an XML element named
offerList defined by the schema located at:

http://soabook.com/example/retail/retail.xsd

Parameter Value Description

keywords string A space-delimited list of keywords to search for. Offers
containing all the keywords are selected.

category string Specifies the category to be searched (e.g., COMPUTERS,
CELLPHONES, MOVIES).

currencyId string Specifies the currency for the lowprice and highprice
parameters (e.g., USD, GBP, INR).

lowprice double Offers with price greater than lowprice are selected.
highprice double Offers with price less than highprice are selected.

9.3 An SOAShopper RESTful Service and the Standard XML Schema 425

As described in the Figure 9–2 documentation, for the offerSearch
REST service, the request message parameters are provided as HTTP
parameters. There is no XML specified for the request message. Further-
more, I assume the request parameters may be provided in URL-encoded
format using either one of the following:

■ A GET method (as indicated in the example provided within the
Summary section of the Figure 9–2) with the URL-encoded parame-
ters in the query string or

■ A POST method with the URL-encoded parameters in the HTTP body

The response message, on the other hand, will be an HTTP response
with the XML element named offerList in the body. Example 9–7 shows
the XML Schema definition for the offerList element. This is the same
XML Schema used by the SOAP endpoint and listed in Example 9–4.

Example 9–7 The XML Schema That Defines the offerList Response Element Used by
the offerSearch REST Service

 7 <xs:element name="offerList">
 8 <xs:complexType>
 9 <xs:sequence>
10 <xs:element ref="tns:offer" minOccurs="0" maxOccurs="unbounded"/>

 11 </xs:sequence>
 12 </xs:complexType>
 13 </xs:element>
 14
 15 <xs:element name="offer" type="tns:OfferType"/>
 16
 17 <xs:complexType name="OfferType">
 18 <xs:sequence>
 19 <xs:element name="offerId" type="xs:string" nillable="true"/>
 20 <xs:element name="productId" type="xs:string" minOccurs="0"/>
 21 <xs:element name="source" type="tns:SourceType"/>
 22 <xs:element name="thumbnail" type="tns:PictureType" minOccurs="0"/>
 23 <xs:element name="price" type="tns:PriceType"/>
 24 <xs:element name="merchantName" type="xs:string" minOccurs="0"/>
 25 <xs:element name="summary" type="xs:string"/>
 26 <xs:element name="offerUrl" type="xs:anyURI"/>
 27 </xs:sequence>
 28 </xs:complexType>

book-code/chap09/soashopper/soashopper-services-soap/src/main/webapp/WEB-INF
/wsdl/retail.xsd

426 SOAShopper: Integrating eBay, Amazon, and Yahoo! Shopping

In the SOAP case, JAX-WS provides a standard binding and tool for
compiling the WSDL into a Java interface that can be used to deploy a ser-
vice conforming to the WSDL. In the REST case, you must create your
own Java interface that corresponds to the documentation provided for the
service. Example 9–8 shows the Java interface definition that I created.

Example 9–8 The Java Interface Used to Define the REST Service Corresponding
to the Documentation Given in Figure 9–2

 22 public interface ShopperServiceREST {
 23
 24 public OfferList offerSearch(String keywords, String category,
 25 String currencyId, Double lowprice, Double highprice);
 26
 27 }

book-code/chap09/soashopper/soashopper-services-rest/src/main/java
/com/javector/soashopper/endpoint/rest/ShopperServiceREST.java

I have used certain conventions to define this ShopperServiceREST
interface. These are not conventions that are specified by any standard
(since no such standard is available). They are merely sensible conventions.
First, the name of the method is the same as the REST operation, which is
the last name in the URL path before the query string begins. Second, the
parameters of the method are the same as the request parameters specified
in the REST service documentation (see Figure 9–2). Lastly, the return
type is the JAXB schema compiled class resulting from the offerList ele-
ment defined by the schema located at http://soabook.com/example/
retail/retail.xsd.

Now, if this were a SOAP service, the method implementing the service
(i.e., offerSearch) would be annotated with the @WebMethod annotation
(see Example 9–5). However, since this is a REST service, it is imple-
mented using an instance of javax.xml.ws.Provider. When deploying a
javax.xml.ws.Provider instance, its invoke() method is the only method
that gets published as a service. So, the convention I use in this case is that
the implementation class for a REST service should implement both the
human-defined REST interface (e.g., ShopperServiceREST) and the
javax.xml.ws.Provider interface. Using this convention, the invoke()

9.3 An SOAShopper RESTful Service and the Standard XML Schema 427

method calls the human-defined REST interface method (e.g., Shop-
perServiceREST.offerSeach()). Example 9–9 shows the REST imple-
mentation class definition.

Example 9–9 The ShopperServiceRESTImp Class Implements the offerSearch REST
Service by Implementing Both the ShopperServiceREST and the Provider<Source>
Interfaces

 43 @WebServiceProvider
 44 @BindingType(HTTPBinding.HTTP_BINDING)
 45 public class ShopperServiceRESTImp implements ShopperServiceREST,
 46 Provider<Source> {
 47
 48 @Resource
 49 WebServiceContext wsContext;
 50
 51 JAXBContext jaxbContext;
 52
 53 public ShopperServiceRESTImp() {
 54 try {
 55 jaxbContext = JAXBContext.newInstance(OfferList.class);
 56 } catch (JAXBException je) {
57 throw new HTTPException(HttpServletResponse.SC_INTERNAL_SERVER_ERROR);

 58 }
 59 }
 60

book-code/chap09/soashopper/soashopper-services-rest/src/main/java/com/javector
/soashopper/endpoint/rest/ShopperServiceRESTImp.java

There are two other points worth noting from Example 9–9. First, the
class contains a WebServiceContext (wsContext) variable that gets instanti-
ated via dependency injection, and a JAXBContext (jaxbContext) variable
that is instantiated in the constructor. The wsContext variable provides
access to the HTTP request so that the HTTP parameters can be retrieved.
Similarly, the jaxbContext variable provides the ability to create the HTTP
response XML element, offerList, specified by the REST documentation
in Figure 9–2.

428 SOAShopper: Integrating eBay, Amazon, and Yahoo! Shopping

Example 9–10 The RESTful Implementation of the offerSearch() Method Invokes
ShopperService.offerSearch()—the Same Method Invoked by the SOAP Implementation

 65 public OfferList offerSearch(String keywords, String category,
 66 String currencyId, Double lowprice, Double highprice) {
 67
 68 ShopperService shopperService = new ShopperService();
 69 List<OfferType> offers = shopperService.offerSearch(keywords,
 70 category, currencyId, lowprice, highprice);
 71 OfferList offerList = new OfferList();
 72 List<OfferType> offerListOffers = offerList.getOffer();
 73 offerListOffers.addAll(offers);
 74 return offerList;
 75
 76 }
 77

book-code/chap09/soashopper/soashopper-services-rest/src/main/java/com/javector
/soashopper/endpoint/rest/ShopperServiceRESTImp.java

Example 9–10 shows the implementation of the offerSearch() method
specified by the ShopperServiceRESTImp. The SOAShopper architecture has
been designed so that the SOAP and REST implementations of offerSearch
both invoked the same method from the Service Implementation Layer—
ShopperService.offerSearch(). In this manner, the REST and SOAP end-
points are really just different APIs for invoking the same functionality.

Example 9–11 shows how the invoke() method, specified by the Pro-
vider<Source> interface, is implemented.

Example 9–11 The invoke() Method Specified by the Provider<Source> Interface
Extracts the HTTP Parameters and Calls the offerSearch() Method

 82 public Source invoke(Source source) {
 83
 84 MessageContext msgContext = wsContext.getMessageContext();
 85 String httpMethod = (String) msgContext
 86 .get(MessageContext.HTTP_REQUEST_METHOD);
 87 Map<String, String[]> params = null;
 88 if (httpMethod.equals("GET") || httpMethod.equals("POST")) {
 89 HttpServletRequest httpReq = (HttpServletRequest) msgContext
 90 .get(MessageContext.SERVLET_REQUEST);

9.3 An SOAShopper RESTful Service and the Standard XML Schema 429

 91 params = httpReq.getParameterMap();
 92 } else {
 93 throw new HTTPException(HttpServletResponse.SC_METHOD_NOT_ALLOWED);
 94 }
 95 String keywords = getParam(params, "keywords");
 96 if (keywords == null) {
 97 throw new HTTPException(HttpServletResponse.SC_NOT_FOUND);
 98 }
 99 String category = getParam(params, "category");
100 String currencyId = getParam(params, "currencyId");
101 String lowpriceStr = getParam(params, "lowprice");
102 String highpriceStr = getParam(params, "highprice");
103 Double lowprice = lowpriceStr == null ? null : Double.valueOf(lowpriceStr);
104 Double highprice = highpriceStr == null ? null : Double
105 .valueOf(highpriceStr);
106 OfferList offerList = offerSearch(keywords, category, currencyId, lowprice,
107 highprice);
108 if (offerList == null) {
109 return null;
110 }
111 try {
112 return new JAXBSource(jaxbContext, offerList);
113 } catch (JAXBException e) {
114 throw new HTTPException(HttpServletResponse.SC_INTERNAL_SERVER_ERROR);
115 }
116
117 }
118

book-code/chap09/soashopper/soashopper-services-rest/src/main/java/com/javector
/soashopper/endpoint/rest/ShopperServiceRESTImp.java

When the ShopperServiceRESTImp class is deployed, the JAX-WS run-
time binds this invoke() method to the REST endpoint. So, XML/HTTP
requests are passed to invoke(). The input parameter, of type Source, is
ignored because this RESTful service takes no XML as input and instead
uses the HTTP parameters contained in either the URL query string (for
GET requests) or the HTTP body (for POST requests).

Instead, the code uses the WebServiceContext instance, wsContext,
to get at the HttpServletRequest via the MessageContext. Then, the
parameters are extracted using HttpServletRequest.getParameter-
Map()—in the same manner in which such a process would happen within an

430 SOAShopper: Integrating eBay, Amazon, and Yahoo! Shopping

HttpServlet implementation. Once the parameters are extracted, the
offerSearch() method gets invoked. The response—offerList—is a JAXB-
generated class instance. As a result, we can wrap it as a javax.xml.trans-
form.Source using JAXBSource, and return it.

The last issue to touch on related to the REST endpoint is deployment.
Example 9–12 shows the web.xml deployment descriptor that is used.

Example 9–12 The web.xml Used to Deploy the REST Endpoint

 4 <web-app xmlns="http://java.sun.com/xml/ns/javaee"
 5 xmlns:j2ee="http://java.sun.com/xml/ns/javaee"
 6 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="2.5"
 7 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 8 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">
 9 <display-name>soashopper-rest-endpoint</display-name>
 10 <servlet>
 11 <servlet-
name>com.javector.soashopper.endpoint.rest.ShopperServiceRESTImp</servlet-
name>

 12 <servlet-
class>com.javector.soashopper.endpoint.rest.ShopperServiceRESTImp</servlet-
class>

 13 <load-on-startup>0</load-on-startup>
 14 </servlet>
 15 <servlet-mapping>
 16 <servlet-
name>com.javector.soashopper.endpoint.rest.ShopperServiceRESTImp</servlet-
name>

 17 <url-pattern>/shopper</url-pattern>
 18 </servlet-mapping>
 19 </web-app>

book-code/chap09/soashopper/soashopper-services-rest/src/main/webapp/WEB-INF
/web.xml

Notice that the <servlet-name> is the fully qualified name of the REST
endpoint implementation class. This is a GlassFish requirement that derives
from the GlassFish implementation of WSEE [JSR 109]. Actually, the require-
ment, from Section 5.3.2.2 of [JSR 109], states that the <servlet-link> ele-
ment in the webservices.xml deployment descriptor must use the fully
qualified name of the @WebServiceProvider annotated class. But as discussed

9.4 Service Implementation 431

in Chapter 8, Section 8.1 (see Figure 8-3), in the GlassFish implementa-
tion, the web.xml <servlet-name> is used to generate the webservices.xml
<servlet-link>, so the requirement carries back to the web.xml.

The <url-pattern>, toward the bottom of Example 9–12, determines the
last part of the REST endpoint’s URL. In this case, the endpoint is going to be
http://host-name/context-root/rest/shopper. So, if you are deploying on
your local machine (port 8080) and using soashopper as the context root, you
end up with a REST service deployed at http://localhost:8080/soashop-
per/rest/shopper. So, to do a search for a Thinkpad laptop that costs less than
$800, you could submit a GET request to the following URL:

http://localhost:8080/soashopper/rest/
shopper&keywords=thinkpad&highprice=800.00

9.4 Service Implementation

The preceding two sections focused on how the SOAP and REST endpoints
are designed. In this section, I turn my attention to the Service Implemen-
tation layer (item 6 in the SOAShopper architecture shown in Figure 9–1).
The Service Implementation layer provides a set of classes and methods
that handle both the SOAP and the REST requests. Essentially, the SOAP
and REST endpoints are deployment wrappers around the basic Service
Implementation functionality.4

Example 9–13 illustrates the wrapper functionality provided by the
ShopperService class that is part of the Service Implementation layer. The
method shown, ShopperService.offerSearch, has a signature comprising
types used by the SOAP/REST endpoints: String, Double, and OfferType.
As discussed in the previous sections, OfferType is the JAXB schema-
derived class generated from retail:OfferType.

Example 9–13 The ShopperService Class Mediates between the REST/SOAP End-
points and the SOAShopper API (The ShopperService.offerSearch Method Shown
Here Processes Search Requests from the REST/SOAP Endpoints)

33 public List<OfferType> offerSearch(String keywords, String categoryId,
34 String currencyId, Double lowpriceVal, Double highpriceVal) {

4. For the REST case, this point is discussed in the text related to Example 9–10.

432 SOAShopper: Integrating eBay, Amazon, and Yahoo! Shopping

35
36 // convert from SOAP/REST request types to SOAShopper API types
37 TypeConverter tc = new TypeConverter();
38 Category category = tc.toCategory(categoryId);
39 Price lowprice = tc.toPrice(currencyId, lowpriceVal);
40 Price highprice = tc.toPrice(currencyId, highpriceVal);
41 // invoke the SOAShopper API
42 Shopper shoppingService = new Shopper();
43 List<Offer> offerList = shoppingService.offerSearch(keywords, category,
44 lowprice, highprice);
45 // convert from SOAShopper API return type to SOAP/REST response type
46 ArrayList<OfferType> offerTypeList = new ArrayList<OfferType>();
47 for (Offer o : offerList) {
48 offerTypeList.add(tc.toOfferType(o));
49 }
50 return offerTypeList;
51
52 }

book-code/chap09/soashopper/soashopper-servicesimp/src/main/java/com/javector
/soashopper/services/ShopperService.java

So, as you can see in this example, the ShopperService.offerSearch
method performs two functions: (1) It converts types between the SOAP/
REST services layer and the SOAShopper API; and (2) it invokes the
SOAShopper API to perform the search. Notice the instance of a class
named TypeConverter in this example. That is where the type mappings
are implemented.

Example 9–14 shows how these type mapping are implemented.
Essentially, this method implements the serialization portion of the type
mapping:

<retail:OfferType, com.javector.soashopper.Offer>

The approach to type mapping used here is recursive in that the mapping
from Offer to retail:OfferType is assembled using the mappings from the
constituent parts of retail:OfferType. For example, the toOfferType()
method shown invokes the methods that implement the type mappings for
<retail:PriceType, com.javector.soashopper.Price> and <retail:Pic-
tureType, com.javector.soashopper.Picture>.

9.4 Service Implementation 433

Example 9–14 The TypeConverter.toOfferType Method Converts from the SOAShopper
API’s OfferType to the REST/SOAP Endpoint’s JAXB Schema Compiled OfferType

194 /**
195 * Convert the SOAShopper API Offer type to the JAXB Generated OfferType used
196 * by the SOAP and REST endpoints.
197 *
198 * @param o
199 * @return
200 */
201 public OfferType toOfferType(Offer o) {
202
203 if (o == null) { return null; }
204 OfferType ot = new OfferType();
205 ot.setOfferId(o.getSourceSpecificOfferId());
206 ot.setProductId(o.getSourceSpecificProductId());
207 ot.setSource(toSourceType(o.getSource()));
208 ot.setThumbnail(toPictureType(o.getThumbnail()));
209 ot.setPrice(toPriceType(o.getPrice()));
210 ot.setMerchantName(o.getMerchantName());
211 ot.setSummary(o.getSummary());
212 ot.setOfferUrl(o.getUrl().toString());
213 return ot;
214
215 }
216

book-code/chap09/soashopper/soashopper-engine/src/main/java/com/javector/util
/TypeConverter.java

The recursive framework for implementing type mappings used in this
example is described in detail in Chapter 5, Sections 5.3 and 5.4. It is based
on using the standard JAXB mapping along with recursion. Because this
technique is used for the implementation of SOAShopper, there is no need
for any customization of the JAXB standard mapping. This approach makes
the code a little easier to understand and maintain for programmers who
are not fluent in XML Schema or the JAXB annotations.5

5. For an alternative approach to implementing type mappings directly using JAXB annotations,
binding language, and the XMLAdapter class, see Chapter 5, Sections 5.5–5.7. Using such an
approach would enable us to dispense with the TypeConversion class and map the SOAShop-
per API directly to the SOAP/REST endpoint schema (retail.xsd) using annotations.

434 SOAShopper: Integrating eBay, Amazon, and Yahoo! Shopping

Having looked at the Services Implementation Layer that mediates
between the SOAP/REST endpoints and the SOAPShopper API, in the next
few sections, I am going to focus on how JAX-WS is used to access the source
shopping systems: eBay, Amazon, and Yahoo! Shopping. Then, in the last sec-
tion, I will come back and look at the SOAShopper API and the Integration
Layer (items 7 and 8 in the SOAShopper architecture shown in Figure 9–1).

9.5 eBay and Amazon Services (SOAP)6

This section looks at the SOAP-based services provided by eBay and Amazon.
Actually, the discussion focuses entirely on the eBay services. The Amazon
implementation is structured similarly, however, and you can look at the code
in <book-code>/chap09/soashopper to see the Amazon specifics.6

Because the eBay and Amazon services provide WSDL descriptions,
the JAX-WS WSDL/Java binding tool can generate the Java API used to
invoke them. Section 9.2 shows how the WSDL/Java binding tool is used on
the service side. In that section, the SOAShopper WSDL gets compiled to
create the Java service endpoint interface (SEI) for our SOAP endpoint. In
this section, I show how to use the same WSDL/Java binding tool7 on the
client side. Here, you will see how to generate proxies that use the client-
side JAX-WS framework to invoke the eBay and Amazon Web services.
Chapter 6 contains a detailed discussion of proxies and client-side JAX-WS,
along with some simpler examples.

The SOAShopper build process uses Ant to invoke the WSDL/Java
binding tool. The Ant target for compiling the eBay WSDL is shown in
Example 9–15.

Example 9–15 The Apache Ant Target Used to Compile the eBay WSDL (The JAX-WS
WSDL Compiler Tool wsimport Gets Invoked)

23 <target name="compile-ebay-wsdl">
24 <delete dir="${java.generated}/ebay" />

6. Some of the eBay-related code presented in this section was inspired by a JAX-WS 2.0
article [Eckstein] appearing on the Sun Web site.
7. The GlassFish tool is wsimport.

9.5 eBay and Amazon Services (SOAP) 435

25 <exec executable="${wsimport}">
26 <!-- needed because ebay wsdl is huge -->
27 <env key="VMARGS" value="-Xmx512m" />
28 <!-- suppress the warning messages -->
29 <arg value="-quiet" />
30 <arg value="-keep" />
31 <arg line="-d target/junk" />
32 <arg line="-s ${java.generated}" />
33 <arg value="http://developer.ebay.com/webservices/479/eBaySvc.wsdl" />
34 </exec>
35 </target>

book-code/chap09/soashopper/soashopper-sources-generated/build.xml

This example shows the use of the GlassFish tool—wsimport. The last
argument passed to wsimport in this Ant target is the URL of the WSDL to
be compiled. As you can see, that URL is:

http://developer.ebay.com/webservices/479/eBaySvc.wsdl

Notice that this URL has a version number in it—479. The eBay
WSDL changes fairly frequently, and each version increments that version
number. You can find the latest version at:

http://developer.ebay.com/webservices/latest/eBaySvc.wsdl

I use a fixed version number for this example so that the code always
compiles the same. A change in version means changes in the WSDL/Java-
generated class definitions. This, in turn, can cause the modules of
SOAShopper that depend on these generated classes to fail to compile.

Now, I consider where the WSDL/Java-generated classes fit into the big
scheme of things. Figure 9–3 shows a diagram of the client-side invocation
framework for eBay. The Amazon framework is similar. This client-side
invocation framework is a version of the general JAX-WS approach to con-
suming Web services discussed in Chapter 6, Section 1.6, and illustrated in
Figure 6–1. The framework shown here is a bit more elaborate, providing
implementation-specific detail related to eBay.

436 SOAShopper: Integrating eBay, Amazon, and Yahoo! Shopping

Figure 9–3 The JAX-WS classes generated from the eBay WSDL are configured and used
to invoke the eBay Web service.

Proxy Instance

WSDL to Java
Mapping Tool

(e.g., wsimport)

Service
Endpoint
Interface

Parameters

(JAXB-Generated
Class Instances)

eBay Web Service

WSDL

Endpoint

SOAP
Request

Return Value

(JAXB-Generated
Class Instance)

Invocation
Handler

Service
Endpoint
Interface

javax.xml.ws.Service

getEBayAPI(...)

2

3

5

6

8

Handler
Chain

SOAPHandler
<SOAPMessageContext>

1

4

7

Client Component Java Implementation
Service Endpoint Interface ebay.apis.eblbasecomponents.EBayAPIInterface

javax.xml.ws.Service ebay.apis.eblbasecomponents.EBayAPIInterfaceService

Parameters ebay.apis.eblbasecomponents.GetSearchResultsRequestType

Return Value ebay.apis.eblbasecomponents.GetSearchResultsResponseType
SOAPHandler com.javector.soashopper.ebay.RequesterCredentials

Service Component URL
Endpoint https://api.ebay.com/wsapi?

 callname=XX&version=479&siteid=0&appid=YY&Routing=new

WSDL http://developer.ebay.com/webservices/479/eBaySvc.wsdl

6

SOAP
Response

9.5 eBay and Amazon Services (SOAP) 437

The various components of this scenario are labeled 1–8, and each com-
ponent is described:

1. The eBay WSDL is versioned, and different versions have different
URLs. For this example, I used version 479.

2. The WSDL/Java mapping tool (wsimport) is used (as illustrated in
Example 9–15) to generate the SEI (ebay.apis.eblbasecompo-
nents.EBayAPIInterface) along with a javax.xml.ws.Service
implementation that acts as a factory class that can generate
instances of the SEI.

3. Items 1 and 2 are executed during the SOAShopper build. The
remaining steps, including this one, are run-time steps. To invoke the
eBay service, first you need to get a proxy class implementing the
SEI. The Service class (ebay.apis.eblbasecomponents.EBayAPI-
InterfaceService) provides the factory method getEBayAPI() to pro-
vide an instance of that SEI (ebay.apis.eblbasecomponents.EBay-
APIInterface).

4. The next component, 4, appears in the lower right of the diagram.
Here, we need to do a little customization of the SEI proxy
instance so that it conforms to the eBay invocation process. In this
step, we add a HandlerChain instance to the proxy. The chain con-
tains a single handler, com.javector.soashopper.ebay.Request-
erCredentials, which adds some SOAP headers to outgoing
request messages.

5. To send a SOAP request to the eBay service, the SEI method get-
SearchResults (see Example 9–17) is invoked with a single parameter
of type ebay.apis.eblbasecomponents.GetSearchResultsRequest-
Type. This parameter is a wrapper containing all the search parameters
required by eBay (see Example 9–18). This parameter becomes the
body of the SOAP message.

6. During invocation, the SOAPHandler that was added to the proxy
instance in step 4 creates the SOAP header elements required by eBay.

7. Next, the InvocationHandler (see description in Chapter 6, Section
6.1), internal to the Proxy instance, sends the SOAP request to the eBay
endpoint. Notice the representation of the SOAP endpoint URL shown
in Figure 9–3: https://api.ebay.com/wsapi?callname=XX&ver-
sion=479&siteid=0&appid=YY&Routing=new. This endpoint varies
based on the name of the operation being invoked (i.e., callname=XX).
It also contains URL encoded HTTP parameters in the query string for
the version, site location (i.e., siteid=0), and so forth.

438 SOAShopper: Integrating eBay, Amazon, and Yahoo! Shopping

8. The SOAP response message from eBay is processed by the Invoca-
tionHandler, and the return value, of type ebay.apis.eblbasecom-
ponents.GetSearchResultsResponseType, specified by the WSDL,
is returned from the SEI method.

At this point, I walk through these eight steps in some more detail and
look at some of the code to better illustrate what is going on. Example 9–16
shows how we get the proxy instance (step 3) and configure it. As you can
see, an instance of the javax.xml.ws.Service generated by JAX-WS,
EBayAPIInterfaceService, is created and its getEBayAPI() method is
used to return an instance of the SEI, EBayAPIInterface, referenced by
the port variable.

Example 9–16 This Code from the EBayShopperImp Constructor Executes
Steps 3 and 4 from Figure 9–3

 117 EBayAPIInterfaceService svc = new EBayAPIInterfaceService();
 118 port = svc.getEBayAPI();
 119 BindingProvider bp = (BindingProvider) port;
 120 List<Handler> handlerChain = new ArrayList<Handler>();
 121 handlerChain.add(new RequesterCredentials());
 122 bp.getBinding().setHandlerChain(handlerChain);

book-code/chap09/soashopper/soashopper-engine/src/main/java/com
/javector/soashopper/ebay/EBayShopperImp.java

Having obtained an instance of the SEI, it is configured (step 4) by adding
the SOAPHandler—an instance of RequesterCredentials. This is accom-
plished by calling the BindingProvider.setHandlerChain() method.

Example 9–17 shows the code that was generated by JAX-WS to define
the SEI method getSearchResults. This method is invoked in step 5.
Notice that the method has a single parameter, which eBay uses as a wrap-
per for its various search parameters.

Example 9–17 The EBayAPIInterface.getSearchResults Method That Is
Generated from the eBay WSDL

 845 @WebMethod(operationName = "GetSearchResults")
 846 @WebResult(name = "GetSearchResultsResponse",

9.5 eBay and Amazon Services (SOAP) 439

 847 targetNamespace = "urn:ebay:apis:eBLBaseComponents",
 848 partName = "GetSearchResultsResponse")
 849 public GetSearchResultsResponseType getSearchResults(
 850 @WebParam(name = "GetSearchResultsRequest",
 851 targetNamespace = "urn:ebay:apis:eBLBaseComponents",
 852 partName = "GetSearchResultsRequest")
 853 GetSearchResultsRequestType getSearchResultsRequest);

book-code/chap09/soashopper/soashopper-sources-generated/edited
/EBayAPIInterface.java

The GetSearchResults operation from the eBay WSDL that pro-
duced this JAX-WS-generated EBayAPIInterface.getSearchResults
method is this:

<wsdl:operation name="GetSearchResults">
 <wsdl:input message="ns:GetSearchResultsRequest"/>
 <wsdl:output message="ns:GetSearchResultsResponse"/>
</wsdl:operation>

Notice that the input message’s name is GetSearchResultsRequest.
That message is defined as follows in the WSDL:

<wsdl:message name="GetSearchResultsRequest">
 <wsdl:part name="GetSearchResultsRequest"
element="ns:GetSearchResultsRequest"/>

</wsdl:message>

Here, you can see that this message has a single parameter—an ele-
ment named GetSearchResultsRequest. You can see that name specified
in Example 9–17 inside the @WebParam annotation.

From these snippets, we can conclude that the eBay WSDL appears to
have the document/literal style8 rather than document/literal wrapped. As
discussed in Chapter 4, Section 4.3.5, in order to have the document/literal
wrapped style, the message element (i.e., ns:GetSearchResultsRequest)
would have to be named the same as the operation—GetSearchResults.
This explains why the JAX-WS WSDL compiler created the SEI method
getSearchResults (Example 9–17) with a single parameter. If the WSDL
style had been document/literal wrapped, JAX-WS would have generated a

8. See Chapter 4 for a discussion of the WSDL styles.

440 SOAShopper: Integrating eBay, Amazon, and Yahoo! Shopping

SEI method that used the multiple elements contained within the Get-
SearchResultsRequest element as a list of parameters.

Example 9–18 shows a snippet of the eBay WSDL containing the ele-
ment definition for GetSearchResultsRequest. This type contains the
parameters that must be mapped to the SOAShopper API search parameters.

Example 9–18 A Snippet from the eBay WSDL Showing the Search Request Type Get-
SearchResultsRequestType

 4 <!-- Version 479 -->
 5 <!-- Copyright (c) 2003-2006 eBay Inc. All Rights Reserved. -->
 6 <wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 7 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 8 <wsdl:types>
 9 <xs:schema targetNamespace="urn:ebay:apis:eBLBaseComponents">
 10 <xs:element name="GetSearchResultsRequest"
 11 type="ns:GetSearchResultsRequestType"/>
 12 <xs:complexType name="GetSearchResultsRequestType">
 13 <!-- / snip / ... -->
 14 <xs:sequence>
 15 <xs:element name="Query" type="xs:string" minOccurs="0"/>
 16 <xs:element name="CategoryID" type="xs:string" minOccurs="0"/>
17 <xs:element name="PriceRangeFilter" type="ns:PriceRangeFilterType"

 18 minOccurs="0"/>
 19 <!-- / snip / ... -->
 20 </xs:sequence>
 21 </xs:complexType>
 22 <!-- / snip / ... -->
 23 </xs:schema>
 24 </wsdl:types>
 25 <!-- / snip / ... -->
 26 </wsdl:definitions>

book-code/chap09/soashopper/soashopper-sources-generated/edited
/eBaySvcSnippet.wsdl

As you can see, the schema definition for GetSearchResultsRequest
contains a list of elements such as Query, CategoryID, and PriceRangeFil-
ter. These subelements actually map to the SOAShopper API search param-
eters. For example, Query corresponds to keywords, and PriceRangeFilter

9.5 eBay and Amazon Services (SOAP) 441

corresponds to the lowprice and highprice parameters. This mapping is the
job of the Integration Layer and is discussed in Section 9.7.

After the SEI method getSearchResults is invoked, the proxy instance
builds the SOAP message to be sent to the eBay WSDL endpoint. How-
ever, a few more manipulations must be applied to the SOAP message
before it is ready to send. Example 9–19 shows the code that executes step 6
from Figure 9–3. This code, from the SOAPHandler RequesterCreden-
tials, adds the SOAP headers to the request message.

Example 9–19 The RequesterCredentials SOAPHandler Adds the SOAP Header Ele-
ments Required by the eBay SOAP Endpoint (This Code Executes Step 6 from Figure 9–3)

69 Boolean outboundProperty = (Boolean) smc
70 .get(MessageContext.MESSAGE_OUTBOUND_PROPERTY);
71
72 if (outboundProperty.booleanValue()) {
73 SOAPMessage message = smc.getMessage();
74 try {
75 SOAPHeader header = message.getSOAPHeader();
76 if (header == null) {
77 message.getSOAPPart().getEnvelope().addHeader();
78 header = message.getSOAPHeader();
79 }
80 SOAPElement heSecurity = header.addChildElement("RequesterCredentials",
81 "ebl", "urn:ebay:apis:eBLBaseComponents");
82 heSecurity.addChildElement("eBayAuthToken", "ebl",
83 "urn:ebay:apis:eBLBaseComponents").addTextNode(
84 ShopperCredentials.getEBayAuthToken());
85 SOAPElement userNameToken = heSecurity.addChildElement("Credentials",
86 "ebl", "urn:ebay:apis:eBLBaseComponents");
87 userNameToken.addChildElement("AppId", "ebl",
88 "urn:ebay:apis:eBLBaseComponents").addTextNode(
89 ShopperCredentials.getEBayAppID());
90 userNameToken.addChildElement("DevId", "ebl",
91 "urn:ebay:apis:eBLBaseComponents").addTextNode(
92 ShopperCredentials.getEBayDevID());
93 userNameToken.addChildElement("AuthCert", "ebl",
94 "urn:ebay:apis:eBLBaseComponents").addTextNode(
95 ShopperCredentials.getEBayCertID());
96
97 } catch (Exception e) {

442 SOAShopper: Integrating eBay, Amazon, and Yahoo! Shopping

 98 e.printStackTrace();
 99 }
100 }

book-code/chap09/soashopper/soashopper-engine/src/main/java/com/javector/
soashopper/ebay/RequesterCredentials.java

This code adds a header named RequesterCredentials. As you can
see, this header gets configured in this code with child elements such as
eBayAuthToken, Credentials, and so on. These are the security credentials
required by eBay. In the code, you can see that these security credentials
are read from the ShopperCredentials object. ShopperCredentials, in
turn, is populated by a set of properties stored in a file. It gets instantiated
from the file when the SOAShopper application is loaded by the JVM.

The need for this SOAP header is specified in the WSDL. Here is the
portion of the wsdl:binding that shows the SOAP binding for the Get-
SearchResults operation:

<wsdl:operation name="GetSearchResults">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input>
 <wsdlsoap:header use="literal" message="ns:RequesterCredentials"
 part="RequesterCredentials"/>
 <wsdlsoap:body use="literal"/>
 </wsdl:input>
 <wsdl:output>
 <wsdlsoap:header use="literal" message="ns:RequesterCredentials"
 part="RequesterCredentials"/>
 <wsdlsoap:body use="literal"/>
 </wsdl:output>
</wsdl:operation>

As you can see, this SOAP binding specifies a header message
(ns:RequesterCredentials) for the operation. The code in Example 9–19
implements the inclusion of this SOAP header in the request message sent
to eBay.

You may be wondering why the JAX-WS WSDL/Java mapping tool did
not simply bind the ns:RequesterCredentials message to a class and add
it as a parameter to the getSearchResults method. As it turns out, this
behavior is possible, but is described as optional by the JAX-WS 2.0 specifi-
cation (see Section 2.6.2.1 of [JSR 224]). The mapping tool used in this

9.5 eBay and Amazon Services (SOAP) 443

example (i.e., GlassFish wsimport) does not implement this feature. As a
result, we need to write our own SOAPHandler to take care of it.

The last step (step 7) that needs to be completed before the SOAP request
can be sent to the eBay endpoint is to finalize the URL of that endpoint.
Because the eBay WSDL uses the document/literal style (as opposed to rpc/
literal or document/literal wrapped), the operation being invoked by the SOAP
request is not the same as the wrapper element name of the child element in
the SOAP body. So, if the eBay server is to determine which WSDL operation
a given SOAP message invokes, it needs that additional piece of information.
eBay asks us to provide that information, the operation name, as a URL-
encoded parameter in the query string of the endpoint. So, in this case, the
endpoint URL needs to include the parameter callname=GetSearchRequest
in its query string. The code to accomplish that is shown in Example 9–20.

Example 9–20 The SOAP Endpoint for the eBay Service Contains URL-Encoded HTTP
Parameters That Are Configured at Runtime

 119 endpointURL = ebayURL + "callname=" + CALLNAME_TOKEN + "&siteid=0&appid="
 120 + appid + "&version=" + WSDL_VERSION + "&Routing=new";

book-code/chap09/soashopper/soashopper-engine/src/main/java/com/javector
/soashopper/ebay/EBayShopperImp.java

As you can see, the endpointURL has been set up with a
CALLNAME_TOKEN string. This token gets replaced by the actual callname
with each SOAP request. The code that accomplishes that is shown in
Example 9–21. The URL-encoded HTTP parameter for callname (e.g.,
GetSearchResults) must be configured at runtime for each SOAP request.
In JAX-WS 2.0, this can be accomplished by customizing the endpoint
URL’s query string and then setting it as the BindingPro-
vider.ENDPOINT_ADDRESS_PROPERTY.

Example 9–21 The URL-encoded HTTP parameter for callname

 160 private void configureEBayRequestType(AbstractRequestType art, String
callname) {

 161
 162 art.setVersion(WSDL_VERSION);
 163 art.setErrorLanguage(ERROR_LANGUAGE);

444 SOAShopper: Integrating eBay, Amazon, and Yahoo! Shopping

164 String endpointURL = eBayURLTemplate.replace(CALLNAME_TOKEN, callname);
 165 ((BindingProvider) port).getRequestContext().put(
 166 BindingProvider.ENDPOINT_ADDRESS_PROPERTY, endpointURL);
 167 }
168

book-code/chap09/soashopper/soashopper-engine/src/main/java/com/javector/
soashopper/ebay/EBayShopperImp.java

As you can see here, each method that invokes an eBay operation must
first configure the call request object and the port using this method—con-
figureEBayRequestType. This method sets necessary parameters (e.g., ver-
sion and error language) on the request object.9 It also customizes the
endpoint URL to include the callname parameter as required by the eBay
API. Using JAX-WS, we can set the newly modified endpointURL by setting
the BindingProvider.ENDPOINT_ADDRESS_PROPERTY property in the Bind-
ingProvider’s request context.

That completes the discussion of how to invoke an eBay SOAP end-
point using JAX-WS. As you can see, it basically boils down to compiling the
eBay WSDL and then working with the generated API classes within the
JAX-WS client-side invocation framework. Some additional work needs to
be done to handle the unusual endpoint query string conventions employed
by eBay, and to add the security SOAP headers required. But all this is well
within the capabilities provided by JAX-WS 2.0.

9.6 Yahoo! Services (REST)

Having completed the description of SOAP invocation, I now turn to the
inner workings of invoking the Yahoo! Shopping services using REST.
Although the invocation of REST services also uses the JAX-WS client-side
framework, the process is not as automated as in the SOAP case. This is
because a REST endpoint does not have a WSDL description or any other
machine-readable interface definition.

As a result, to build a Yahoo! Shopping invocation subsystem for
SOAShopper, I had to manually design the Java API rather than use a

9. The request type used as a parameter in this method is AbstractRequestType, the
super type of GetSearchResultsRequest.

9.6 Yahoo! Services (REST) 445

WSDL/Java mapping tool to generate an API. To the extent that the REST
documentation includes XML Schema documents defining the XML
requests and responses, however, the JAXB schema compiler can be used to
create Java parameters and return types used by the methods that invoke
the REST endpoints.

This is the case for Yahoo! Shopping—at least for the return types. The
REST requests are simply HTTP parameters (passed, for example, as query
strings). The responses, however, are instances of XML schemas that are
referenced in the documentation. Example 9–22 shows the Ant build script
used to invoke the JAXB schema compiler (i.e., the GlassFish xjc tool).

Example 9–22 The Apache Ant Target Used to Compile the Yahoo! Shopping Schemas
(The JAXB Schema Compiler Tool xjc Gets Invoked)

 8 <target name="compile-yahoo-schema">
 9 <delete dir="${java.generated}/yahoo" />
10 <!-- product search schema -->
11 <exec executable="${xjc}">
12 <arg line="-d ${java.generated}" />
13 <arg value="http://api.shopping.yahoo.com/shoppingservice/v2/
productsearch.xsd" />

14 <arg value="http://api.shopping.yahoo.com/shoppingservice/v1/
merchantsearch.xsd" />

15 <arg value="http://api.shopping.yahoo.com/shoppingservice/v1/
cataloglisting.xsd" />

16 <arg value="http://api.shopping.yahoo.com/shoppingservice/v1/
catalogspecs.xsd" />

17 <arg value="http://api.shopping.yahoo.com/ShoppingService/v1/
userproductreview.xsd" />

18 </exec>
19 </target>

book-code/chap09/soashopper/soashopper-sources-generated/build.xml

As you can see in the example, the URLs of the Yahoo! Shopping sche-
mas (e.g., http://api.shopping.yahoo.com/shoppingservice/v2/prod-
uctsearch.xsd) are passed as parameters to the JAXB schema compiler.

The classes that get generated by this process (e.g., yahoo.prods.Prod-
uctSearch) are used as the return types from the methods I designed to
implement the REST service invocations. The process of designing and
invoking these methods is illustrated in Figure 9–4.

446 SOAShopper: Integrating eBay, Amazon, and Yahoo! Shopping

Figure 9–4 The JAXB classes generated from the Yahoo! Shopping response element
schema are used, along with the JAX-WS run-time invocation framework, to invoke REST
endpoints.

REST Interface Implementation

RESTful
Invocation
Methods

Parameters

(Query String)

Yahoo! Shopping Web
Services: Product Search

XML/HTTP
Response

Return Value

(JAXB-Generated
Class Instance)

2

7

4

6

Convert REST
Documentation to an

Interface

(Manual Process)

1

Endpoint

JAX-WS
Dispatch

JAXBContext

3 5

Client Component Java Implementation

RESTful Invocation Method productSearch()

REST Interface Impl com.javector.soashopper.yahoo.api.YahooRestInterface

Return Value yahoo.prods.ProductSearch

Service Component URL

Endpoint http://api.shopping.yahoo.com/ShoppingService/V2/
productSearch?appid=YahooDemo&category=Video%20Games&
query=Doom&results=20

REST Documentation http://developer.yahoo.com/shopping/V2/productSearch.html

XML/HTTP
Request

REST
Documentation

(Human-Readable)

9.6 Yahoo! Services (REST) 447

The various components of this process are labeled 1 through 7, and
each component is described:

1. The Yahoo! Shopping REST documentation is available online at
URLs that organize the services by type (e.g., Product Search) and
version (e.g., V2).

2. The JAXB schema compilation tool (xjc) is used (as illustrated in
Example 9–22) to generate the return types (yahoo.prods.Product-
Search) used by the human-designed methods that invoke the REST
service.

3. The JAXB schema compiler is executed during the SOAShopper
build. The remaining steps, including this one, are run-time steps. To
invoke the Yahoo! Shopping service, first a set of javax.xml.ws.Dis-
patch objects is instantiated—one for each Yahoo! service. These
Dispatch objects each used a JAXBContext that is capable of deserial-
izing the XML response messages to a corresponding JAXB schema-
compiled class instance.

4. To send an XML/HTTP request to the Yahoo! Shopping service, the
YahooRestInterface method productSearch() (see Example 9–23)
is invoked with parameters corresponding to those listed in the docu-
mentation (e.g., keywords, category, highestPrice, and lowest-
Price). These parameters and their values become the query string
appended to the endpoint URL.

5. During invocation, a Dispatch instance is used to add the query
string formulated from these parameters to the request message
context.

6. Next, the Dispatch instance sends the XML/HTTP request to the
Yahoo! endpoint (see Example 9–24). In this case, the request does
not contain any XML—it is just a set of parameters represented in
the query string.

7. The XML/HTTP response message from Yahoo! is processed by the
Dispatch instance, where the XML is serialized by the JAXB run-
time to an instance of yahoo.prods.ProductSearch and returned by
the productSearch() method.

The next several examples walk through the specifics of these seven steps
in more detail. Example 9–23 shows the Yahoo! Shopping Product Search
(V2) API that I developed based on the Yahoo! documentation found at:
http://developer.yahoo.com/shopping/V2/productSearch.html. This
code configures a URL-encoded query string according to the parameters
described there.

448 SOAShopper: Integrating eBay, Amazon, and Yahoo! Shopping

Example 9–23 The Java Code Used to Invoke the Yahoo! Shopping Product Search REST
Endpoint Constructs a Query String of HTTP Parameters Derived from the Documentation

218 public ProductSearch productSearch(String keywords,
219 YahooShoppingTopLevelCategory category,
220 YahooShoppingCatalogListingClass catClass, YahooShoppingDepartment dept,
221 Double highestPrice, Double lowestPrice, Integer maxRefines,
222 String merchantId, Map<String, String> refinements, Integer results,
223 Boolean showNumRatings, Boolean showSubCategories,
224 YahooShoppingSortStyle sort, Integer start) {
225
226 if (keywords == null && category == null) {
227 throw new IllegalArgumentException(
228 "Both keywords and category cannot be null.");
229 }
230 String query = "appid=" + yahooShoppingAppId;
231 // query
232 if (keywords != null) {
233 query += "&query=" + keywords.replace(" ", "%20");
234 }
235 // category
236 if (category != null) {
237 query += "&category=" + category.getCategoryId();
382 }
239 // highestprice
240 Util util = new Util();
241 if (highestPrice != null) {
242 query += "&highestprice=" + util.floor(highestPrice, 2);
243 }
244 // lowestprice
245 if (lowestPrice != null) {
246 query += "&lowestprice=" + util.ceiling(lowestPrice, 2);
247 }

book-code/chap09/soashopper/soashopper-engine/src/main/java/com/javector
/soashopper/yahoo/api/YahooRESTInterface.java

As you can see, each parameter passed to the method corresponds to a
part of the query string. The code in the bottom portion of this listing
shows how some of the familiar search parameters get mapped to the
query string. For example, keywords gets mapped to the Yahoo! Product

9.6 Yahoo! Services (REST) 449

Search parameter query. A few pages back in this chapter, Section 9.3 dis-
cusses the design of a similar REST endpoint Java API (for the SOAShop-
per REST endpoint), and Figure 9–2 provides an example of the style of
documentation used by Yahoo! Shopping.

Once the query string is constructed, JAX-WS is used for invocation and
the method returns an instance of the JAXB representation of Yahoo! Shop-
ping’s {urn:yahoo:prods}ProductSearch element.

Example 9–24 Setting the Query String on the JAX-WS Dispatch Instance and Invoking
the REST Endpoint

326 productSearchDispatch.getRequestContext().put(MessageContext.QUERY_STRING,
327 query);
328 ProductSearch searchResults = null;
329 try {
330 searchResults = (ProductSearch) productSearchDispatch.invoke(null);
331 } catch (Exception e) {
332 throw new RuntimeException("YahooShopping Product Search: " + query
333 + " threw an Exception", e);
334 }

book-code/chap09/soashopper/soashopper-engine/src/main/java/com/javector
/soashopper/yahoo/api/YahooRESTInterface.java

Example 9–24 shows how the Dispatch instance is configured. First,
the query string is set using the MessageContext.QUERY_STRING property in
the Dispatch instance’s request context. Then, the Dispatch instance’s
invoke() method is called, and it is passed a null parameter since there is
no XML to be sent to the REST endpoint. The results are cast to an
instance of ProductSearch. The Dispatch instance is able to deserialize the
response XML to an instance of ProductSearch because it has been config-
ured with a JAXBContext as described.

I’ve now described, in detail, the design of the invocation layers for
accessing SOAP and REST shopping system endpoints. In the next sec-
tion, I look at how these layers are integrated to support the SOAShop-
per API that enables product search across eBay, Amazon, and Yahoo!
Shopping.

450 SOAShopper: Integrating eBay, Amazon, and Yahoo! Shopping

9.7 SOAShopper API and the Integration Layer

As shown at the beginning of this chapter (Figure 9–1), the Integration
Layer mediates between the SOAShopper API and the three source shop-
ping systems: eBay, Amazon, and Yahoo!. Each source shopping system has
its own object model, Java packages and classes that were generated by the
JAXB schema compiler and/or the JAX-WS WSDL compiler. The
SOAShopper API provides a common interface to all three of these source
system object models.

The challenge here is to create an architecture that can bridge between
the SOAShopper API and the source object models. The Integration Layer
architecture needs to satisfy the following design criteria:

■ Decouple the SOAShopper API from the source shopping system
object models so that each can vary independently. The source
WSDL and XML Schema change frequently,10 and the Integration
Layer needs to handle that without propagating those changes to the
SOAShopper API.

■ Be extensible so that new source shopping systems can easily be added.
■ Isolate the type mapping code. It’s important for the code that maps

between the source system datatypes and the SOAShopper API
datatypes to be isolated so that it can be maintained, enhanced, and
debugged without disrupting the rest of the SOAShopper code base.

SOAShopper uses the Bridge Pattern, described in [Go4], to imple-
ment the Integration Layer. The intent of this pattern is to “decouple an
abstraction from its implementation so that the two can vary indepen-
dently.”11 The Bridge Pattern uses delegation, rather than inheritance, to
relate the SOAShopping API to the source shopping systems. This enables
the SOAShopping API and the source shopping systems to have separate
class hierarchies. That is the key to decoupling the object models.

Figure 9–5 illustrates how the Bridge Pattern is implemented in
SOAShopper.

On the left side of Figure 9–5 is a class hierarchy within the SOAShopper
API. At the top of the hierarchy is the Shopper class—the base class that con-
tains shopping functionality such as search. Subclasses of Shopper contain
domain-specific shopping functionality. For example, the ComputerShopper

10. The eBay unified schema has been updated every two weeks throughout 2006. See http:/
/developer.ebay.com/DevZone/XML/docs/WebHelp/ReleaseNotes.html.
11. Page 151 [Go4].

9.7 SOAShopper API and the Integration Layer 451

class contains computer shopping-specific search criteria (e.g., memory, hard
disk storage, CPU speed).

The right side of the figure shows the class hierarchies for the source
shopping systems. ShopperImp is an abstract class that provides the meth-
ods used by Shopper. In this manner, all methods provided by Shopper and
its subclasses are implemented by abstract methods on ShopperImp. Thus,
the Shopper class hierarchy is decoupled from the domain-specific imple-
mentations related to eBay, Amazon, and Yahoo!. [Go4] uses the term
bridge to describe this pattern because “it bridges the abstraction and its
implementation, letting them vary independently.”12

Figure 9–5 The Integration Layer is implemented using the Bridge Pattern.

SOAShopper Object Model

eBay
Model

Yahoo!
Model

Amazon
Model

+offerSearch()

ShopperImp

Bridge

EBayShopperImp

EBayAPIInterface

YahooShopperImp

YahooRESTInterface

+offerSearch()

Shopper

ComputerShopper CellphoneShopper

-imp

*

-port -port

AWSECommerceService

AmazonShopperImp

-port

12. Page 152 [Go4].

452 SOAShopper: Integrating eBay, Amazon, and Yahoo! Shopping

The shading in Figure 9–5 indicates the different object models that are
being used in the different domains of this application. Shopper and Shop-
perImp contain only classes from the SOAShopperAPI hierarchy. This area is
shaded light gray and the classes contained within it comprise the
SOAShopper object model. The YahooRESTInterface, EBayAPIInterface,
and AWSECommerceService contain only classes from the Yahoo!, eBay, and
Amazon object models, respectively. In fact, these source system classes are
bound directly to the WSDL and/or XML Schema that define their Web
services. Each area is shaded with a different tone of gray.

In the lower-right corner is an area of overlap where you find the
implementation classes such as YahooShopperImp that use classes from
both object models—the SOAShopper model and the source system mod-
els. These classes implement the SOAShopper model methods using the
domain-specific model classes from the source systems. In this manner,
these classes encapsulate the type mappings that relate to the object
models.

The Integration Layer of the SOAShopper application contains the type
mappings used to map between the SOAShopper standard XML schema
and the schemas and WSDL used by the source systems. These type map-
pings are implemented in the manner described in Chapter 5, Section 5.3.
That is, these mappings are implemented with custom Java code that works
directly with the JAXB and JAX-WS generated classes.

The next few pages show some of the code and provide more details
about how the Integration Layer uses the Bridge Pattern. Example 9–25
shows the code for one method—offerSearch—in the Shopper class.

Example 9–25 The Shopper Class Provides an Abstraction of an Online Shopping Interface

56 /**
57 * Search all the online stores.
58 *
59 * @param keywords
60 * The keywords to search for. If category is null, then keywords
61 * must not be null.
62 * @param category
63 * The category to search in (e.g., Computers, Movies)
64 * @param lowprice
65 * The low end of a price range to search. If null, then there is
66 * no lower boundary.
67 * @param highprice

9.7 SOAShopper API and the Integration Layer 453

68 * The high end of a price range to search. If null, then there
69 * is no upper boundary.
70 * @return A list of offers meeting the search criteria.
71 */
72 public List<Offer> offerSearch(String keywords, Category category,
73 Price lowprice, Price highprice) {
74
75 ShopperImp yahooSvc = ShopperImp.newShopperImp(Store.YAHOO);
76 ShopperImp ebaySvc = ShopperImp.newShopperImp(Store.EBAY);
77 ShopperImp amazonSvc = ShopperImp.newShopperImp(Store.AMAZON);
78 List<Offer> offers = yahooSvc.offerSearch(keywords, category, lowprice,
79 highprice);
80 offers.addAll(ebaySvc.offerSearch(keywords, category, lowprice, highprice));
81 offers.addAll(amazonSvc
82 .offerSearch(keywords, category, lowprice, highprice));
83 return offers;
84
85 }

book-code/chap09/soashopper/soashopper-engine/src/main/java/com/javector
/soashopper/Shopper.java

The offerSearch() method provides basic search capability based on
keywords, product category, and price range. As you can see, the implemen-
tation of this method uses three delegate instances of ShopperImp—one for
each source system. These delegates are instances of EBayShopperImp, Ama-
zonShopperImp, and YahooShopperImp—as shown in Figure 9–5. As is typi-
cal in the Bridge Pattern, the delegates are created using a factory
method—in this case, ShopperImp.newSOAShopperServiceImp().

In this example, the Shopper.offerSearch() method simply invokes
the offerSearch() method on each delegate and then collects the results
in a single List<Offer> instance. However, other methods defined by
Shopper do more sophisticated processing using combinations of delegate
method invocations. Typically, the implementor delegate classes (instances
of ShopperImp) provide a lower level of functionality than the abstraction
(Shopper). In such situations, the abstraction logic combines method calls
to the delegate with internal code to implement its methods.

Example 9–26 shows a section from the implementation of the Shopper-
Imp class. In particular, the code shows the factory method for creating new
ShopperImp instances. As you can see, a switch statement handles the differ-
ent cases—instantiating the right implementation of ShopperImp, depending

454 SOAShopper: Integrating eBay, Amazon, and Yahoo! Shopping

on the source shopping system selected. The current code handles three
cases: YAHOO, EBAY, and AMAZON. But you can see the pattern and how easy it is
to extend the framework to handle additional source shopping systems.

Example 9–26 The ShopperImp.newShopperImp() Factory Method

31 public abstract class ShopperImp {
32
33 public static ShopperImp newShopperImp(Store src) {
34 if (src == null) {
35 throw new IllegalArgumentException("src may not be null.");
36 }
37 switch (src) {
38 case YAHOO:
39 return new YahooShopperImp(ShopperCredentials.getYahooAppID());
40 case EBAY:
41 return new EBayShopperImp(EBayShopperImp.EBAY_PRODUCTION_SERVER,
42 EBayShopperImp.SITE_ID_US, ShopperCredentials.getEBayAppID());
43 case AMAZON:
44 return new AmazonShopperImp(ShopperCredentials.getAmazonAccessKeyID());
45 default:
46 throw new RuntimeException("Unknown source: " + src.getName());
47 }
48 }
49
50 public abstract List<Offer> offerSearch(String keywords, Category category,
51 Price lowprice, Price highprice);
52

book-code/chap09/soashopper/soashopper-engine/src/main/java/com/javector/
soashopper/ShopperImp.java

In addition to the factory method, the code snippet in Example 9–26
shows one of the methods specified by this delegate class’s API—offer-
Search(). Each implementation of ShopperImp, for each source system, must
implement this method. So, when designing an SOA integration system like
SOAShopper, the architects and developers must determine how to map the
datatypes and semantics of each delegate method like offerSearch(), to the
datatypes and semantics represented in the compiled WSDL and schema of
each source system. Example 9–27 shows how the EBayShoppingImp class
implements this method.

9.7 SOAShopper API and the Integration Layer 455

Example 9–27 The EBayShopperImp.offerSearch() Method

227 @Override
228 public List<Offer> offerSearch(String keywords, Category category,
229 Price lowprice, Price highprice) {
230
231 TypeConverter tc = new TypeConverter();
232 GetSearchResultsRequestType searchResultsRequest = new
GetSearchResultsRequestType();

233 configureEBayRequestType(searchResultsRequest, "GetSearchResults");
234 List<DetailLevelCodeType> details = searchResultsRequest.getDetailLevel();
235 details.add(DetailLevelCodeType.RETURN_ALL);
236 if (category != null) {
237 EBayCategory eBayCategory = tc.toEBayCategory(category);
238 searchResultsRequest.setCategoryID(eBayCategory.getCategoryId());
239 }
240 searchResultsRequest.setQuery(keywords);
241 if (lowprice != null || highprice != null) {
242 PriceRangeFilterType prf = new PriceRangeFilterType();
243 if (lowprice != null) {
244 prf.setMinPrice(tc.toAmountType(lowprice));
245 }
246 if (highprice != null) {
247 prf.setMaxPrice(tc.toAmountType(highprice));
248 }
249 searchResultsRequest.setPriceRangeFilter(prf);
250 }
251 GetSearchResultsResponseType searchResultsResponse = null;
252 try {
253 searchResultsResponse = port.getSearchResults(searchResultsRequest);
254 } catch (Exception e) {
255 throw new RuntimeException(
256 "EBayAPIInterface.getSearchResults() threw an Exception", e);
257 }
258 List<SearchResultItemType> searchResultList = searchResultsResponse
259 .getSearchResultItemArray().getSearchResultItem();
260 List<Offer> retVal = new ArrayList<Offer>();
261 for (SearchResultItemType srit : searchResultList) {
262 retVal.add(new Offer(new EBayOfferImp(srit.getItem())));
263 }
264 return retVal;
265 }
266

book-code/chap09/soashopper/soashopper-engine/src/main/java/com/javector
/soashopper/ebay/EBayShopperImp.java

456 SOAShopper: Integrating eBay, Amazon, and Yahoo! Shopping

EBayShopperImp is a wrapper factory class around the JAX-WS compiled
classes which represent the eBay WSDL. It provides an intuitive interface for
accessing eBay that shields the business application from the complexity of the
underlying eBay WSDL. In addition, it provides for separation of concerns in
that EBayShopperImp provides a consistent interface to business applications
that does not need to be changed or recompiled each time the eBay WSDL
changes. Business applications should use this class for integration with eBay
instead of using the WSDL compiled classes generated by JAX-WS.

About two-thirds of the way down in Example 9–27, you can see a
try...catch statement where the method port.getSearchResults() is
invoked inside the try block. The variable port references an instance of
EBayAPIInterface (port is initialized in the constructor). As discussed rel-
ative to Figure 9–5, EBayAPIInterface is the API to the eBay shopping ser-
vices that is compiled from the eBay WSDL. The first two-thirds of the
code in this example set up the Java instances necessary to invoke this eBay
API method—getSearchResults(). This is the sort of code I was talking
about early in this section where I wrote that “The Integration Layer of the
SOAShopper application contains the type mappings used to map between
the SOAShopper standard XML schema and the schemas and WSDL used
by the source systems.” The code shown in Example 9–27 takes care of the
following semantic and datatype mappings:

■ Maps the offerSearch() method from the SOAShopper object
model to the getSearchResults() method in the eBay object model

■ Maps the parameters of offerSearch()—keywords, category, low-
price, highprice—to the eBay request object of type Get-
SearchResultsRequestType

■ Maps the eBay search results items (of type SearchResultItem-
Type) into the SOAShopper object model search result item class—
Offer

The eBay API is very rich and provides a powerful mechanism for
full integration of third-party applications with the trading platform. It
would require an entire book to explore all its capabilities in depth. The
getSearchResults() method corresponding to the GetSearchResults
operation from the eBayAPIInterface portType on the eBay WSDL13

provides the primary search interface to eBay. This operation takes a single

13. The latest version of the eBay WSDL can be found at http://developer.ebay.com/webser-
vices/latest/eBaySvc.wsdl. Be patient when trying to view it in a browser, as the WSDL is
more than 3 MB of XML!

9.7 SOAShopper API and the Integration Layer 457

parameter, the XML element GetSearchResults. This parameter is a
wrapper for lots of detailed information that can be used to specify con-
ditions of the search, ranging from keywords, to category, payment
method, auction type, and so forth.14

To invoke the getSearchResults() method, the code in Example 9–27
maps each parameter from offerSearch() (i.e., keywords, category, low-
price, highprice) to the appropriate content within the GetSearchResults
element. For example, the lowprice and highprice parameters get
mapped to a PriceRangeFilterType datatype that is used by eBay to hold a
price range. To implement that mapping first requires a datatype conver-
sion from the price datatype used in the SOAShopper model (i.e., com.jav-
ector.soashopper.Price) to the price datatype used by eBay (i.e.,
ebay.apis.eblbasecomponents.AmountType). Such simple type conver-
sions are handled by a utility type mapping class—com.javec-
tor.util.TypeConverter. In this manner, you can see that the datatype
mappings are contained in the source-system-specific implementations of
the Bridge Pattern implementor classes like EBayShopperImp.

For some of the richer and more widely used datatypes, however, the
datatype mapping is abstracted out of these implementor classes so that it
can be used across the system. An example of this is the mapping from the
eBay search result type (SearchResultItemType) to the SOAShopper
search result type (Offer). In fact, the Offer datatype has been designed,
after a careful analysis of the search results data modes for the three source
systems (eBay, Amazon, and Yahoo!) to encapsulate basic functionality that
is common across these systems. In this manner, Offer is part of the core
SOAShopper API. Like the Shopper class, Offer is implemented using the
Bridge Pattern. Figure 9–6 shows the implementation of Offer.

The parallel construction, as compared with the design of Shopper (see
Figure 9–5), is obvious. Like Shopper, Offer is the root of a class hierarchy
that defines specific domain-related subclasses for different types of search
(e.g., ComputerOffer versus CellphoneOffer). In addition, like Shopper,
the Offer implementor (i.e., OfferImp) has subclasses for each source sys-
tem (i.e., EBayOfferImp, AmazonOfferImp, and YahooOfferImp). Each sub-
class contains the code specific to mapping the search results classes in its
source system to the Offer datatype. In Example 9–27, this mapping code
is invoked when the Offer constructor is called:

new Offer(new EBayOfferImp(srit.getItem()))

14. Documentation for the eBay operations like GetSearchResults is available online;
for example, http://developer.ebay.com/DevZone/SOAP/docs/Reference/eBay/io_GetSearch-
Results.html.

458 SOAShopper: Integrating eBay, Amazon, and Yahoo! Shopping

Example 9–28 shows a snippet from the abstraction Offer illustrating
how the implementor, OfferImp, is used to implement the API. As shown,
the Offer.getPrice() method is implemented differently depending on
the type of offer that is encapsulated.

Figure 9–6 The Offer class hierarchy illustrates another Bridge Pattern in the SOAShop-
per implementation.

SOAShopper Object Model

Yahoo!
Model

eBay
Model

Amazon
Model

+isAuction()
+minimumToBid()

OfferImp

Bridge

EBayOfferImp

EBayAPIInterface

YahooOfferImp

YahooRESTInterface

+getSource()
+getThumbnail()
+getPrice()
+getSummary()
+getMerchantName()

Offer

+getDiskSize()

ComputerOffer

+getNetwork()

CellphoneOffer

-imp

*

-port -port

AWSECommerceService

AmazonOfferImp

-port

9.7 SOAShopper API and the Integration Layer 459

Example 9–28 Implementation of the Offer.getPrice() Method

81 /**
82 * @return The fixed price if this is not an auction, or else the minimum bid
83 * allowed. Returns null if the offer is no longer available or if the
84 * price cannot be determined by SOAShopper.
85 */
86 public Price getPrice() {
87 if (delegate.isAuction()) {
88 return delegate.minimumToBid();
89 }
90 return delegate.getPrice();
91 }
92

book-code/chap09/soashopper/soashopper-engine/src/main/java/com/javector
/soashopper/Offer.java

If the offer is an auction (i.e., delegate.isAuction() returns true) the
price returned is provided by the implementor method minimumToBid(). Oth-
erwise, the price is returned by the method getPrice(). Notice that the imple-
mentor methods isAuction() and minimumToBid() are not represented in the
abstraction class Offer. That is because the Offer class hides information
about the mechanism for purchasing the product represented by its instance
(e.g., auction versus simple purchase). These details, however, are needed in
the implementor class, OfferImp, in order to correctly map the search results
from eBay to the Offer datatype. In this manner, you can see that even if the
SOAShopper API is relatively simple, as in the case with the Offer class, a
great deal of more complex detail may be hidden under the covers in the
implementor classes of the Bridge Pattern (e.g., EBayOfferImp).

That wraps up the discussion of the Integration Layer and SOAShopper
API. The key points to take away are as follows:

■ The Bridge Pattern is used to combine the different source systems
into a single SOAShopper API.

■ The semantic and datatype mappings from the Bridge Pattern are
embedded in the concrete implementor classes (e.g., EBayShopper-
Imp, EBayOfferImp).

■ Significant business analysis is required to design good Bridge Pat-
tern abstractions (e.g., Shopper and Offer) that encapsulate the
common functionality provided by the source systems.

460 SOAShopper: Integrating eBay, Amazon, and Yahoo! Shopping

The next section summarizes the key points that are demonstrated by
the SOAShopper case study examined in this chapter.

9.8 Conclusions about Implementing Real-World SOA
Applications with Java EE

This chapter offered a detailed look at a real-world implementation of an SOA
integration application based on Java Web Services. To really understand how
it all fits together, I suggest that you read through the source code, and try to
modify it or add features. A good exercise is to add another online shopping
service as a source (in addition to eBay, Yahoo!, and Amazon).

In the next chapter, I demonstrate how this application (and its REST
endpoint in particular) can be leveraged to build a user-friendly Ajax front-
end that allows an end user to perform a cross-platform product search
from a Web browser. Before leaving the world of back-end design and div-
ing into the Ajax/REST interface, consider these conclusions as you con-
template designing your own SOA applications:

■ REST endpoints are very common in the real world (e.g., Yahoo!
Shopping). Learn how to use the JAX-WS Dispatch class to con-
sume them and the Provider class to deploy them.

■ JAX-WS 2.0 generates a Java API from WSDL very effectively—
even a WSDL as large as eBay (> 3 MB). However, the results may
not be usable “out of the box.” As you saw in Section 9.5, the JAX-
WS generated proxy instance may need to be tweaked by adding a
query string to the SOAP endpoint, and/or adding a SOAPHandler
to manage SOAP headers that either aren’t supported by JAX-WS or
aren’t documented in the WSDL. One can argue that some of the
commercial WSDLs out there (e.g., eBay) are cumbersome or non-
compliant with various standards or best practices. But to be practi-
cal, if WSDLs like this are the ones you need to use to get your job
done, you need to understand how to deal with their quirks within
the JAX-WS framework.

■ Design patterns like the Bridge Pattern [Go4] used in Section 9.7
can be a great help in designing the SOA Integration aspects of a
Java EE 5 based Web Services application. Developers can benefit
greatly by familiarizing themselves with the design patterns (e.g.,
Adapter, Bridge, Façade, and Proxy from [Go4]) most commonly
associated with integration.

9.8 Conclusions about Implementing Real-World SOA Applications with Java EE 461

■ Type mappings (see Section 9.4) are best isolated in a separate class
or package, instead of embedding them in the code that deploys or
consumes a Web service. This makes maintenance easier as schemas
and WSDLs change and code must be modified to accommodate
those changes. Having the type mapping code in one place, rather
than scattered throughout the application, makes it easier to identify
and implement the changes that are needed.

463

C H A P T E R 1 0

Ajax and Java Web Services

In this chapter, I examine how Java Web Services can be used to support
Ajax clients. Ajax, or Asynchronous JavaScript and XML, is a program-
ming technique that enables you to create user interfaces for a Web
browser that behave more like a local, stand-alone application than a col-
lection of HTML pages.

Ajax is a good fit with Java Web Services. Using these two technologies
together enables you to publish software components as services (via JAX-
WS) and create great browser-based user interfaces on top of them (via
Ajax). The entire application can then be packaged as an EAR or WAR and
deployed on a Java EE application server.

To demonstrate this capability, I pick up here where I left off at the
end of Chapter 9. In that chapter, I showed you how to build an online
shopping application, SOAShopper, which can search across multiple
Web-service-enabled sites (i.e., eBay, Yahoo! Shopping, and Amazon). In
this chapter, I show how you can develop an Ajax front-end to SOAShop-
per. In particular, the code examined in this chapter demonstrates how
to write an Ajax application that consumes RESTful Java Web Services
endpoints.

In the second half of this chapter, I review the JavaScript code that
implements the SOAShopper Ajax front-end in quite a bit of detail. For
those of you who are familiar with Web front-end coding and JavaScript,
this detail may seem tedious. I include it because my assumption is that
many readers of this book are server-side Java programmers who do not
usually do a lot of JavaScript development and, therefore, might be inter-
ested in the detailed code explanation.

464 Ajax and Java Web Services

10.1 Quick Overview of Ajax

Ajax is a well-documented technology, and my purpose here is not to write a
detailed tutorial on Ajax programming.1 However, I do want to go over
some of the basics to set the stage for a discussion of the SOAShopper
front-end and how it interacts with Java EE.

As many of you know, the major benefit of Ajax is that it allows a
browser-based application to avoid the need for full-page refreshes each
time new data is retrieved from the server. Ajax programmers use the
JavaScript type XMLHttpRequest to exchange data with the server behind
the scenes (i.e., without having to reload the entire HTML page being
displayed by the browser). When new data (usually in XML format) is
received by an XMLHttpRequest instance, JavaScript is used to update the
DOM structure of the HTML page (e.g., inserting some rows in a table)
without rebuilding the entire HTML page in memory.

To see what that means in practice, I walk you through some screen
shots from the SOAShopper front-end. Then, in the rest of this chapter, I
will show you how to write the code behind these screen shots.

If you build and deploy the SOAShopper application on your local
machine2 and point your browser to http://<your-host>:<your-
port>/shoashopper/ajax/search.html, you should see something simi-
lar to what appears in Figure 10–1. This is the initial search screen for
SOAShopper. The three labeled items in this figure are worth pointing
out for discussion:

1. The URL where the application resides remains constant throughout
its use. The search is performed and results are displayed without
loading a new page. This is implemented by using JavaScript that
updates the DOM residing in the browser’s memory.

2. This search page offers you four search parameters: a set of key-
words; a category to search; a low price; and a high price. These
parameters correspond to the parameters supported by the
SOAShopper offerSearch REST endpoint discussed in Chapter 9,
Section 9.3 (see Figure 9–2). This search page contains JavaScript
that converts these parameters into a query string that an XMLHt-
tpRequest instance uses to invoke the offerSearch endpoint.

1. For a good introduction to Ajax, I recommend “Ajax in Action” [AIA].
2. For instructions, see Appendix B, Section B.9.

10.1 Quick Overview of Ajax 465

3. At the bottom of Figure 10–1 appear some column headings (i.e.,
Source, Image, Price, Summary) for an empty table. Once a search is
performed and the XMLHttpRequest has received the results, a Java-
Script function contained in this page processes those results and
loads them into the table. This table is implemented using the Dojo
Foundation’s [DOJO] FilteredTable widget.

As you can see from Figure 10–1, a user has entered some criteria for a
search. The keywords value is “razr.” The search category is CELL-
PHONES and the price range is $50.00–100.00. Figure 10–2 shows what
happens to the screen when the user clicks on the Search button. The
search takes a while to run (sometimes as long as a minute). This is not
because the Java EE 5 application server is slow or because the JavaScript
in the Web page is slow. Rather, it is because the shopping sites being
searched (particularly eBay) can take quite a while to respond. To handle
this, Ajax techniques are used to update the interface and let the user know
the application is not broken.

There are two items labeled in Figure 10–2 that I want to point out:

Figure 10–1 The initial SOAShopper search screen.

1

3

2

466 Ajax and Java Web Services

1. First, notice that an icon and some text have appeared below the
Search button. The icon is actually an animated GIF that indicates the
application is working to retrieve data from the server. The text shows
us the URL of the REST endpoint from which the data has been
requested: /soashopper/rest/shopper?keywords=razr&category
=CELLPHONES¤cyId=USD&lowprice=50.00&highprice=100.00.
This is the URL and query string structure that are used in Chapter 9,
Section 9.3, for the SOAShopper REST endpoint. This icon and mes-
sage appear while the XMLHttpRequest request is happening asynchro-
nously. The search.html page has not been reloaded either. Rather,
the DOM representation of search.html that was loaded by the Web
browser (Firefox in this case) has been changed by a JavaScript func-
tion that inserted the animated GIF and text into the appropriate place.

2. The search results table is still empty because the asynchronous
request for data from the SOAShopper REST endpoint has not yet
completed.

Figure 10–2 Screen shot showing asynchronous processing in progress.

1

2

10.1 Quick Overview of Ajax 467

Figure 10–3 shows the appearance of the SOAShopper search page
after the search results have been returned from the server. At this point,
the XmlHttpRequest object has received the search data from the REST
endpoint and invoked a JavaScript function to load that data into the results
table. Two other items, labeled in the figure, are worth pointing out:

1. The animated GIF has disappeared and the text below the Search
button has changed to indicate that the results have been received.

Figure 10–3 Screen shot showing search results displayed in the Dojo table widget.

1

2

468 Ajax and Java Web Services

2. The search results table has been populated. As you can see, these
results included a list of cell phones. The leftmost column, “Source,”
indicates which site the offer came from (Figure 10–3 shows results
from eBay and Yahoo! Shopping). A thumbnail image, if available, is
displayed, along with the price and summary. The rightmost column
contains a link to the page containing the offer. Clicking this link will
take you to a page where you can purchase the cell phone that is listed.

One cool feature of the Dojo table widget used here is that the results
can be sorted by column. Figure 10–3 shows the results sorted by price
from high to low. Hence, the $99.99 phone appears at the top of the list.

That wraps up a quick overview of the SOAShopper search interface. In
the next section, I look at the working relationship between Ajax and Java
EE that has been demonstrated in these screen shots.

10.2 Ajax Together with Java EE Web Services

Figure 10–4 shows the interrelationship between the Ajax front-end illus-
trated by screen shots in Section 10.1, and the SOAShopper application
described in Chapter 9. The numbered items in this figure trace the flow of
events that implement the search:

1. First, there is a JavaScript function, retrieveURL (url), contained
in the HTML page (search.html), that has been loaded by the
browser. When the Search button is pressed, this function is invoked
with the parameter url set to the value of the REST endpoint with
the query string determined by the search parameters.

2. Next, the showSearchingMsg() function is invoked to display the
animated GIF and message illustrated in Figure 10–2.

3. Then, the retrieveURL() function instantiates an XMLHttpRequest
object, which invokes the SOAShopper’s REST endpoint asynchro-
nously. It also configures a handler (the processStateChange()
function used in step 7) on the XMLHttpRequest object.

4. The XMLHttpRequest object makes an HTTP GET request to the
SOAShopper REST endpoint. This is an asynchronous request, and
the main thread of execution returns to handle any other interactions
that may occur while the search is going on.

5. Meanwhile, inside the Java EE container that has deployed the
SOAShopper REST endpoint, processing of the XMLHttpRequest’s

10.2 Ajax Together with Java EE Web Services 469

HTTP GET request is taking place. As described in Chapter 9, Sec-
tion 9.3, query parameters are parsed from the query string and
passed to the

6. SOAShopper internals. SOAShopper then translates the search
request into the appropriate form for each online shopping service
(eBay, Amazon, and Yahoo! Shopping), gets the results, and packages
them into an XML document compliant with the retail.xsd schema

Figure 10–4 A typical Ajax client invokes REST endpoints asynchronously.

Java EE 5 Container

REST Services

@WebServiceProvider

Provider<Source>

SOAShopper Standard
XML Schema

eBay API
(SOAP)

SOAShopper
Internals Amazon API

(SOAP)

Yahoo! API
(REST)

XML/
HTTP

eBay Web
Services

Amazon Web
Services

Yahoo! Shopping
Web Services

Internet

Web Browser

retrieveURL(url)
(JavaScript Function)

XMLHttpRequest

setData()
(Dojo FilteredTable
Function)

1

3

6

4

5

7 9

showSearchingMsg()
(JavaScript Function)

2

processStateChange()
(JavaScript Function)

8

Internet

470 Ajax and Java Web Services

(see Chapter 9, Example 9–4, from Section 9.2). The XML document
is then sent back to the XMLHttpRequest object over the HTTP
response to its original GET request.

7. When the XMLHttpRequest’s state changes, indicating that the search
response has been received, the processStateChange() handler (set
in step 2) gets invoked.

8. The processStateChange() handler calls other functions that (i)
change the message to indicate the search has finished, and (ii) pro-
cess and format the XML data received from SOAShopper so that it
can be displayed.

9. Lastly, the Dojo table widget’s setData() function is invoked to dis-
play the search results.

One other relationship between the Ajax application running in the
Web browser and the Java EE container is not shown in Figure 10–4. The
Web container on the Java EE side also acts as a Web server hosting the
Ajax application. So, the search.html page that contains the Ajax code is
served by the Java EE container as well.

In the next section, I walk through the JavaScript code that imple-
ments steps 1–9. My goal is to give you a detailed understanding of how to
implement an Ajax application that can interact with your Java EE REST
endpoints.

10.3 Sample Code: An Ajax Front-End for SOAShopper

The code example discussion starts with the JavaScript function
retrieveURL(), shown as step 1 in Figure 10–4. As you can see in Example
10–1, the first thing this code does is invoke the showSearchingMsg() func-
tion to display the message on the browser indicating that the search is
underway.

Example 10–1 The retrieveURL() JavaScript Function Uses an XMLHttpRe-
quest Object to Asynchronously Invoke the SOAShopper REST Endpoint

 125 function retrieveURL(url) {
 126 restURL = url;
 127 showSearchingMsg(restURL);
 128 if (window.XMLHttpRequest) { // Non-IE browsers
 129 req = new XMLHttpRequest();

10.3 Sample Code: An Ajax Front-End for SOAShopper 471

 130 req.onreadystatechange = processStateChange;
 131 try {
 132 req.open("GET", url, true);
 133 req.setRequestHeader('Content-type','text/xml');
 134 } catch (e) {
 135 alert(e);
 136 }
 137 req.send(null);
 138 } else if (window.ActiveXObject) { // IE
 139 req = new ActiveXObject("Microsoft.XMLHTTP");
 140 if (req) {
 141 req.onreadystatechange = processStateChange;
 142 try {
 143 req.open("GET", url, true);
 144 req.setRequestHeader('Content-type','text/xml');
 145 } catch (e) {
 146 alert(e);
 147 }
 148 req.send();
 149 }
 150 }
 151 }

book-code/chap09/soashopper/soashopper-ajax/src/main/webapp
/search.html

Next, the code instantiates the XMLHttpRequest object and stores it in
the req variable. Actually, the code needs to handle two cases for Microsoft
and non-Microsoft browsers. In a non-Microsoft browser, it is created using:

new XMLHttpRequest()

However, in Internet Explorer, it is creating using:

new ActiveXObject("Microsoft.XMLHTTP")

Once the XMLHttpRequest object is instantiated, an HTTP GET
request is made to the specified url parameter using req.open() and
req.send() functions. The setRequestHeader() call is made to add the:

Content-type: text/xml

472 Ajax and Java Web Services

HTTP request header to the GET request. Strictly speaking, this should not
be necessary. However, some REST endpoints require that the Content-
type header be configured this way. For example, early versions of JAX-WS
(including the first production release of GlassFish), required it.

Example 10–2 shows the code that implements step 2 from Figure 10–4.
This code manipulates the Web browser’s DOM representation of the
search.html document.

Example 10–2 The JavaScript Method showSearchingMsg() Updates the Web Browser’s
DOM to Display an Animated GIF and Text Message

 81 function showSearchingMsg(url) {
 82 var messageTDElt = document.getElementById('searchingMessageId');
 83 var loadingTDElt = document.getElementById('loadingId');
 84 loadingTDElt.setAttribute('width','50');
 85 var loadingNode = document.createElement('img');
 86 loadingNode.setAttribute('src','images/bigrotation2.gif');
87 loadingNode.setAttribute('style', 'margin-right: 6px; margin-top: 5px;');

 88 var existingLoadingNode = loadingTDElt.firstChild;
 89 if (existingLoadingNode) {
 90 loadingTDElt.removeChild(existingLoadingNode);
 91 }
 92 loadingTDElt.appendChild(loadingNode);
 93 var msg = "Invoking RESTful search at URL: " + url;
 94 var msgNode = document.createTextNode(msg);
 95 var existingMsg = messageTDElt.firstChild
 96 if (existingMsg) {
 97 messageTDElt.removeChild(existingMsg);
 98 }
 99 messageTDElt.appendChild(msgNode);
 100 }

book-code/chap09/soashopper/soashopper-ajax/src/main/webapp/search.html

First, this code gets a reference to a DOM element (stored in message-
TDElt) where the text message should be displayed. The ID, 'searching-
MessageId', refers to a cell in a table, halfway down the page. That cell is
empty when the search.html page is loaded. However, the code here—in
particular, the last line:

messageTDElt.appendChild(msgNode)

10.3 Sample Code: An Ajax Front-End for SOAShopper 473

places the text “Invoking RESTful search at URL: ...” in that cell. Similarly,
other parts of this code place an animated GIF reference (i.e., images/
bigrotation2.gif) into another cell with the ID 'loadingID'.

If you have done server-side Java DOM programming,3 this type of
HTML DOM programming in JavaScript should make sense. If you haven’t
seen any kind of DOM programming before, you might want to look at
“Ajax in Action” [AIA] Chapter 2 for an introduction to manipulating
HTML DOM.

Getting back to the HTTP GET request issued by the XMLHttpRequest
object, this request is received by the Java EE container where SOAShopper
is deployed—in particular, the request handled by the JAX-WS runtime
where it ends up calling the ShopperServiceRESTImp.invoke() method,4

which has been deployed at the endpoint invoked by the Ajax application. In
Figure 10–4, this part of the process is labeled step 5. This Web service
method, ShopperServiceRESTImp.invoke(), in turn invokes the SOAShop-
per API shown in Example 10–3.

Example 10–3 The Java Method offerSearch Is Bound to the REST Endpoint by JAX-WS
(The Query String Parameters from the Browser’s XMLHttpRequest Request End Up Get-
ting Mapped to the Parameters of This Method)5

 22 public interface ShopperServiceREST {
 23
 24 public OfferList offerSearch(String keywords, String category,
 25 String currencyId, Double lowprice, Double highprice);
 26
 27 }

book-code/chap09/soashopper/soashopper-services-rest/src/main/java/com/javector
/soashopper/endpoint/rest/ShopperServiceREST.java

At this point, the server-side SOAShopper application does the search
of eBay, Yahoo! Shopping, and Amazon. This is step 6 in Figure 10–4. The
internals of SOAShopper are described in detail in Chapter 9.

3. See, for example, the programming for WSDL processing and XML validation discussed
in Chapter 7, Section 7.5—particularly Example 7–10.
4. See Chapter 9, Section 9.3, Example 9–11.
5. See Chapter 9, Section 9.3.

474 Ajax and Java Web Services

Of interest here, from the Ajax perspective, is what happens when the
server-side SOAShopper application returns. As indicated by step 7 in Fig-
ure 10–4, a handler function—processStateChange()—is invoked.

Example 10–4 The JavaScript Function processStateChange() Is Invoked When the
Asynchronous XMLHttpRequest.send() Function Returns (If the REST Query Returns
“200 OK”, the processXML() Function Is Invoked to Display the Search Results)

 156 function processStateChange() {
 157 if (req.readyState == 4) { // Complete
 158 showFinishedMsg(restURL);
 159 if (req.status == 200) { // OK response
 160 processXML(req.responseXML);
 161 } else {
 162 alert("Problem invoking REST endpoint: " + restURL + " : "
 163 + req.status + " " + req.statusText);
 164 }
 165 }
 166 }

book-code/chap09/soashopper/soashopper-ajax/src/main/webapp
/search.html

Example 10–4 shows the code for that handler function. It simply
checks that an HTTP response code 200 was received (indicating success)
and then invokes the processXML() function. For code clarity, it makes
sense to keep such a handler function as simple as possible and organize the
real work in another function. If the HTTP response is not 200 (indicating a
problem), the code here simply sends an alert message. In a real production
application, some diagnostics would take place together with an attempt to
recover from the failure and maybe reissue the HTTP request.

Supposing that the HTTP response code is 200, the next step in this
process is to parse the XML document returned by the SOAShopper ser-
vice. As indicated by Example 10–3, the return type of the SOAShopper
API is OfferList. OfferList is a JAXB schema-generated Java class com-
piled from the retail:offerList schema element in the retail.xsd
schema shown in Example 10–5. This is the schema referenced in the
REST endpoint documentation from Chapter 9.6

6. See Chapter 9, Section 9.3, Figure 9-2.

10.3 Sample Code: An Ajax Front-End for SOAShopper 475

Example 10–5 The XML Schema Definition for the XML Document Received by the Ajax
Application from the SOAShopper REST Endpoint

 7 <xs:element name="offerList">
 8 <xs:complexType>
 9 <xs:sequence>
 10 <xs:element ref="tns:offer" minOccurs="0" maxOccurs="unbounded"/>
 11 </xs:sequence>
 12 </xs:complexType>
 13 </xs:element>
 14
 15 <xs:element name="offer" type="tns:OfferType"/>
 16
 17 <xs:complexType name="OfferType">
 18 <xs:sequence>
 19 <xs:element name="offerId" type="xs:string" nillable="true"/>
 20 <xs:element name="productId" type="xs:string" minOccurs="0"/>
 21 <xs:element name="source" type="tns:SourceType"/>
 22 <xs:element name="thumbnail" type="tns:PictureType" minOccurs="0"/>
 23 <xs:element name="price" type="tns:PriceType"/>
 24 <xs:element name="merchantName" type="xs:string" minOccurs="0"/>
 25 <xs:element name="summary" type="xs:string"/>
 26 <xs:element name="offerUrl" type="xs:anyURI"/>
 27 </xs:sequence>
 28 </xs:complexType>

book-code/chap09/soashopper/soashopper-services-soap/src/main/webapp/WEB-INF
/wsdl/retail.xsd

This schema was used as a guide for writing the processXML() function
appearing in Example 10–6. In this function, the response XML document
from SOAShopper is passed in as the parameter searchDoc. As indicated by
the schema, each individual offer7 returned is contained in an <offer> ele-
ment. Hence, the line:

var listOffers = searchDoc.getElementsByTagName('offer');

7. An “offer” is a product offered for sale on one of eBay, Yahoo! Shopping, or Amazon.

476 Ajax and Java Web Services

returns an array8 of <offer> elements. The processXML() function then
proceeds to iterate through that array, using the DOM API to extract the
following information:

■ source—the source of the offer (i.e., eBay, Yahoo!, or Amazon)
■ thumbnailHtml—a fragment of HTML referencing a thumbnail image

of the product offered (e.g., <img src="http:// ..." width=".."
height=".."/>)

■ priceStr—the price of the offer (e.g., USD 19.95)
■ summary—a string containing a description of the offer
■ urlHtml—a fragment of HTML referencing the page where the

offer can be purchased (e.g., link)

Example 10–6 does not show the code used to extract each variable, but
it contains enough to give you an idea of how the DOM API is used to pro-
cess the returned XML.

Example 10–6 The Function processXML() Walks the DOM of the XML Returned by the
REST Endpoint to Extract the Data That Gets Displayed

 173 function processXML(searchDoc) {
 174 try {
 175 var listOffers = searchDoc.getElementsByTagName('offer');
 176 for (var i=0; i<listOffers.length; i++) {
 177 var item = listOffers.item(i);
 178 var sourceStr =
 179 item.getElementsByTagName('source').item(0).firstChild.data;
 180 var thumbnailElts = item.getElementsByTagName('thumbnail');
 181 var thumbnailElt;
 182 var thumbnailUrl = "";
 183 var thumbnailHtml = "";
 184 if (thumbnailElts && thumbnailElts.item(0)) {
 185 thumbnailElt = thumbnailElts.item(0);
 186 thumbnailUrl =
187 thumbnailElt.getElementsByTagName('url').item(0).firstChild.data;
 188 thumbnailHtml = "<img src='"+thumbnailUrl+"'";
 189 var h = thumbnailElt.getElementsByTagName('pixelHeight');
 190 if (h && h.item(0)) {
 191 thumbnailHtml += " height='"+h.item(0).firstChild.data+"'";
 192 }

8. Technically a NodeList.

10.3 Sample Code: An Ajax Front-End for SOAShopper 477

 193 var w = thumbnailElt.getElementsByTagName('pixelWidth');
 194 if (w && w.item(0)) {
 195 thumbnailHtml += " width='"+w.item(0).firstChild.data+"'";
 196 }
 197 thumbnailHtml += "/>";
 198 }

book-code/chap09/soashopper/soashopper-ajax/src/main/webapp/search.html

Next, the values that have been extracted need to be put into a format
that can be loaded into the Dojo table widget. The widget accepts data in
JSON format,9 so the processXML() function creates a new variable, json-
Data, to hold the data in that form. Each offer, in JSON format, is loaded
into a global array named theSOAShopperLiveData (see Example 10–7).

Example 10–7 Search Results Data Is Converted to JSON Format for Display by the Dojo
Table Widget

 215 var jsonData = {
 216 Id:i,
 217 source:sourceStr,
 218 thumbnail:thumbnailHtml,
 219 price:priceStr,
 220 summary:summaryStr,
 221 url:urlHtml
 222 };
 223 theSOAShopperLiveData.push(jsonData);
 224 } // end for
 225 populateTableFromLiveSOAShopperData();

book-code/chap09/soashopper/soashopper-ajax/src/main/webapp/search.html

Finally, when all the offer data has been converted to JSON and loaded
into the array, the function populateTableFromLiveSOAShopperData() is
called to load the Dojo table widget.

9. JSON is a text-based data interchange format used as a serialization alternative to XML. It
is commonly used in Ajax programming because it works well with JavaScript. See the Glos-
sary. See also www.json.org.

478 Ajax and Java Web Services

Example 10–8 shows the code that loads the table.

Example 10–8 The JSON Data Is Loaded into the Dojo Table Widget

 234 function populateTableFromLiveSOAShopperData() {
 235 try {
 236 var w = dojo.widget.byId("fromSOAShopperData");
 237 if(w.store.get().length > 0){
 238 alert("you already loaded SOAShopper data :)");
 239 return;
 240 }
 241 w.store.setData(theSOAShopperLiveData);
 242 } catch(e) {
 243 alert(e);
 244 }
 245 }

book-code/chap09/soashopper/soashopper-ajax/src/main/webapp/search.html

Note that the first step is to invoke a Dojo function (dojo.widget.byId)
to get a reference to the Dojo table widget. The Dojo functions are loaded
using script elements such as:

<script type="text/javascript" src="scripts/dojo.js"></script>

in the HTML <head> element. Once we have a reference to the table wid-
get, it is loaded with the JSON data by calling the store.setData()
method. Note that w.store is the data store associated with the table wid-
get referenced by w.

Example 10–9 The Dojo FilteringTable Widget Is Used to Display the Search Results

 300 <table dojoType="filteringTable" id="fromSOAShopperData" multiple="true"
 301 alternateRows="true" cellpadding="0" cellspacing="0" border="0"
 302 style="margin-bottom:24px;">
 303 <thead>
 304 <tr>
 305 <th field="source" dataType="String">Source</th>
 306 <th field="thumbnail" dataType="html" align="center">Image</th>
 307 <th field="price" dataType="String">Price</th>

10.4 Conclusions about Ajax and Java EE 479

 308 <th field="summary" dataType="String">Summary</th>
 309 <th field="url" dataType="html">Link</th>
 310 </tr>
 311 </thead>
 312 </table>

book-code/chap09/soashopper/soashopper-ajax/src/main/webapp/search.html

Wrapping up this tour of the SOAShopper JavaScript, Example 10–9
shows the HTML for the Dojo table widget. Notice that it contains the
attribute dojoType that identifies it as a FilteringTable. The <th> header
cells in this table contain field attributes that map each column to the corre-
sponding JSON field name (see Example 10–7).

10.4 Conclusions about Ajax and Java EE

In this chapter, I presented a brief overview of Ajax programming by focus-
ing on how to create a front-end for the SOAShopper application con-
structed in Chapter 9. I hope you have enjoyed this little detour from Java
programming and found it helpful for understanding one type of consumer
of Java EE Web services. Some of the more important takeaways from this
chapter are as follows:

■ Ajax and Java EE support a nice separation of concerns, where
server-side Java EE handles the hard-code SOA integration and
deployment of Web service endpoints, and Ajax provides an attrac-
tive and user-friendly front-end.

■ The entire application, Ajax front-end, and Java EE back-end can be
bundled as a single EAR for painless deployment to any Java EE
application server.

■ Creating Ajax applications requires a mastery of JavaScript and
HTML DOM that may not be familiar to most server-side Java EE
programmers. However, as I illustrated in the SOAShopper search
example presented here, it is not too difficult to pick up those skills.

■ When creating and deploying Java EE service endpoints, it is prob-
ably good practice, at least for the more complex services, to create
a simple Ajax front-end to go along with the service. An Ajax front-
end makes it easy for the consumers of a service you have written

480 Ajax and Java Web Services

to visually experience the data your service returns. The ability to
“play” with a Web service in such a manner can give a developer a
much better intuitive sense for the service interface than a WSDL
or XML schema.

In the next and final chapter, I look at an alternative to the Java Web
Services framework that is WSDL-centric, rather than Java-centric. This
SOA-J framework, first mentioned at the end of Chapter 1, leverages JWS,
but provides an alternative paradigm for Web services development and
deployment.

481

C H A P T E R 1 1

WSDL-Centric Java Web
Services with SOA-J

This chapter introduces the Service Oriented Architecture for Java (SOA-J)
Application Framework. SOA-J is a Web Services publishing framework
that is WSDL-centric. It enables you to construct WSDL defined services
from Java POJOs and EJBs. The Web Services published by SOA-J can be
used as components within a Service Oriented Architecture (SOA). In this
manner, SOA-J can be used to map existing Java applications into an SOA
framework.

The goal of SOA-J is to leverage the Java Web Services (JWS) standards
to create a framework that facilitates WSDL-centric construction of Web
Services. Using SOA-J, you create a Web service by building its WSDL and
annotating that WSDL document with references to the Java elements that
implement it. Unlike with the JWS “Start from WSDL” development mode,
there is no need to compile the WSDL and work with machine-generated
classes.1 Instead, you set up a configuration file, having the same structure
as your target WSDL but with additional information about the Java imple-
mentation, and the SOA-J framework publishes the WSDL and maps SOAP
requests to the implementation at runtime.

Such a WSDL-centric approach is perfect for situations where you
need to create Web services that integrate into a standard corporate or
eBusiness framework (i.e., where there are standard schemas and message
descriptions). This scenario is described in Chapter 4.

As of this writing, SOA-J is a prototype application. I created it as a
proof-of-concept to explore the viability of WSDL-centric SOA develop-
ment in Java. So, don’t plan to build your next enterprise SOA application
with SOA-J! However, if you are interested in learning how to create an
application framework to enhance JWS, SOA-J is a great learning tool.

1. See Chapter 9 for a detailed example of an application developed using “Start from WSDL.”

482 WSDL-Centric Java Web Services with SOA-J

The source code for SOA-J is included with the code examples you can
download with this book2 at <book-code>/chap11/soaj. You can also find
the latest version of SOA-J at http://soa-j.org.

I have three purposes for including a detailed discussion of SOA-J in
this book. First, for readers who want to gain a deep understanding of Java
Web Services, I believe the best approach is to examine an implementation
of a Web Services platform in detail. SOA-J serves that purpose because it
includes a basic implementation of the Web Services Platform Architecture
(WSPA) introduced in Chapter 1. Instead of examining SOA-J, I could have
described an existing open source server like Apache Axis [AXIS] [AXIS2].
However, such a discussion of a full-featured product like Axis would have
required an entire book unto itself. Instead, I favored illustrating the con-
cepts of WSPA implementation using a relatively simple application proto-
type. SOA-J provides a clear and simple implementation of the WSPA using
JWS technologies. Once you understand the design principles behind SOA-
J, you will have no trouble understanding other WSPA frameworks such as
Apache Axis and XFire [XFIRE].

My second purpose it to illustrate how some of the limitations of JWS
can be overcome. For example, SOA-J offers more flexible change manage-
ment, because it allows you to describe a Web service without using annota-
tions (that are tied to source) or deployment descriptors (that are packaged
in modules). Instead, SOA-J uses configuration files that can be updated
dynamically at runtime. In this manner, SOA-J Web services can be created,
changed, and deleted without touching Java source code, undeploying mod-
ules, or restarting containers.

Third, and most important, I am hoping to stimulate thought and
debate on how to enhance future versions of JWS with WSDL-centric
development features. As SOA infrastructures move beyond the prototyp-
ing phase and become corporate standards, it is going to become increas-
ingly important for Java developers to easily integrate their work with
existing WSDL and XML Schema standards.

In his book Service Oriented Architecture [Erl], Thomas Erl writes, “if a
product, design, or technology is prefixed with ‘SOA,’ it is something that
was (directly or indirectly) created in support of an architecture based on
service-orientation principles.”3 This is exactly the case with SOA-J. It is
designed to support service orientation for Java applications.

2. See Appendix B for instructions on how to download, install, and configure the book
software.
3. Page 41 [Erl].

11.1 SOA-J Architecture 483

In what follows, I give an overview of SOA-J and use it to illustrate how
a Web Services Platform Architecture can be implemented. At the end of
the chapter, I look at how SOA-J measures up against Erl’s standards for
“service orientation.”

11.1 SOA-J Architecture

SOA-J is designed to run inside a Java EE container and to leverage the
Web Services infrastructure provided by JAX-WS, JAXB, WS-Metadata,
and WSEE.4 Unlike Apache Axis, XFire and other standalone Web Services
server solutions, SOA-J does not replace the internal Web Services capabili-
ties of the Java application server, but enhances them. Figure 11–1 provides
a high-level illustration of the SOA-J architecture.

As illustrated here, SOA-J is deployed as a Web module (WAR). SOA-J
is packaged as a port component implementing the JAX-WS Provider<T>5

interface and therefore can be deployed (per WSEE and WS-Metadata) as
a servlet endpoint.6 In this manner, you can see that SOA-J is built on top of
the JAX-WS implementation provided by the Java EE container. SOA-J also
takes advantage of WSEE and WS-Metadata for packaging and deploy-
ment, and JAXB for serialization. Because it is built on these portable tech-
nologies, SOA-J can be deployed and run on any Java application server that
supports Java EE .

As shown in Figure 11–1, SOA-J binds Web services to endpoints. Each
endpoint published by SOA-J has an associated URL where SOAP requests
can be posted. A WSDL document is also associated with an endpoint to
describe the Web services available at that URL. Endpoints are dynamically
configured and can be created and removed at runtime. You do not need to
undeploy the SOA-J module, or restart the Java EE server, in order to cre-
ate, change, or delete an endpoint.

SOA-J can receive SOAP requests at any of the endpoints that have
been configured by the user. When SOA-J receives a SOAP request at a

4. These acronyms refer to Java standards for Web Services discussed throughout this book.
For JAX-WS (The Java™ Architecture for XML-Based Web Services) [JSR 224], see Chapters
6 and 7. For JAXB (The Java™ Architecture for XML Binding) [JSR 222], see Chapter 5. For
WS-Metadata (Services Metadata for the Java™ Platform) [JSR 181] and WSEE (Implement-
ing Enterprise Web Services) [JSR 109], see Chapter 8.
5. See Chapter 7, Section 7.3, for a discussion of the JAX-WS Provider<T> interface.
6. See Chapter 8, Section 8.1, for a discussion of the deployment options for JAX-WS port
components.

484 WSDL-Centric Java Web Services with SOA-J

configured endpoint, it invokes all the components of the Web Services
Platform Architecture7 to process that request: the deployment subsystem,
the invocation subsystem, and the serialization subsystem. The deployment
subsystem determines which Java class and method to invoke—based on
the structure of the SOAP request and how the endpoint has been config-
ured. The invocation subsystem invokes the proper class and method, using
the serialization subsystem to translate between XML and Java objects. This
process is discussed in detail in the remainder of this chapter. For now, con-
sider how SOA-J is configured to publish its endpoints. Figure 11–2 pro-
vides a high-level illustration of the configuration process.

Figure 11–1 SOA-J server-side architecture.

EJB Container

JAX-WS JAXB WSEE WS-Metadata SAAJ

Web Container

Invocation
Subsystem

Serialization
Subsystem

Deployment
Subsystem

Java
Application

Java
Application

Library (POJO)
Access

Local EJB
Access

WSDL
Endpoint

SOAP

WSDL
Endpoint

SOAP

Java EE

SOA-J

Java
ApplicationRemote EJB Access

7. See Chapter 1, Section 1.3.

11.1 SOA-J Architecture 485

An endpoint is configured using a WSDL/Java mapping. The set of
WSDL/Java mappings that is used to configure SOA-J is called the SOA-J
Configuration. Each WSDL/Java mapping defines pairings of Java class/
methods with wsdl:operation instances from a particular wsdl:port
defined in a WSDL document. The Java class/method associated with a
wsdl:operation gets invoked when a SOAP message is received that refer-
ences that wsdl:operation.

Configuration of SOA-J also requires a Serialization Context. The Seri-
alization Context is a set of type mapping rules. Each type mapping rule
tells SOA-J how to either (i) serialize instances of a particular Java class to
instances of a particular XML type; or (ii) deserialize instances of a particu-
lar XML type into instances of a particular Java class. The serialization sub-
system uses this Serialization Context to deserialize SOAP parameters into
Java parameters, and to serialize the Java return type instance (resulting
from invoking the target Java class/method) into a SOAP parameter. The
type mapping rules are written in a declarative XML language defined by
the Adaptive Serialization Framework. I go through an example of some
rules in Section 11.4.

Both the SOA-J Configuration and the Serialization Context are
dynamic XML documents. They can be updated at runtime to dynamically
reconfigure the behavior of SOA-J. Contrast this style of configuration with

Figure 11–2 SOA-J configuration involves a Serialization Context and an
Operation Map.

Invocation
Subsystem

Serialization
Subsystem

Deployment
Subsystem

Serialization Context

Type Mapping Rule

Type Mapping Rule

Type Mapping Rule

SOA-J Configuration

WSDL/Java Mapping

WSDL/Java Mapping

WSDL/Java Mapping

SOA-J

486 WSDL-Centric Java Web Services with SOA-J

the JWS approach where the annotations that define the WSDL and Java/
XML bindings are compiled into .class files and packaged into deploy-
ment modules. Changing the behavior of a deployed JWS Web service
requires undeployment, Java source code changes, recompilation, repack-
aging, and redeployment. Changing the behavior of an SOA-J deployed
Web service simply involves editing an XML file.

The SOA-J invocation subsystem manages the sequence of events from
receiving the SOAP request, to dispatching it to the correct Java class/method,
to invoking the serialization subsystem, and do on, as described in Chapter 1.

That is a very high-level sketch of SOA-J architecture and configuration.
In the rest of this chapter, I go through an example of how a Web service is
configured and invoked using SOA-J. These sections also describe in detail
how SOA-J is implemented.

11.2 WSDL-Centric Development with SOA-J

As discussed in the preceding section, SOA-J is configured using an SOA-J
Configuration file. This is the heart of the WSDL-centric development phi-
losophy of SOA-J. You construct a Web service by creating its WSDL via the
SOA-J Configuration. The structure of the SOA-J Configuration file mirrors
the WSDL structure.

Example 11–1 shows an example of such a configuration file for deploying
a single wsdl:port, POSystemPort, with two wsdl:operations: retrieve-
Address and updateAddress. As you look through this listing, notice how it
parallels the construction of a WSDL document. In essence, when writing an
SOA-J Configuration file, you are creating a WSDL along with the information
needed to map it to Java classes and methods. The SOA-J elements soajWSDL,
soajService, soajPort, and soajOperation used in this configuration file
correspond to the WSDL elements, respectively, wsdl:definitions,
wsdl:service, wsdl:port, and wsdl:operation.

Example 11–1 An Example of the SOA-J Configuration File

 4 <soajConfiguration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 5 xsi:schemaLocation="http://javector.com/soaj/config ../../../../../../../
provider/src/main/resources/config/soaj-config.xsd"

 6 xmlns:po="http://javector.com/ser/adaptive/po"
 7 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 8 xmlns="http://javector.com/soaj/config">

11.2 WSDL-Centric Development with SOA-J 487

 9 <soajWSDL wsdlName="POSystem"
10 wsdlNamespace="http://javector.com/soaj/provider/posystem">
11 <soajService serviceName="POSystemService">
12 <soajPort portName="POSystemPort"
13 endpoint="http://localhost:8080/posystem/soaj/updateService">
14 <soajOperation operationName="retrieveAddress">
15 <soajPOJOMethod javaMethod="getPOfromDatabase"
16 javaClass="com.javector.soaj.wsdlgentest.po.PurchaseOrderProcessing">
17 <paramClass>java.lang.String</paramClass>
18 </soajPOJOMethod>
19 <parameterMapping>
20 <javaClass>java.lang.String</javaClass>
21 <xmlElement>
22 <eltName>poNum</eltName>
23 <eltType>xs:string</eltType>
24 </xmlElement>
25 </parameterMapping>
26 <returnMapping>
27 <javaClass>com.javector.soaj.wsdlgentest.po.PurchaseOrder</
javaClass>

28 <xmlElement>
29 <eltRef>po:billTo</eltRef>
30 </xmlElement>
31 </returnMapping>
32 </soajOperation>
33 <soajOperation operationName="updateAddress">
34 <soajPOJOMethod javaMethod="updateAddress"
35 javaClass="com.javector.soaj.wsdlgentest.po.PurchaseOrderProcessing">
36 <paramClass>com.javector.soaj.wsdlgentest.po.Address</paramClass>
37 <paramClass>java.lang.String</paramClass>
38 </soajPOJOMethod>
39 <parameterMapping>
40 <javaClass>com.javector.soaj.wsdlgentest.po.Address</javaClass>
41 <xmlElement>
42 <eltName>po:billTo</eltName>
43 <eltType>po:BillToType</eltType>
44 </xmlElement>
45 </parameterMapping>
46 <parameterMapping>
47 <javaClass>java.lang.String</javaClass>
48 <xmlElement>
49 <eltName>string</eltName>
50 <eltType>xs:string</eltType>
51 </xmlElement>

488 WSDL-Centric Java Web Services with SOA-J

52 </parameterMapping>
53 <returnMapping>
54 <javaClass>void</javaClass>
55 <xmlElement>
56 <eltRef>xs:void</eltRef>
57 </xmlElement>
58 </returnMapping>
59 </soajOperation>
60 </soajPort>
61 </soajService>
62 </soajWSDL>
63 <mappingXml>config/adaptivemap.xml</mappingXml>
64 <userDefinedSchemas>
65 <userDefinedSchema>
66 <targetNamespace>http://javector.com/ser/adaptive/po</targetNamespace>
67 <schemaLocation>http://localhost:8080/posystem/config/purchaseOrder.xsd
68 </schemaLocation>
69 </userDefinedSchema>
70 </userDefinedSchemas>
71 </soajConfiguration>

book-code/chap11/soaj/provider-javaeetesting/provider-javaeetesting-
generatedwsdl-testartifacts/posystem/src/main/resources/config/SoajConfig.xml

The core components of an SOA-J Configuration file are the soajOper-
ation elements. Such operation elements define a mapping from a Java
class/method to a wsdl:port and wsdl:operation. The wsdl:operation is
specified by the operationName attribute. The wsdl:port is defined by the
surrounding soajPort element.

The soajOperation elements are grouped under soajPort elements to
define a wsdl:port. Hence, SOA-J can create a wsdl:port using a variety
of Java classes and methods. This is more flexible than the JWS model,
where all the operations on a single wsdl:port must be implemented by
methods from the same Java class.

Following the structure of a WSDL document, the soajPort ele-
ments are contained within an soajService element to define a
wsdl:service. And the soajService elements are contained within an
soajWSDL element to define a WSDL document (since a WSDL docu-
ment can contain multiple wsdl:service elements). The entire operation
map is contained in a single soajConfiguration element, which can con-
tain multiple soajWSDL elements. In this manner, the operation map can
define multiple WSDL documents, and each instance of an SOA-J server
can support an unlimited number of WSDL documents.

11.2 WSDL-Centric Development with SOA-J 489

Now, take a closer look at the soajOperation element in Figure 11–1
with the attribute operationName="retrieveAddress". It has an soaj-
POJOMethod as the child element that defines the Java class and method
for implementation. The soajPOJOMethod element is used for deploying a
POJO. SOA-J also supports deployment of EJBs (3.0 and 2.1). Here, you
can see that this operation is implemented using the com.javec-
tor.soaj.wsdlgentest.po.PurchaseOrderProcessing class and the get-
POfromDatabase method. That method has this signature:

PurchaseOrder getPOfromDatabase(String poNum)

After the soajPOJOMethod element comes the parameterMapping ele-
ments. These map the parameters of the getPOfromDatabase() method to
the XML types or elements supported by the Web service being implemented.
In this case, there is only one parameter of Java type String. As you can see, it
is mapped to an element with the name poNum and the XML type xs:string.

Next, the returnMapping element maps the return type of the getPO-
fromDatabase (com.javector.soaj.wsdlgentest.po.PurchaseOrder) to
the element po:billTo. The element po:billTo is defined in one of the
schemas listed at the very bottom of this soajConfiguration—under the
userDefinedSchemas element. The userDefinedSchemas element lets you
reuse standard schemas within your SOA-J configurations. This is the best
practice discussed in Chapter 4, Section 4.1, where I describe the concept
of a schema library.

In this manner, the soajOperation elements are defined, along with
the Java program elements necessary to implement them. These soajOper-
ation elements are then organized into soajPort and soajService ele-
ments to define a WSDL.

You may also have noticed the mappingXml element appearing just after
the </soajWSDL> tag. This references the location of the Serialization Con-
text definition, which is discussed in Section 11.4.

The information contained in this SOA-J configuration serves two pur-
poses. First, it provides SOA-J with the type mappings (e.g., PurchaseOrder
to po:billTo) for serializing and deserializing. Second, it provides SOA-J
with all the information needed to construct the WSDL documents repre-
senting the Web services that are configured by the operation map. WSDL
documents constructed by the current SOA-J prototype always use the doc-
ument/literal wrapped style.8 The WSDL that is generated from the soaj-
Configuration shown in Example 11–1 is listed in Example 11–2.

8. See Chapter 4, Section 4.3, for a description of the various WSDL styles.

490 WSDL-Centric Java Web Services with SOA-J

Example 11–2 WSDL Generated from the SOA-J Configuration

 6 <definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
 7 xmlns:tns="http://javector.com/soaj/provider/posystem"
 8 xmlns:soaj1="http://javector.com/ser/adaptive/po"
 9 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 10 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" name="POSystem"
 11 targetNamespace="http://javector.com/soaj/provider/posystem">
 12 <types>
 13 <xsd:schema targetNamespace="http://javector.com/ser/adaptive/po">
 14 <xsd:include
 15 schemaLocation="http://localhost:8080/posystem/config/
purchaseOrder.xsd"

 16 />
 17 </xsd:schema>
 18 <xsd:schema xmlns="http://www.w3.org/2001/XMLSchema"
 19 targetNamespace="http://javector.com/soaj/provider/posystem"
 20 elementFormDefault="qualified">
 21 <xsd:import namespace="http://javector.com/ser/adaptive/po"/>
 22 <element name="retrieveAddress">
 23 <complexType>
 24 <sequence>
 25 <element name="poNum" type="xsd:string"/>
 26 </sequence>
 27 </complexType>
 28 </element>
 29 <element name="retrieveAddressResponse">
 30 <complexType>
 31 <sequence>
 32 <element ref="soaj1:billTo"/>
 33 </sequence>
 34 </complexType>
 35 </element>
 36 <element name="updateAddress">
 37 <complexType>
 38 <sequence>
 39 <element name="billTo" type="soaj1:BillToType"/>
 40 <element name="string" type="xsd:string"/>
 41 </sequence>
 42 </complexType>
 43 </element>
 44 <element name="updateAddressResponse">
 45 <complexType>
 46 <sequence/>

11.2 WSDL-Centric Development with SOA-J 491

 47 </complexType>
 48 </element>
 49 </xsd:schema>
 50 </types>
 51 <message name="request_retrieveAddress">
 52 <part name="parameters" element="tns:retrieveAddress"/>
 53 </message>
 54 <message name="response_retrieveAddress">
 55 <part name="parameters" element="tns:retrieveAddressResponse"/>
 56 </message>
 57 <message name="request_updateAddress">
 58 <part name="parameters" element="tns:updateAddress"/>
 59 </message>
 60 <message name="response_updateAddress">
 61 <part name="parameters" element="tns:updateAddressResponse"/>
 62 </message>
 63 <portType name="POSystemPortType">
 64 <operation name="retrieveAddress">
 65 <input message="tns:request_retrieveAddress"/>
 66 <output message="tns:response_retrieveAddress"/>
 67 </operation>
 68 <operation name="updateAddress">
 69 <input message="tns:request_updateAddress"/>
 70 <output message="tns:response_updateAddress"/>
 71 </operation>
 72 </portType>
 73 <binding name="POSystemPortBinding" type="tns:POSystemPortType">
 74 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"
 75 style="document"/>
 76 <operation name="retrieveAddress">
 77 <soap:operation soapAction=""/>
 78 <input>
 79 <soap:body use="literal"/>
 80 </input>
 81 <output>
 82 <soap:body use="literal"/>
 83 </output>
 84 </operation>
 85 <operation name="updateAddress">
 86 <soap:operation soapAction=""/>
 87 <input>
 88 <soap:body use="literal"/>
 89 </input>
 90 <output>

492 WSDL-Centric Java Web Services with SOA-J

 91 <soap:body use="literal"/>
 92 </output>
 93 </operation>
 94 </binding>
 95 <service name="POSystemService">
 96 <port name="POSystemPort" binding="tns:POSystemPortBinding">
 97 <soap:address location="http://localhost:8080/posystem/soaj/
updateService"

 98 />
 99 </port>
100 </service>
101 </definitions>

book-code/chap11/soaj/provider-javaeetesting/provider-javaeetesting-
generatedwsdl-testartifacts/posystem/edited/POSystem.wsdl

This WSDL is constructed entirely from the SOA-J configuration. So, you
do not need to write WSDL documents when working with SOA-J. They are
created naturally from the configuration shorthand in a straightforward man-
ner. Notice that, in this case, the SOA-J Configuration is about 70 percent of
the length of the WSDL. And in addition to containing the information nec-
essary to construct the WSDL, the configuration contains the type mapping
information necessary for the Java deployment. To see how this works, I will
walk through the process by which this WSDL was constructed.

The wsdl:definition element’s name and targetNamespace attributes
come from the soajWSDL element’s wsdlName and wsdlNamespace
attributes, respectively. For each userDefinedSchema in the SOA-J configu-
ration, the WSDL has an xsd:schema element inside the wsdl:types sec-
tion that uses xsd:include to bring the userDefinedSchema into the
WSDL. This implements the schema library strategy from Chapter 4.

The last xsd:schema element in the WSDL does not have an
xsd:include element. Rather, it defines the request/response wrappers for
the soajOperation elements from the configuration. As you can see in Exam-
ple 11–2, the wrapper elements retrieveAddress and retrieveAddressRe-
sponse are created for the operationName retrieveAddress. This follows
the convention for document/literal wrapped style WSDL. The wrapper
names are taken from the operation name, with “Response” appended for the
response element name. Inside the retrieveAddress wrapper element is the
poNum element—taken from the parameterMapping element in the soaj-
Operation. Likewise, the retrieveAddressResponse wrapper element in
the WSDL contains the soaj1:billTo reference from the returnMapping

11.3 Invocation Subsystem 493

in the SOA-J configuration. Notice that in the original SOA-J configuration, a
different prefix—po—was used. The SOA-J prototype does not preserve pre-
fixes, but simply generates them from scratch.

The WSDL messages request_retrieveAddress and response_
retrieveAddress are defined in the document/literal wrapped style by ref-
erencing the respective wrapper elements. The WSDL portType for the
soajPort in the configuration with portName="POSystemPort" is named by
appending “Type,” and its operation has the name of the soajOperation’s
operationName attribute. The wsdl:binding and wsdl:port elements then
follow naturally as you would expect, with the wsdl:port’s name attribute
provided by the soajPort portName attribute. The soap:address of the
wsdl:port comes from the soajPort endpoint attribute.

The WSDL generated by SOA-J follows naturally from the SOA-J con-
figuration. That is a key design element of the SOA-J framework. Once you
have gone to the trouble of defining the parameter and return type map-
pings in the SOA-J configuration, the WSDL should flow naturally. SOA-J
does not aim for ease of use by shielding the user from the type mapping
definitions, as does the annotated approach with JWS. That is because a pri-
mary goal of SOA-J is to make it easy for you to deploy applications against
WSDLs you construct from standard schemas—to facilitate SOA Integra-
tion. The ease of use SOA-J aims for is making it easy to do integration
based on standard WSDL and XML Schema libraries. That makes it a little
harder to do the configuration than when using WS-Metadata [JSR 181].
On the other hand, the good news is that by forcing you to define the type
mappings, the SOA-J configuration process has done all the work that is
needed to generate the WSDL.

So, you can see from this discussion that the configuration of SOA-J is
entirely WSDL-centric. The next section looks at how the invocation subsystem
works—in other words, how SOAP messages are processed and dispatched.

11.3 Invocation Subsystem

The invocation subsystem is responsible for receiving SOAP messages and
processing them according to the model described in Chapter 1, Section
1.3.1. As implemented in SOA-J, the invocation subsystem is responsible for:

1. Receiving a SOAP message
2. Determining the message’s target service—i.e., which WSDL opera-

tion is the message intended to invoke

494 WSDL-Centric Java Web Services with SOA-J

3. Given the target WSDL operation, dispatching the message to the
correct Java class/method to invoke

4. Handing off the SOAP message to the Serialization subsystem to
deserialize it into Java objects that can be passed to the Java target as
parameters

5. Invoking the Java target using the parameters generated by the Seri-
alization subsystem and getting the Java object returned by the tar-
get method

6. Handing off the returned object to the Serialization subsystem to
serialize it into an XML element conformant with the return mes-
sage specified by the target WSDL operation

7. Wrapping the returned XML element as a SOAP message response
conforming to the target WSDL operation and, if an exception has
occurred, mapping it to a SOAP Fault that will be the response

8. Sending the SOAP response

Figure 11–3 provides a static class UML diagram showing the high-
level implementation of the SOA-J invocation subsystem. SOAP requests
are first received by the SoajDispatcher. The SoajDispatcher is an
HttpServlet that simply provides a base context root for all SOA-J end-
points managed within a single SOA-J configuration. For example, the Soa-
jDispatcher may receive all HTTP requests for endpoints matching
http://myserver/posystem/soaj/*. In this case, an individual SOA-J end-
point, like the one described for the POSystemPort, may get deployed to
something like http://myserver/posystem/soaj/updateService.

The SoajDispatcher passes the SOAP request on to the SoajPro-
vider—which implements the JAX-WS Provider<Source> interface dis-
cussed in Chapter 7. The Provider<Source> processing implemented by
the underlying JAX-WS 2.0 runtime gives SOA-J three advantages here.
First, it provides access to the WebServiceContext that contains the HTTP
endpoint information necessary for dispatching. Second, it hands us the
SOAP message as a javax.xml.transform.Source. Third, it enables the
invocation subsystem to return SOAP Faults simply by throwing instances
of javax.xml.ws.soap.SOAPFaultException as described in Chapter 7,
Section 7.5.

For each SOAP request received, the SoajProvider instantiates a
RequestController—the class that handles SOA-J request processing. The
RequestController contains an InputDataProcessor instance for processing
the SOAP request and creating an instance of WSRequest—the SOA-J inter-
nal representation of a SOAP request message and its context. In addition,
the RequestController contains a FlowInterpreter instance, which is

11.3 Invocation Subsystem 495

responsible for instantiating the appropriate SOA-J operation (i.e., dispatch-
ing), invoking it, and creating a WSResponse instance to contain the results.
WSResponse is the SOA-J internal representation of a SOAP response message.

You may have noticed that in the class diagram in Figure 11–3, the
RequestOperation (an abstract class) has two subclasses: ServiceRequest-
Operation and WsdlRequestOperation. That is because this invocation
subsystem handles WSDL requests and SOAP requests. SOA-J follows the
convention that HTTP GET requests posted to the endpoint suffixed with
“?wsdl” result in HTTP responses containing the target WSDL. Such
WSDL requests also get processed by the invocation subsystem. However,
in such cases, the FlowInterpreter creates an instance of WsdlRequest-
Operation to handle the request. In the SOAP case, an instance of Service-
RequestOperation is created.

Figure 11–3 SoajProvider uses RequestController to manage the invocation process.

SoajDispatcher

HttpServlet

SoajProvider

Provider<Source>

+handleServiceRequest()
+handleWsdlRequest()

-context : WebServiceContext
-request : Source

RequestController
«local»

WSRequest

«local»
WSResponse

«local»

+processHTTPSOAPRequest()
+processHTTPWSDLRequest()

InputDataProcessor

+selectOperation()

FlowInterpreter

+perform() : WSResponse

RequestOperation

«parameter»

«creates»

«creates»

«creates»

ServiceRequestOperation WsdlRequestOperation

496 WSDL-Centric Java Web Services with SOA-J

Currently, SOA-J handles only SOAP over HTTP. To extend it to handle
other transport protocols, such as JMS, would simply be a matter of extend-
ing the RequestController class to service JMS messages carrying SOAP
payload (i.e., SOAP over JMS). Of course, there would be no WebService-
Context parameter in this case—in other words, the target endpoint for the
JMS message would need to be determined by another mechanism, per-
haps by JMS meta-data or using WS-Addressing [WS-ADDRESSING 1.0
Core]. Along with extending the RequestController, the InputDataPro-
cess class would need to add a method—processJMSSOAPRequest(). So,
the RequestController and InputDataProcessor form the transport inter-
face for SOA-J. These classes are used to generate the WSRequest instance
that encapsulates the SOAP request. From that point on, the processing
done by the invocation subsystem is independent of the transport protocol.

Figure 11–4 shows the high-level structure of the WSRequest and WSRe-
sponse classes. Focusing on WSRequest first, notice that it has two subclasses:
WsdlRequest for encapsulating a request for the WSDL document, and Ser-
viceRequest for encapsulating a SOAP request posted to a Web service end-
point. In addition, the WSRequest contains a reference to the
SoajConfiguration—in other words, the SOA-J Configuration file discussed
in Section 11.2. The ServiceRequest contains the XML parameters—the
children of the wrapper element in the SOAP request body. These will be
deserialized to become the Java parameters used to invoke the method that
implements the target service. In addition, the ServiceRequest class con-
tains the operationName (the wrapper element’s name) and the endpoint
(from the HTTP request headers) in order to dispatch the request.

Similarly, the WSResponse class has two subclasses: WsdlResponse and
ServiceResponse. In this case, the ServiceResponse has, at most, one
XmlParameter—the serialized instance of the return type produced by the
target Java class/method.9 The WsdlResponse contains the SOA-J-generated
WSDL.

Figure 11–5 shows the class structure, related to ServiceRequestOper-
ation, that handles the processing of the ServiceRequest (WSRequest) to
invoke a Web service. Recall from Figure 11–3 that the FlowInterpreter
creates an instance of the ServiceRequestOperation class to process the
WSRequest. As illustrated in Figure 11–5, the perform() method imple-
ments invocation using locally created instances of SoajOperation and
ServiceInvoker. SoajOperation is created from the SOA-J configuration

9. SOA-J does not support IN/OUT parameters. So, either zero or one parameter is
returned. This is another simplifying assumption (like supporting only document/literal
wrapped style WSDL). In practice, I’ve not found IN/OUT parameters particularly useful.

11.3 Invocation Subsystem 497

file information accessed through the ServiceRequest (WSRequest). It is an
encapsulation of the Java class/method to be invoked.

As indicated, SoajOperation is a parameter to the ServiceInvoker,
and the ServiceInvoker actually invokes the SoajOperation. To do that, the
ServiceInvoker uses the SerializationMappingRules (illustrated as the
Type Mapping Rules comprising the Serialization Context in Figure 11–2)
and Schema (containing the type and element definitions for the XML
parameters) to construct an instance of the AdaptiveContext interface.
The AdaptiveContext instance handles the deserialization of the XML
parameters and the serialization of the return type instance.

At this point, it helps to look at some sequence diagrams to under-
stand how these classes work together to handle invocation. Figure 11–6
shows the sequence of events by which a SOAP/HTTP request is pro-
cessed. The HTTP request is processed by the SoajDispatcher, which
passes along the SOAP request and HTTP context to the SoajProvider.
SoajProvider instantiates a RequestController and invokes its hand-
leServiceRequest() method—which eventually returns a response (as a

Figure 11–4 The WSRequest/WSResponse structures.

WSRequest

WSResponse

SoajConfiguration

XmlParameter

1 *

-endpoint

WsdlRequest

-operationName
-endpoint

ServiceRequest

-wsdl : Source

WsdlResponse

-operationName

ServiceResponse
XmlParameter

1 0..1

498 WSDL-Centric Java Web Services with SOA-J

javax.xml.transform.Source) that the SoajProvider can put out on the
wire as a SOAP response.

Within the handleServieRequest() method, the InputDataProcessor
instance’s createWSRequest() method is invoked to instantiate a WSRe-
quest from the SOAP request and HTTP context. Then, that wsRequest
instance is passed to the FlowInterpreter’s createOperation() method to
instantiate the ServiceRequestOperation. The RequestController invokes
the ServiceRequestOperation’s perform() method to process the request

Figure 11–5 ServiceRequestOperation creates a ServiceInvoker that invokes the
SoajOperation.

+perform() : WSResponse

ServiceRequestOperation

+invokeSoajOperation()

ServiceInvoker«local» «local»

ServiceRequest

-operationName

SoajOperation
«local»

WSRequest

1 0..*

SoajConfiguration

SerializationMappingRules

+serialize()
+deserialize()

«interface»
AdaptiveContext

Schema

1

*

XmlParameter

«parameter»

«parameter»

«parameter»

«parameter»

11.3 Invocation Subsystem 499

Figure 11–6 SOA-J SOAP request processing.

SOAP /
HTTP

request

doPost

invoke

wsRequest

wsRequest

wsResponse

context

SOAP /
HTTP

request

context

request

context

: WSResponse

response

response

response

:
S

oa
jD

is
pa

tc
he

r

:
S

oa
jP

ro
vi

de
r

:
In

pu
tD

at
aP

ro
ce

ss
or

:
W

S
R

eq
ue

st

getResponseAsSource

createOperation

perform
:
S

er
vi

ce
R

eq
ue

st
O

pe
ra

tio
n

:
R

eq
ue

st
C

on
tr

ol
le

r

:
Fl

ow
In

te
rp

re
te

r

ha
nd

le
S

er
vi

ce
R

eq
ue

st

cr
ea

te
W

S
R

eq
ue

st

500 WSDL-Centric Java Web Services with SOA-J

and get back the WSResponse instance. Calling the getResponseAsSource()
method returns the XML that can be used to create the SOAP response.

Figure 11–7 shows a sequence diagram that drills down into the Ser-
viceRequestOperation’s perform() method (appearing at the far right of
Figure 11–6). As you can see, what happens here is that the WSRequest’s
reference to the SoajConfiguration is used to get some of the parameters
needed for invocation. These include the rules (SerializationMappin-
gRules), schema (Schema), parameters (XmlParameter instances as a
List<Source>), and op (SoajOperation).

The rules and schema are used to create an instance of ServiceIn-
voker. Then, the params and op are passed to the invokeOperation()
method of the ServiceInvoker. The invokeOperation() method returns
the response XML as a java.xml.transform.Source that gets encapsu-
lated in the WSResponse that is returned.

Continuing to drill down into the details, Figure 11–8 illustrates the
ServiceInvoker’s role in the invocation subsystem. When the Service-
Invoker is constructed, it uses the AdaptiveContextFactory to create a
new AdaptiveContext from the type mapping rules (serialization context)
and schema provided by the SOA-J configuration. Note that the SOA-J
implementation should cache this AdaptiveContext so that it is not
reconstructed for every SOAP request, but rather only when the configu-
ration or serialization context files have changed. The AdaptiveContext
then becomes the interface to the serialization subsystem—discussed in
more detail in the next section. The ServiceInvoker’s invokeOpera-
tion() method then uses that AdaptiveContext, passing it to the Dese-
rializerHelper along with the parameters and SoajOperation, to get
back the deserialized Java objects (paramObjects) that will be passed to
the target Java class/method. The SoajOperation is passed to the Deseri-
alizerHelper, along with these other parameters, because it contains the
parameter type mappings.

Once the XML parameters have been deserialized to Java parame-
ters, the target Java class/method can be invoked. This target is encapsu-
lated in an instance of the SoajMethod class that is created from the
SoajOperation by the SoajMethodFactory. SoajMethod is discussed in
more detail in Section 11.5. It is basically a wrapper for the java.lang-
.reflect.Method class that contains additional information necessary to
invoke the method in cases where it is an EJB. SoajMethod also takes
responsibility for instantiating (or getting a reference to) an instance of
the target class.

SoajMethod’s invoke() method returns the Java response to the Servi-
ceInvoker, where the next step executed by the invokeOperation()

11.3 Invocation Subsystem 501

method is to serialize this into an XML response using the Serializer-
Helper. SerializerHelper and DeserializerHelper are simply conve-
nience classes that provide serialization and deserialization services by
delegating to the supplied AdaptiveContext parameter.

Figure 11–7 SOAJ Web service invocation process.

perform

: ServiceRequestOperation

: ServiceInvoker

params

wsResponse

op : SoajOperation

: WSRequest

getMappingRules

rules: SerializationMappingRules

config : SoajConfiguration

getSoajConfig

getSchema

schema: List<Schema>

rules
schema

respXml : Source

getXmlParams

params : List<Source>

getOperationFromName

invokeOperation

op

getOperationName

name : String

name

502 WSDL-Centric Java Web Services with SOA-J

Figure 11–8 The SOA-J ServiceInvoker invokes the target Java class/method.

op

invoke

params contxt op

paramObjects

rules

schema

contxt: AdaptiveContext

creatSoajMethod

resp

resp

serialize

contxt op

respXml : Source

params :
List<Source>

schema:
List<Schema>

invokeOperation

op : SoajOperation

 rules:
Serialization-
MappingRules

getParamObjects

paramObjects: List<Object>

:
S

oa
jM

et
ho

d

:
ja

va
.la

ng
.r

ef
le

ct
.M

et
ho

d

paramObjects

targetInstance:
Object

invoke

resp : Object

respXml : Source

Ad
ap

tiv
eC

on
te

xt
Fa

ct
or

y

D
es

er
ia

liz
er

H
el

pe
r

S
oa

jM
et

ho
dF

ac
to

ry

S
er

ia
liz

er
H

el
pe

r

:
S

er
vi

ce
In

vo
ke

r

createNewContext

11.4 Serialization Subsystem 503

From this description of SOA-J, you should have a pretty good idea how
a SOAP server implements an invocation subsystem. The details will vary
from implementation to implementation, but the basic outline remains the
same. All SOAP servers have to receive the SOAP message, dispatch it to
the correct WSDL operation, deserialize the parameters, invoke the target
class/method, and serialize the response. How this is done, however, can
have a big impact on the performance of the system. More recent imple-
mentations of SOAP servers like Axis 2.x [AXIS2] and XFire [XFIRE] use
pull parser technology like StAX [JSR 173] to minimize the amount of
memory and processing used by avoiding reading the entire SOAP message
into a DOM instance. Earlier implementations, such as Axis 1.x [AXIS], suf-
fer from performance problems because they are not able to manage mem-
ory as carefully.

SOA-J is built on top of Java EE, so it does not have complete control
over the processing of the SOAP message. If the underlying Java EE 5
implementation hands the SoajProvider the SOAP message as a
javax.xml.transform.Source that has been implemented as a DOMSource,
the DOM instance has already been created. If the Source received is a
StreamSource and no DOM processing has taken place, SOA-J could take
steps to optimize performance. It is interesting to point out, however, that
concern about such issues might not matter all that much for processing
small SOAP requests. Performance is a complex topic, with many variables.
By studying SOA-J, you can get an appreciation for how SOAP servers are
implemented and understand how they implement different strategies to
attempt to improve performance.

The next section looks at the serialization subsystem. SOA-J uses a
unique serialization implementation that is designed to facilitate SOA Inte-
gration where you start from both existing Java objects and existing XML
schemas. This “Start from WSDL and Java” approach is described in Chap-
ter 4, Section 4.5.

11.4 Serialization Subsystem

When working with JAX-WS 2.0 and JAXB 2.0, I was impressed with
how easily Java classes could be annotated and deployed as Web services.
However, I was also very frustrated to discover how difficult it was to
deploy existing Java classes against an existing schema. With JAXB 2.0
and JAX-WS 2.0, you basically get WSDL based on the schema JAXB 2.0
generates from your classes and annotations. You can try to map your

504 WSDL-Centric Java Web Services with SOA-J

Java class to a target schema by manipulating the annotations. However,
for reasons described in detail in Chapter 4, annotations are not a good
way to implement such type mappings. To summarize, here are some of
the shortcomings:

1. To change a type mapping, you need to edit the source, recompile,
and redeploy.

2. Annotations are a very unintuitive way to create type mappings. You
have to fiddle with them, keep regenerating the resulting schema
(via JAXB), and try to see whether you can “come close” to the target
schema. This approach kills your productivity.

3. Many type mappings are impossible to generate with JAXB annota-
tions. See Chapter 4 for some examples.

4. Good design practice (i.e., separation of concerns) dictates that a
mapping layer should insulate the XML (WSDL) representation of
your Web services from the Java implementation.10 JAXB annota-
tions, although convenient, bury that mapping layer inside the Java
source code. This makes it difficult to understand and maintain.

For these reasons, I decided to implement a serialization subsystem, on
top of JAXB 2.0, that enables developers to maintain type mappings as rules
defined in XML. I named it Adaptive Serializers, because it enables you to
easily maintain and adapt your system to changes in Java classes and XML
schema. This section gives you an idea how Adaptive Serializers work by
walking through a specific example.

The example starts by looking at the code from some simple Java classes
that are going to be used to implement a Web service. These are the MyPur-
chaseOrder, Address, and Phone classes—snippets of which are shown in
Example 11–3, Example 11–4, and Example 11–5, respectively.

The PurchaseOrder class contains two attributes: a “bill to” address (of
type Address) and a List of items. The retrieveAddress operation dis-
cussed in Section 11.2 simply returns the Address attribute of the Pur-
chaseOrder instance.

10. See Chapter 9, Section 9.4, to see how this sort of mapping layer is implemented in the
SOAShopper application. In that system, there is no attempt to use annotations to map
the WSDL and XML schemas to the SOAShopper API. Instead, a layer of Java code is
used, the Service Implementation layer, to map from the classes generated from the
WSDL to the SOAShopper API. The SOA-J serialization system includes that sort of map-
ping layer in its framework.

11.4 Serialization Subsystem 505

Example 11–3 PurchaseOrder

25 public class PurchaseOrder {
26
27 private Address billTo = new Address();
28 private List items;
29 private String ponum;
30
31 public void setBillTo(Address billTo) {
32 this.billTo = billTo;
33 }
34
35 public void setItems(List items) {
36 for (Object item : items) {
37 addItem((Item) item);
38 }
39 }
40
41 public Address getBillTo() {
42 return billTo;
43 }
44
45 public List getItems() {
46 return items;
47 }
48
49 public void addItem(Item item) {
50 if (items == null) {
51 items = new ArrayList();
52 }
53 items.add(item);
54 }
55
56 public String getPonum() {
57 return ponum;
58 }
59
60 public void setPonum(String ponum) {
61 this.ponum = ponum;
62 }
63
64 }

book-code/chap11/soaj/provider-javaeetesting/provider-javaeetesting-
generatedwsdl-testartifacts/posystem/src/main/java/com/javector/
soaj/wsdlgentest/po/PurchaseOrder.java

506 WSDL-Centric Java Web Services with SOA-J

The Address and Phone classes, with snippets shown next, are the
same classes introduced in Chapter 4, Section 4.6, where I discussed
some of the difficulties related to mapping these classes to an XML
schema using JAXB 2.0.

Example 11–4 Address

21 public class Address implements java.io.Serializable {
22 private int streetNum;
23 private java.lang.String streetName;
24 private java.lang.String city;
25 private StateType state;
26 private int zip;
27 private Phone phoneNumber;
28

book-code/chap11/soaj/provider-javaeetesting/provider-javaeetesting-
generatedwsdl-testartifacts/posystem/src/main/java/com/javector/
soaj/wsdlgentest/po/Address.java

Example 11–5 Phone

21 public class Phone {
22 private int areaCode;
23 private String exchange;
24 private String number;
25

book-code/chap11/soaj/provider-javaeetesting/provider-javaeetesting-
generatedwsdl-testartifacts/posystem/src/main/java/com/javector/
soaj/wsdlgentest/po/Phone.java

To briefly summarize one of the problems, it relates to the structure of
the Phone class. In order to map it to the schema shown in Example 11–6,
the three Java properties (areaCode, exchange, and number) must get
mapped to the single phone element (inside of po:BillToType) of type
xs:string. Another problem relates to the Address class itself. Again, to
map it to the schema in Example 11–6 (po:BillToType), the Java proper-
ties streetNum and streetName must get mapped to the elements

11.4 Serialization Subsystem 507

addrLine1 and addrLine2. In both these cases, the Java properties must be
significantly transformed, split, and recombined to map them to/from the
target XML elements. I call these kinds of mappings multivariate type map-
pings. They arise commonly in practice—particularly when doing SOA inte-
gration—and cannot be handled with JAXB 2.0 annotations.

Example 11–6 PurchaseOrder Schema

 4 <xs:schema targetNamespace="http://javector.com/ser/adaptive/po"
 5 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 6 xmlns:po="http://javector.com/ser/adaptive/po"

7 elementFormDefault="qualified" attributeFormDefault="unqualified">
 8 <xs:element name="purchaseOrderList">
 9 <xs:complexType>
 10 <xs:sequence>
 11 <xs:element ref="po:purchaseOrder" maxOccurs="unbounded"/>
 12 </xs:sequence>
 13 </xs:complexType>
 14 </xs:element>
 15 <xs:element name="purchaseOrder">
 16 <xs:complexType>
 17 <xs:sequence>
 18 <xs:element ref="po:billTo"/>
 19 <xs:element ref="po:items"/>
 20 </xs:sequence>
 21 <xs:attribute name="ponum" type="xs:string" use="required"/>
 22 </xs:complexType>
 23 </xs:element>
 24 <xs:complexType name="BillToType">
 25 <xs:sequence>
 26 <xs:element name="company" type="xs:string"/>
 27 <xs:element name="street" type="xs:string"/>
 28 <xs:element name="city" type="xs:string"/>
 29 <xs:element name="state" type="xs:string"/>
 30 <xs:element name="zip" type="xs:string"/>
 31 <xs:element name="phone" type="xs:string"/>
 32 </xs:sequence>
 33 </xs:complexType>
 34 <xs:element name="billTo" type="po:BillToType"/>
 35 <xs:element name="items">
 36 <xs:complexType>
 37 <xs:sequence>
 38 <xs:element ref="po:item" maxOccurs="unbounded"/>

508 WSDL-Centric Java Web Services with SOA-J

 39 </xs:sequence>
 40 </xs:complexType>
 41 </xs:element>
 42 <xs:element name="item">
 43 <xs:complexType>
 44 <xs:sequence>
 45 <xs:element name="quantity" type="xs:positiveInteger"/>
 46 <xs:element name="price" type="xs:double"/>
 47 </xs:sequence>
 48 <xs:attribute name="productName" type="xs:string" use="required"/>
 49 </xs:complexType>
 50 </xs:element>
 51 </xs:schema>

book-code/chap11/soaj/provider-javaeetesting/provider-javaeetesting-
generatedwsdl-testartifacts/posystem/src/main/webapp/config/purchaseOrder.xsd

As described in Chapter 4, Section 4.6, one approach to dealing with
multivariate type mappings is to write helper code that translates from the
classes a JAXB schema compile creates from the po:BillToType to our
Address class. Similar helper code can be written to deal with the Phone
mapping. Although this approach works, it boils down to embedding the
Java to XML mapping logic inside of helper Java classes. These helper
classes are difficult to maintain and understand. It is definitely not a good
approach to managing type mappings and it will not scale.

A slightly better solution is offered in Chapter 5, Section 5.7, where I
show how to implement these multivariate type mappings using JAXB 2.0
XmlAdapterClass instances. This approach essentially embeds the helper
classes inside of the JAXB framework so that the JAXB runtime can use
annotations to recognize when the helper code should be invoked to help it
with a given serialization or deserialization. This approach is slightly better
because it at least provides some organization and a standard interface for
the helper Java classes. But it still has the major problem that the type map-
pings are embedded inside Java classes. Again, this approach creates major
change management headaches and violates basic separation-of-concerns
design principles.

These problems can be avoided by separating the type mappings from
the code by foregoing annotations and instead using an expressive type
mapping language that lets you easily define and maintain the logic for con-
verting between a Java class and an XML Schema component.

11.4 Serialization Subsystem 509

This is the approach taken by Adaptive Serializers. Type mappings are
written in XML as shown in Example 11–7. An individual type mapping
implementation is represented by the strategy element. One type map-
ping can have multiple strategies, and the Adaptive Serializer implementa-
tion can choose the most appropriate one based on the context. For now, I
will keep it simple and just talk in terms of one strategy per type mapping.

Example 11–7 shows the strategy for the type mapping between Pur-
chaseOrder and po:PurchaseOrder. The Java class and XML type for the type
mapping are represented as attributes of the strategy element. The actual
implementation of the strategy is defined by its children—the rule elements.

Example 11–7 Defining the Serialization Rule for PurchaseOrder

78 <strategy javaClass="com.javector.soaj.wsdlgentest.po.PurchaseOrder"
79 xmlType="po:purchaseOrder">
80 <rule javaName="ponum" xmlName="ponum" xmlType="xs:string"
81 xmlNodeType="ATTRIBUTE" javaClass="java.lang.String"/>
82 <rule javaName="billTo" xmlName="po:billTo" xmlType="po:billToType"
83 xmlNodeType="ELEMENT"
84 javaClass="com.javector.soaj.wsdlgentest.po.Address"/>
85 <rule javaName="items" xmlName="po:item"
86 xmlNodeType="ELEMENT" javaClass="com.javector.soaj.wsdlgentest.po.Item">
87 <wrap>
88 <javaWrap name="items" type="java.util.List"/>
89 <xmlWrap name="po:items"/>
90 </wrap>
91 </rule>
92 </strategy>

book-code/chap11/soaj/provider-javaeetesting/provider-javaeetesting-
generatedwsdl-testartifacts/posystem/src/main/resources/config/adaptivemap.xml

For example, the second rule defined in this strategy maps the billTo
property of the Java class PurchaseOrder to the po:BillTo element. The
xmlNodeType attribute (="ELEMENT") indicates that the xmlName refers to
an element as opposed to an attribute. This rule does not tell us how the
Java property (an instance of Address) should be converted to an
instance of the po:billTo global element. That is another type mapping,
and is defined by a separate strategy. In this manner, a type mapping strategy
is defined recursively.

510 WSDL-Centric Java Web Services with SOA-J

The third rule shown in Example 11–7 maps the Java property items (a
List) to the global element po:item. Since this is a rule for a collection, the
javaClass attribute is specified to indicate how the members of the collec-
tion should be treated. Here, they are being serialized/deserialized as
instances of Item. Inside this rule, you see the wrap element. This tells the
Adaptive Serializer that the po:item elements generated from the members
of the List should be wrapped inside a container element. In this case, the
wrapper has the name items.

Returning to the rule for the billTo Java property, Example 11–8
shows the strategy for the type mapping from Address to po:BillToType,
which the rule requires. Examining the first rule in this strategy, you can
begin to see how multivariate type mappings are handled. This rule applies
to the element po:street. The javaName is “.”—indicating that the rule
maps some transformation of the entire Address class to the element
po:street. This rule is one-way—it applies only to serialization (since it is a
transformation, it doesn’t naturally define a deserialization back to any one
Java property)—hence the attribute restrictTo="SERIALIZATION". Inside
the rule is a script element. This element holds some Groovy [GROOVY]
script that is applied to the Address instance to obtain the po:street value.
You can see that it is a simple concatenation of the street number and street
name. This is how the Adaptive Serializer framework enables type map-
pings that cannot be handled by binding frameworks like JAXB. It lets you
put scripting fragments in the type mapping rules like this where they can
be easily managed and updated as necessary.

But how do we do the reverse, and deserialize the po:street element?
The second and third rules down show how it can be done using XPath
expressions. The first of these rules deserializes the xs:string value of
po:street by parsing out the substring before the ‘ ‘ (space). That should
be the street number. The second of these rules deserializes the xs:string
value of po:street by parsing the substring after the ‘ ‘ (space). That should
be the street name.

Example 11–8 Defining the Serialization Rule for Address

26 <strategy javaClass="com.javector.soaj.wsdlgentest.po.Address"
27 xmlType="po:billToType" xmlName="po:billTo">
28 <rule javaName="." xmlName="po:street" xmlType="xs:string"
29 xmlNodeType="ELEMENT" restrictTo="SERIALIZATION">
30 <script><![CDATA[
31 return source.getStreetNum()+" "+source.getStreetName();
32]]></script>

11.4 Serialization Subsystem 511

33 </rule>
34 <rule javaName="streetNum" javaClass="int" xmlName="po:street"
35 xmlType="xs:string" xmlNodeType="ELEMENT" restrictTo="DESERIALIZATION">
36 <script><![CDATA[substring-before(.,' ')]]></script>
37 </rule>
38 <rule javaName="streetName" javaClass="java.lang.String" xmlName="po:street"
39 xmlType="xs:string" xmlNodeType="ELEMENT" restrictTo="DESERIALIZATION">
40 <script><![CDATA[substring-after(.,' ')]]></script>
41 </rule>
42 <rule javaName="city" xmlName="po:city" xmlType="xs:string"
43 xmlNodeType="ELEMENT"/>
44 <rule javaName="state" xmlName="po:state" xmlType="xs:string"
45 xmlNodeType="ELEMENT"/>
46 <rule javaName="zip" xmlName="po:zip" xmlType="xs:string"
47 xmlNodeType="ELEMENT"/>
48 <rule javaName="phoneNumber"
49 javaClass="com.javector.soaj.wsdlgentest.po.Phone" xmlName="po:phone"
50 xmlType="xs:string" xmlNodeType="ELEMENT" restrictTo="DESERIALIZATION"/>
51 <rule javaName="phoneNumber" xmlName="po:phone" xmlType="xs:string"
52 xmlNodeType="ELEMENT" restrictTo="SERIALIZATION">
53 <script><![CDATA[
54 String area = Integer.toString(source.getAreaCode());
55 return "("+area+")"+" "+source.getExchange()+"-"+source.getNumber();
56]]></script>
57 </rule>
58 </strategy>

book-code/chap11/soaj/provider-javaeetesting/provider-javaeetesting-
generatedwsdl-testartifacts/posystem/src/main/resources/config/adaptivemap.xml

So, you can see that the Adaptive Serializer type mapping language
enables you to use Groovy scripts and XPath to handle the kinds of type
mappings that JAXB 2.0 is unable to deal with without resorting to the com-
plexities of the XmlAdapter class. In addition to this benefit, however, the
real advantage is that the helper code is maintained in the type mapping
layer and does not have to be embedded in the deployed Java classes. So,
changing it is easier and can be accomplished without having to recompile
and redeploy. Also, by breaking the helper code down into small manage-
able chunks, it is easier to maintain and manage as an integral part of the
XML mapping layer.

The preceding example gives you an idea of how the Adaptive Serial-
izer type mapping language works. Figure 11–9 shows how the Adaptive

512 WSDL-Centric Java Web Services with SOA-J

Serializer framework plugs into SOA-J. As indicated in the preceding
sequence diagram (Figure 11–8), the invocation subsystem serializes and
deserializes via the AdaptiveContext interface with the help of the Deseri-
alizerHelper and SerializerHelper classes. In Figure 11–9, you can see
these helper classes and the AdaptiveContext interface. The AdaptiveCon-
text interface is implemented by an abstract class named BaseSoajContext
that holds references to the XML schemas and the AdaptiveMap. The Adap-
tiveMap contains the strategies (like those illustrated in Example 11–7 and
Example 11–8) that implement the type mappings. The BaseSoajContext is
the Java implementation of the Serialization Context described in Section
11.2 that is provided in the SOA-J configuration. BaseSoajContext cannot
perform any serialization or deserialization. It only contains the context and
implements the AdaptiveContext interface with abstract methods.

The AdaptiveJaxbContext class provides the serialization context and
infrastructure needed to implement the AdaptiveContext interface. This
class has Jaxb as part of its name because it uses JAXB 2.0 to implement the
serialization logic. I have also worked on implementations that use other
Java/XML binding technologies (e.g., Apache XMLBeans [XMLBeans]).
For this implementation of SOA-J, I used JAXB 2.0 because it is provided as
part of the Java EE 5 run-time implementation. AdaptiveJaxbContext pro-
vides a couple of important pieces of functionality. First, it reads the
instances of Schema (i.e., the XML Schema definitions used in the type
mappings), and compiles them using the JAXB schema compiler. It is these
JAXB-generated classes that the serialization subsystem uses to implement
the type mappings. AdaptiveJaxbContext creates a class loader that con-
tains these JAXB-generated classes. This is the class loader used by the seri-
alization subsystem. Second, the AdaptiveJaxbContext class provides
newSerializer() and newDeserialzer() methods for creating serializers
and deserializers.

The classes that implement serializers and deserializers follow a similar
pattern, so I will describe only the serializers here. The serializer classes
derive from BaseAdaptiveSerializer. An instance of BaseAdaptiveSeri-
alizer corresponds to a particular strategy element like the one shown
in Example 11–8 for serializing Address. The BaseAdaptiveSerializer
contains the logic for executing the rule elements that implement the
strategy.

Executing a rule typically involves serializing a Java property to an XML
element or attribute that is part of the target XML. This gets done recur-
sively, as the instance of BaseAdaptiveSerializer finds a strategy (from
the AdaptiveMap) that implements the rule’s type mapping, and creates a
new instance of BaseAdaptiveSerializer to execute the strategy. The

11.4 Serialization Subsystem 513

recursion stops when a strategy can be implemented without any rules (e.g.,
mapping a String to an xs:string). Usually, this happens when the Base-
AdaptiveSerializer is an instance of JaxbSimpleTypeSerializer—the
serializer class used to create instances of simple XML types (e.g.,
xs:string).

BaseAdaptiveSerializer also is extended by JaxbComplexTypeSeri-
alizer—the serializer class used to create instances of complex XML types.

Figure 11–9 Top-level serialization classes.

+deserialize(in xml : Source, in mapping : XmlMapping) : Object
+serialize(in java : Object, in mapping : XmlMapping) : Source

«interface»
AdaptiveContext

BaseSoajContext

AdaptiveMap

Schema

1 *

+getJava(in xml : Object, in context : BaseSoajContext) : Object

BaseAdaptiveDeserializer

#newSerializer(in cntxt : BaseSoajContext) : BaseAdaptiveSerializer
#newDeserializer(in cntxt : BaseSoajContext) : BaseAdaptiveDeserializer
#loadSchemas()

AdaptiveJaxbContext

+getXml(in java : Object, in context : BaseSoajContext) : Object

BaseAdaptiveSerializer

SerializerHelper

DeserializerHelper

«create»«create»

JaxbComplexTypeSerializer JaxbSimpleTypeSerializer

JaxbComplexTypeDeserializer JaxbSimpleTypeDeserializer

514 WSDL-Centric Java Web Services with SOA-J

When choosing a serializer to execute a strategy, the Adaptive Serializer
framework looks at the target XML component. If it represents a simple
type, JaxbSimpleTypeSerializer is used. Otherwise, JaxbComplexType-
Serializer is used.

To wrap up this discussion of the serialization subsystem, the most
important points to remember about the Adaptive Serializer Framework
(ASF) are as follows:

■ The ASF facilitates SOA Integration by allowing you to define type
mappings between existing Java classes and existing XML schema.

■ The ASF facilitates separation of concerns by keeping serialization
separate from the Java code. This contrasts with annotations, which
store the serialization instructions directly in the Java classes. With
ASF, type mappings are stored separately from the Java code and
XML schema using the ASF mapping language illustrated in Exam-
ple 11–7 and Example 11–8.

■ The ASF mapping language defines type mappings with strategy
elements. A strategy element can contain child rule elements that
tell the ASF how to implement the strategy. A rule implicitly defines
a type mapping that can be implemented with a strategy. In this
manner, the ASF mapping language defines type mappings recur-
sively.

■ The recursive structure of the type mapping definitions is mirrored
in the recursive algorithm used by the ASF to execute serialization
and deserialization.

■ The ASF implementation distributed with SOA-J is built using JAXB
so that it can run directly in a Java EE 5 container without additional
Java/XML binding libraries. However, it is also possible to imple-
ment the ASF using other Java/XML binding tools such as XML-
Beans [XMLBeans].

In the next section, I look at how the SOA-J deployment subsystem is
designed.

11.5 Deployment Subsystem

To some extent, this section picks up where Section 11.2, covering the
WSDL-centric SOA-J configuration, left off. It drills down into some of
the implementation details describing how the configuration is realized in

11.5 Deployment Subsystem 515

the Java code for SOA-J. In Section 11.2, I described the soajOperation
element as the core component of an SOA-J configuration. Likewise, the
corresponding Java class—SoajOperation—is the core Java class in the deploy-
ment subsystem.

Figure 11–10 shows the static class diagram for the structure of Soaj-
Operation. An SoajOperation contains a single JavaMethodType—a class
that encapsulates a target Java class/method. Its attributes include the name
of the Java class, and the method signature. The purpose of the Java-
MethodType class is to provide SOA-J with an instance of java.lang-
.reflect.Method that can be invoked. However, the mechanism for creat-
ing such an instance depends on the type of Java class encapsulated by Java-
MethodType.

As you can see in Figure 11–10, JavaMethodType is extended by
EJB21MethodType, EBJ30MethodType, and POJOMethodType. Each class pro-
vides the capability to create the appropriate java.lang .reflect.Method
based on the procedures used to obtain an instance of the corresponding
class. If it is an EJB, either EJB21MethodType or EJB30MethodType gets
used to request an instance from the container (it can be either remote or
local). If it is a POJO, the POJOMethodType class simply loads the encapsu-
lated class and uses Class.newInstance() to get a target Object for invo-
cation of the method.

In addition to providing a target Object and instance of
java.lang.reflect.Method that can be invoked, the other function of the
SoajOperation class is to provide SOA-J with the type mappings to serialize
and deserialize the parameters, returned Object, and exceptions.11 These
mappings are contained within the SoajOperation as instances of the
WSDL2JavaMappingType class. This class, so named because it is used to
capture the SOA-J type mappings that are used to construct the WSDL (as
described in Section 11.2), represents a mapping from a Class to either an
XML Schema element or a type.

As the basic deployment unit, SoajOperation instances are grouped
into SoajPort instances (representing wsdl:port), which are grouped into
SoajService instances (representing wsdl:service), which are grouped
into SoajWSDL instances (representing a WSDL document). This hierarchy is
illustrated in Figure 11–11.

As you probably recognize, this hierarchy parallels the SOA-J config-
uration hierarchy discussed in Section 11.2. And in fact, the top-level

11. For simplicity of description, I have not described the mapping of Exception instances,
but it is handled the same as the return type. When thrown, mapped exceptions get serial-
ized according to the type mapping rules and returned inside a SOAP Fault.

516 WSDL-Centric Java Web Services with SOA-J

configuration class, SoajConfiguration, contains multiple SoajWSDL
instances—one for each WSDL document that has been configured. But
the SoajConfiguration class also contains additional components. The
Schema instances are simply the userDefinedSchema elements from the
SOA-J configuration file (illustrated at the beginning of this chapter in
Example 11–1) that reference the schemas used in the WSDLs deployed
by the SOA-J configuration. Likewise, the Mapping class simply encapsu-
lates the ASF mapping strategies (illustrated in Example 11–7 and Exam-
ple 11–8) that implement the WSDL2JavaMappingType type mappings
defined at the SoajOperation level.

The ClasspathType, however, has not been discussed yet. This corre-
sponds to a JAR file that can be uploaded by SOA-J to load a particular
class that is used by an SoajOperation. In particular, the POJOMethodType

Figure 11–10 Class diagram for SoajOperation—the basic unit of deployment.

-className : String
-methodName : String
-paramClasses : List<String>

JavaMethodType

-operationName : String

SoajOperation

WSDL2JavaMappingType

java.lang.Class

XmlElement

0..1

returnMapping

*

exceptionMapping

The method to be
published as a Web

service

-jndiName : String

EJB30MethodType

-classpath : String

POJOMethodType

java.lang.reflect.Method«local»

-jndiName : String
-homeInterface : String
-isLocal : boolean

EJB21MethodType

*

parameterMapping

11.5 Deployment Subsystem 517

(illustrated in Figure 11–10) contains a property named classpath. This is
a reference to a URL that contains a JAR containing the class definition of
the POJO. Of course, if the class is contained in the WAR used to deploy
SOA-J, the reference to this JAR is not needed. But SOA-J provides the
capability to upload classes that are not deployed with the SOA-J WAR.
This is an important part of keeping the configuration dynamic. If you add
an soajOperation to the configuration file, you need to be able to tell
SOA-J where to find its class definition. Otherwise, you would have to
repackage the SOA-J WAR to contain the new JAR.

Figure 11–12 shows an object diagram of a deployment subsystem
instance for a hypothetical purchase ordering system. The SoajConfiguration

Figure 11–11 Class diagram for SoajConfiguration—the full deployment descriptor
defining WSDL and Context.

-wsdlName : String
-wsdlNamespace : URI

SoajWSDL

Schema

*

-serviceName : String

SoajService

1..*

-portName : String
-endpointAddress : URI

SoajPort

1..*

-operationName

SoajOperation

1..*

SoajConfiguration

1..*

soajWSDL

ClasspathType-classpath

*
-schema

*

Mapping-mappingXml

1

includedSchema

soajService

soajPort

soajOperation

518 WSDL-Centric Java Web Services with SOA-J

instance—POconfig—contains references to two ClasspathType instances:
purchasingCP and inventoryCP. These represent JARs containing the pur-
chasing system classes and the inventory system classes.

On the XML side, the POconfig instance references the purchaseSchema
and inventorySchema. These are enterprise standard schemas used to repre-
sent purchasing and inventory components with standard XML types and ele-
ments. For simplicity, this diagram shows only one WSDL (although the real
configuration for a purchasing system would probably have many)—the
POwsdl instance. Within this WSDL, only one wsdl:operation is shown
(again for simplicity)—the processPO operation. Notice that the POwsdl
instance references the purchasingSchema, because its types section
includes that schema (its types are used by the processPO operation).

The processPO operation references the processPO POJOMethodType.
Here, you can see also the reference from this POJOMethodType back to the

Figure 11–12 Object diagram illustrating the deployment of a purchase order system.

POconfig : SoajConfiguration

purchasingCP : ClasspathType

inventoryCP : ClasspathType

purchasingSchema : XML Schema

inventorySchema : XML Schema

POwsdl : SoajWSDL

POservice : SoajService

POport : SoajPort

processPO : SoajOperation

classpath = purchasingCP

processPO : POJOMethodType

 : WSDL2JavaMappingType

MyPO : java.lang.Class

purchOrd : XmlElement

parameterMapping

11.6 Conclusions 519

purchasingCP ClasspathType so that SOA-J knows where to find the
POJO’s class definition (assuming it is not deployed with the SOA-J WAR).
The processPO operation also contains a parameterMapping linking the
MyPO Java class (the parameter processed by the processPO POJOMethod-
Type) with the purchOrd element from the purchasingSchema. This is a
nice illustration of how the WSDL2JavaMappingType (type mapping) pro-
vides the bridge between the XML side of an SOA-J configuration and the
Java side.

11.6 Conclusions

This chapter provided an overview of how SOA-J implements the Web Ser-
vices Platform Architecture introduced in Chapter 1. I created SOA-J to
provide an illustration of how the JWS technologies can be leveraged to cre-
ate an Application Framework that is useful for doing SOA Integration. In
designing SOA-J, I kept in mind the requirements for building SOA-based
applications outlined in Thomas Erl’s book, titled Service Oriented Archi-
tecture [Erl].

In Chapter 3, Section 3.2, of his book Erl identifies a number of charac-
teristics that are common to a contemporary SOA. SOA-J specifically
addresses a number of those characteristics:

1. Service orientation through the use of Web Services
2. Autonomy
3. Open standards
4. Interoperability and federation
5. Reusability
6. Loose coupling and organizational agility

In particular, a production-quality system, based on the principles illus-
trated by SOA-J, would enable you to use your existing Java applications
within what [Erl] defines as a contemporary SOA12 much faster, better, and
less expensively than with JWS alone. In this manner, SOA-J is a framework,
leveraging the power of JWS, which enables you to quickly and easily incor-
porate Java applications in a contemporary SOA. Table 11–1 examines how
SOA-J enables each of the six SOA characteristics and how it enhances
some of the JWS features.

12. Page 40 [Erl].

520 WSDL-Centric Java Web Services with SOA-J

Table 11–1 How SOA-J Implements Erl’s Contemporary SOA

Contemporary SOA
Characteristic

SOA-J Capability How It Enhances JWS

Service orientation
through the use of
Web Services

Publishes existing Java applica-
tions as Web services via
WSDL-centric development.
There is no need to edit source
code or descriptors, recompile,
repackage, or redeploy.

Eliminates some of the work
required to deploy existing Java
classes in the JWS framework;
for example, annotation, recom-
pilation, repackaging, and rede-
ployment.aa

Autonomy Separates the Java code (busi-
ness logic) from the Web service
interface (WSDL).

Eliminates the need for a layer
of “mapping code” between the
Java API that is bound to the
WSDL and the Java that imple-
ments the business logic.

Open standards Enables you to create and
deploy Web services by working
directly with WSDL. A wide
variety of WSDL and XML to
Java type mappings can be sup-
ported.

Introduces flexibility into the
WSDL to Java mapping process.
Allows you to go beyond the
type mappings supported by
JAXB.

Interoperability and
federation

Promotes interoperability and
federation by enabling Java
interfaces to be mapped to exist-
ing WSDL interfaces defined by
other, preexisting, federated
applications.

Enables programmers to avoid
the custom coding currently
required to map Java interfaces
to other existing WSDL inter-
faces (see Chapter 4).

Reusability Enables Java code to be reused in
multiple SOA components with-
out changing code. A single Java
class can support multiple WSDL
component representations.

Currently, when reuse requires
changes to the WSDL represen-
tation, the Java code’s annota-
tions or deployment descriptors
must be changed.

Loose coupling and
organizational agility

Loosely couples the SOA com-
ponent interface to the underly-
ing Java code. Change is easily
accommodated by modifica-
tions to the type mapping infra-
structure.

Can help reduce the change
management maintenance bur-
den by decoupling the WSDL
representation from the Java
annotations.

a. It is possible to use JWS without annotations (via deployment descriptors, as described in Chapter 8),
but this approach is not the focus of the “ease-of-use” features in Java EE 5. Furthermore, even without
annotations, you will still need to repackage and redeploy to publish existing classes as Web services.

11.6 Conclusions 521

As you can see by reading through Table 11–1, the areas where the
WSDL-centric approach of SOA-J can enhance JWS are primarily related
to the tight coupling of Java source code to the WSDL/XML representation
of a Web service. SOA-J helps by providing a layer of abstraction, the type
mapping layer, between the Java source code and the WSDL representation
of a Web service. This type mapping layer enhances both flexibility (allow-
ing a wider range of XML representations of Java types) and change man-
agement. Changes to the WSDL representation can be mapped to the
underlying Java code simply by editing the type mapping layer. Likewise,
the WSDL representation can be insulated from changes to the Java code
by tweaking the type mapping layer.

I’m hopeful that by providing this illustration of my prototype imple-
mentation of the SOA-J framework, I will help others working on building
SOA frameworks come up the learning curve. Toward this end, this expla-
nation of SOA-J is intended to remove some of the mystery related to how
SOAP servers are implemented. By removing some of this mystery, and
pointing out some of the useful components needed in an Application
Framework for SOA Integration, this discussion aims to aid those develop-
ers working on the next generation of SOA frameworks for Java.

523

A P P E N D I X A

Java, XML, and Web
Services Standards Used in
This Book

The XML and Java standards used by developers to implement SOA appli-
cations are a moving target. For this book, I have chosen to cover the stan-
dards that are either closely related to Java EE 5 and Java SE 6, or are most
commonly used by developers today. For this reason, for example, the book
discusses WSDL 1.1 and not WSDL 2.0. WSDL 1.1 is supported by Java
EE 5, whereas WSDL 2.0 is not. This appendix provides some explanation
of why certain standards are discussed and others are not.

Web Services Description Language (WSDL) 1.1

A core component of JAX-WS 2.0 [JSR 224] is the mapping between WSDL
1.1 and Java. There is no mapping defined for WSDL 2.0. Furthermore, on
page 2 of [JSR 224], it states that “The expert group for the JSR decided against
[support for WSDL 2.0] for this release. We will look at adding support in a
future revision of the JAX-WS specification.” Also, at the time of this writing,
WSDL 2.0 has not progressed to a “Recommendation” of the W3C. It is still a
“Candidate Recommendation.” Perhaps by the time of publication, it will have
become a “Recommendation.” But even so, it is my feeling that WSDL 2.0 is
not widely used for SOA development. As a result, I decided not to focus on
WSDL 2.0 in this book, but instead to concentrate on WSDL 1.1.

The following versions of WSDL have been circulated. Interestingly, as
you can see, none of them—as of yet—has made it to the level of a full W3C
Recommendation.

■ WSDL 1.1 [WSDL 1.1] was published as a W3C Note on March 15,
2001. The publication of a Note does not imply any endorsement by
the W3C.

524 Java, XML, and Web Services Standards Used in This Book

■ WSDL 1.2 was published in Working Draft form by the W3C during
2001–2003. It never became a Recommendation.

■ WSDL 2.0 [WSDL 2.0] is currently a Candidate Recommendation.

SOAP Version 1.1

In this book, SOAP means SOAP Version 1.1 [SOAP 1.1], unless a specific
reference is made to SOAP Version 1.2 [SOAP 1.2]. As they relate to the
topics discussed in this book, the differences between SOAP 1.1 and SOAP
1.2 have little impact. The reasons for focusing on SOAP 1.1 are:

■ At the time this is being written, SOAP 1.1 is still much more widely
implemented than SOAP 1.2.

■ Web service endpoints implemented using JAX-WS use SOAP 1.1/
HTTP as the default binding.

XSL Transformations (XSLT) Version 1.0

XSLT 1.0 became a W3C Recommendation in November 1999. So, it is a
little old by industry standards. But it is still doing the job and is more
than sufficient for the data transformation tasks encountered in many
SOA integration applications. In any event, its successor, XSLT 2.0, has
just reached the W3C Recommendation stage (as of Januray 23, 2007). As
of this writing, XSLT 2.0 has not yet been widely adopted. So, in this book,
XSLT 1.0 is used.

XML Schema Version 1.0

XML Schema 1.0 was approved as a W3C Recommendation on May 2, 2001,
and a second edition incorporating many errata was published on October
28, 2004. XML Schema 1.1 is in W3C Working Draft status at the time of
this writing.

JAX-WS 2.0 and JAXB 2.0

At the time of this writing, JAX-WS 2.0 has already been superseded by JAX-
WS 2.1, for which a maintenance draft was published in November 2006. JAX-
WS adds support for WS-Addressing. Likewise, JAXB 2.0 has been super-
seded by JAXB 2.1. JAXB 2.1 includes a variety of ease-of-use features, but no
major changes to the specification. Since the Java EE 5 and Java SE 6 specifi-
cations include support for JAX-WS 2.0 and JAXB 2.0, not the 2.1 versions of
these specifications, this book covers only JAX-WS 2.0 and JAXB 2.0.

525

A P P E N D I X B

Software Configuration
Guide

In addition to reading this guide, please check http://soabook.com for
the latest information about configuring and running the code examples in
this book. Because the software used in these examples is relatively new,
the configuration guidelines are subject to frequent change. For that rea-
son, it’s very important that, in addition to this appendix, you read the
instructions at http://soabook.com before configuring your environment
to run the examples.

This appendix provides an overview of how to set up your software envi-
ronment to run the sample code provided with this book. If you are going to
follow along with the example code and run it (which is highly recom-
mended), you need to have installed the following:

■ J2SE 5 (Java 2 Platform, Standard Edition 5) or later
■ Java EE 5 (Java Platform, Enterprise Edition 5) or later
■ Apache Ant 1.7.x
■ Apache Maven 2.0.x
■ Book Example Code

In addition, one section of the book (Chapter 7, Section 7.7) requires
version 6 of Java SE. Installation of this is optional—required only if you
want to run the java.xml.ws.Endpoint example from that section:

■ Java SE 6 (Java Standard Edition 6)—OPTIONAL

Instructions for installing and configuring this software for your Win-
dows or Linux environment are provided here.

526 Software Configuration Guide

B.1 Install Java EE 5 SDK

You need both J2SE 5 (Java 2 Platform, Standard Edition 5) and Java EE 5
(Java Platform, Enterprise Edition 5) to run the code examples in this book.
I recommend you get them both from Sun by installing the Java EE 5 SDK,
which you can download at http://java.sun.com/javaee.

Java EE 5 SDK contains the Sun Java Systems Application Server Platform
Edition 9.x—an implementation of the Java EE 5 standards built around the
GlassFish1 open source application framework. Sun refers to its application
server as SJSAS PE 9.x, but throughout this book, I just call it GlassFish.

The examples in this book have been tested on version 9.1 which, at the
time of this writing is a Beta product, scheduled for final release in August
2007. As I was writing this book, GlassFish was the only available implementa-
tion of the Java EE 5 standard, so it’s the only application server the code exam-
ples have been tested with. However, all the code examples should work with
other application servers that implement the Java EE 5 standards. There is no
GlassFish specific code in my examples. However, the scripts for deploying and
undeploying Web services make use of the GlassFish utilities (e.g., asadmin).
So, if you are using something other than GlassFish, you will need to edit my
Maven and Ant scripts to change the way the deployment works.

1. Download and install the Java EE 5 SDK. The following application
server defaults are used during installation. If you change these,
remember the values because you will need them later when config-
uring Ant and Maven to build and run the book example code.

Admin User Name: admin
Admin Password: adminadmin
Admin Port: 4848
HTTP Port: 8080
HTTPS Port: 8181

The directory where you installed the application server will be rep-
resented in the remaining instructions as <AppServer>. (For Win-
dows, the default value of <AppServer> is C:/Sun/AppServer.2 For
Linux, it is /home/username/SUNWappserver).

1. You can download the source code and learn more about the GlassFish server at https://glass-
fish.dev.java.net/. The GlassFish community is very friendly and the mailing lists are very helpful
for finding answers to all sorts of Java EE 5-related questions. Plus, whenever you really want to
dig in and see how things work, you can browse through the GlassFish source code.
2. The path separator symbol I use is always “/” (forward slash)—even when referring to
Windows environments where the backslash “\” character is actually used. This is consistent
with Apache Ant and Maven usage.

B.3 Install Apache Maven 2.0.x 527

2. Add the <AppServer>/bin directory to the PATH environment
variable.

3. Set the JAVA_HOME environment variable to the path where you
installed J2SE 5 (or J2SE 6). For example, on my desktop, I have
JAVA_HOME set to C:\Program Files\Java\jdk1.5.0_10.

4. Add the $JAVA_HOME/bin3 directory to the PATH environment vari-
able.

B.2 Install Apache Ant 1.7.x

To run some of the code examples, you need to use Ant 1.7.x. I use Ant
1.7.0 in my environment. For instructions on downloading and installing
Ant 1.7.x, see http://ant.apache.org/.

1. Download and install Ant 1.7.x. The directory where you installed
Ant 1.7.x will be represented in the remaining instructions as
<Ant1.7.x>.

2. Add the <Ant1.7.x>/bin directory to the PATH environment variable.

B.3 Install Apache Maven 2.0.x

To build and run the code examples, you need to use Maven 2.0.x—not
Maven 1.x. I use Maven 2.0.4 in my environment. For instructions on
downloading and installing Maven 2.0.x, see http://maven.apache.org/
download.html.

1. Download and install Maven 2.0.x. The directory where you installed
Maven 2.0.x will be represented in the remaining instructions as
<Maven2.0.x>.

2. Add the <Maven2.0.x>/bin directory to the PATH environment
variable.

3. For Windows, the value of this environment variable is %JAVA_HOME%, and in Linux it is
$JAVA_HOME. Throughout these instructions, I use the $ notation from Linux. If you are
installing on Windows, you just need to remember to convert to the % notation.

528 Software Configuration Guide

B.4 Install the Book Example Code

The examples are provided in a ZIP file that you can unzip wherever you
like. Download and unzip the examples from http://soabook.com. The
directory where you extract the examples is referred to throughout this
book as <book-code>.

B.5 Configure Maven

The book code you downloaded in Section B.4 contains configuration files
you need to modify in order to build the examples in your environment.4

The following steps walk you through the configuration process:

1. Start by renaming the file <book-code>/pom.xml.sample to <book-
code>/pom.xml. This is the base Maven project file that configures
the Maven build environment. It contains a <profiles> section that
defines a set of properties needed to run the examples in your envi-
ronment. Using a text editor, open the file <book-code>/pom.xml.
Starting at line 12 of pom.xml, you will see the following text:

<profile>
 <id>mark.hansen.desktop</id>
 <activation>
 <file>
 <exists>c:/mark.homepc</exists>
 </file>
 </activation>
 <properties>
 <glassfish.home>c:/bin/glassfish-v2-b28</glassfish.home>
 <glassfish.host>localhost</glassfish.host>
 <glassfish.domain>domain1</glassfish.domain>
 <glassfish.admin.port>4848</glassfish.admin.port>
 <glassfish.deploy.port>8080</glassfish.deploy.port>
 <glassfish.admin.user>admin</glassfish.admin.user>
 <glassfish.admin.password.file>c:/soabook/code/book-code/

glassfish.password</glassfish.admin.password.file>

4. To learn more about Maven build profiles, see http://maven.apache.org/guides/introduc-
tion/introduction-to-profiles.html.

B.5 Configure Maven 529

 <jdk6.home>c:/Program Files/Java/jdk1.6.0</jdk6.home>
 </properties>
</profile>

The items highlighted in bold are the ones you may need to modify.
First, change the <id> tag value to something other than
mark.hansen. This is the ID of your profile.5 Next, change the
<exists> tag value to the pathname of a file that exists on your
development environment. In my case, I have created an empty file
named c:/mark.homepc on my desktop that Maven uses to deter-
mine that it is running on my desktop. When Maven runs in your
environment, it will look for the file pathname you specify inside the
<exists> tag. If it finds the specified file, Maven will proceed to set
the properties as defined in the <properties> section of the profile.
You need to edit this properties section of your profile—starting with
the <properties> tag—to conform to your environment. Make sure to
use FORWARD SLASHES “/”—even in Windows (i.e., C:/Sun/App-
Server—not C:\Sun\AppServer). In Linux, do not use the “~” abbrevi-
ation for /home/username, as it can cause problems inside Maven
scripts. Table B–1 describes the meaning of the various properties.

5. A Maven project can have more than one profile so that the build can be portable to run
on (for example) your desktop and your laptop. Each profile has its own ID.

Table B–1 Maven Configuration Properties

glassfish.appsrvr The path to the GlassFish application server home. This should
be the same as <AppServer> described in Section B.1, step 1.

glassfish.host The hostname of the machine running the application server;
e.g., when running on a standalone machine, this can be
localhost.

glassfish.domain The name of the GlassFish domain you want to use to deploy
and run the code examples. The default domain created when
GlassFish is installed is domain1.

glassfish
.admin.port

The port used for GlassFish administration. The default port
used when GlassFish is installed is 4848.

glassfish
.deploy.port

The port used by GlassFish to listen for application requests.
The default port used when GlassFish is installed is 8080.

Continues

530 Software Configuration Guide

2. Rename the file <book-code>/glassfish.password.sample to <book-
code>/glassfish.password. Open the file <book-code>/glass-
fish.password and check that the value for AS_ADMIN_PASSWORD
agrees with the password you provided during installation of GlassFish.
The default is “adminadmin.”

3. Open a console window (DOS or XTerm) and change to the <book-
code> directory. Enter the following command to install the <book-
code>/pom.xml to Maven’s repository:

mvn install

This is important, because in order to build and run the code sam-
ples, the top-level pom.xml must be loaded in the repository.

B.6 Configure Ant

In addition to requiring configuration for Maven, the book code you down-
loaded in Section B.4 contains configuration files you need to modify for
Ant to work properly in your environment. The following steps describe
how to configure for Ant:

1. Copy the file <book-code>/common-build.xml.sample to <book-
code>/common-build.xml.

2. Using a text editor, open the file <book-code>/common-build.xml.
At the top of the file, right after the <project ...> tag, is a section that
contains a group of property definitions that looks like this:

<property environment="env"/>
<property name="glassfish.appsvr"
 value="${env.GLASSFISH_HOME}"/>

glassfish
.admin.user

The GlassFish administrator username. By default, this is
admin.

glassfish.
admin.password.file

This references a password file you create in the next step. It
should be set to <book-code>/glassfish.password.

jdk6.home (Optional) This is the path to the directory where the Java SE 6
SDK is installed. See Section B.11.

Table B–1 Maven Configuration Properties (Continued)

B.6 Configure Ant 531

<property name="glassfish.host" value="localhost"/>
<property name="glassfish.domain" value="domain1"/>
<property name="glassfish.admin.port" value="4848"/>
<property name="glassfish.deploy.port" value="8080"/>
<property name="glassfish.admin.user" value="admin"/>
<property name="glassfish.admin.password.file" value=
"c:/soabook/code/book-code/glassfish.password"/>

<property name="jdk6.home" value=
"c:/Program Files/Java/jdk1.6.0"/>

Just as you did in Section B.5 for Maven, you need to modify many of
these properties to conform to your environment. In fact, many of
these properties are the same as those used in the Maven environ-
ment. Those property values highlighted in bold may need to be
changed. As in Section B.5, Table B–2 describes how the property
values should be set.

Table B–2 Ant Configuration Properties

glassfish.appsrvr The path to the GlassFish application server home. This should
be the same as <AppServer> described in Section B.1, step 1.

glassfish.host The hostname of the machine running the application server;
e.g., when running on a stand-alone machine, this can be
localhost.

glassfish.domain The name of the GlassFish domain you want to use to deploy
and run the code examples. The default domain created when
GlassFish is installed is domain1.

glassfish
.admin.port

The port used for GlassFish administration. The default port
used when GlassFish is installed is 4848.

glassfish
.deploy.port

The port used by GlassFish to listen for application requests.
The default port used when GlassFish is installed is 8080.

glassfish
.admin.user

The GlassFish administrator username. By default, this is
admin.

glassfish.
admin.password.file

This references a password file that you create in the next step.
It should be set to <book-code>/glassfish.password.

jdk6.home (Optional) This is the path to the directory where the Java SE 6
SDK is installed. See Section B.11.

532 Software Configuration Guide

B.7 Starting and Stopping the GlassFish Server

To START the GlassFish application server, enter the following at a com-
mand-line prompt:

asadmin start-domain

To STOP the GlassFish application server, enter the following at a com-
mand-line prompt:

asadmin stop-domain

For the asamin command to work, you must have <AppServer>/bin on
your $PATH as described in Section B.1.

B.8 Test the Installation by Running an Example

Following is an excerpt from the instructions to run an example found in
Chapter 3. Follow these instructions, and if the environment is set up prop-
erly, it should run.

Running the examples requires opening a command prompt (Windows)
or XTerm (Linux). The term “Go to” means to change directories to the one
specified.

1. Start GlassFish (if it is not already running).
2. Go to <book-code>/chap03/rest-get/endpoint-servlet.
3. To build and deploy the Web service, enter:

mvn install

... and when that command finishes, then enter:

ant deploy

4. Go to <book-code>/chap03/rest-get/client-http.
5. To run the client, enter:

mvn install

6. To undeploy the Web service, go back to <book-code>/chap03/
rest-get/endpoint-servlet and enter:

ant undeploy

B.8 Test the Installation by Running an Example 533

After running the client (step 5), you should see some output to the
console that looks like this:

<?xml version="1.0" encoding="UTF-8"?><Orders
xmlns="http://www.example.com/oms"

 xsi:schemaLocation="http://www.example.com/oms http://soabook.com/
example/oms

/orders.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <Order>
 <OrderKey>ENT1234567</OrderKey>
 <OrderHeader>
 <SALES_ORG>NE</SALES_ORG>
 <PURCH_DATE>2001-12-09</PURCH_DATE>
 <CUST_NO>ENT0072123</CUST_NO>
 <PYMT_METH>PO</PYMT_METH>
 <PURCH_ORD_NO>PO-72123-0007</PURCH_ORD_NO>
 <WAR_DEL_DATE>2001-12-16</WAR_DEL_DATE>
 </OrderHeader>
 <OrderItems>
 <item>
 <ITM_NUMBER>012345</ITM_NUMBER>
 <STORAGE_LOC>NE02</STORAGE_LOC>
 <TARGET_QTY>50</TARGET_QTY>
 <TARGET_UOM>CNT</TARGET_UOM>
 <PRICE_PER_UOM>7.95</PRICE_PER_UOM>
 <SHORT_TEXT>7 mm Teflon Gasket</SHORT_TEXT>
 </item>
 <item>
 <ITM_NUMBER>543210</ITM_NUMBER>
 <TARGET_QTY>5</TARGET_QTY>
 <TARGET_UOM>KG</TARGET_UOM>
 <PRICE_PER_UOM>12.58</PRICE_PER_UOM>
 <SHORT_TEXT>Lithium grease with PTFE/Teflon</SHORT_TEXT>
 </item>
 </OrderItems>
 <OrderText>This order is a rush.</OrderText>
 </Order>
 <Order>
 <OrderKey>ENT1234568</OrderKey>
 <OrderHeader>
 <SALES_ORG>NE</SALES_ORG>
 <PURCH_DATE>2001-12-09</PURCH_DATE>

534 Software Configuration Guide

 <CUST_NO>ENT0098211</CUST_NO>
 <PYMT_METH>PO</PYMT_METH>
 <PURCH_ORD_NO>PO-98211-00147</PURCH_ORD_NO>
 <WAR_DEL_DATE>2001-12-19</WAR_DEL_DATE>
 </OrderHeader>
 <OrderItems>
 <item>
 <ITM_NUMBER>087321</ITM_NUMBER>
 <STORAGE_LOC>NE05</STORAGE_LOC>
 <TARGET_QTY>2</TARGET_QTY>
 <TARGET_UOM>CNT</TARGET_UOM>
 <PRICE_PER_UOM>598.49</PRICE_PER_UOM>
 <SHORT_TEXT>Acme Air Handler</SHORT_TEXT>
 </item>
 </OrderItems>
 </Order>
</Orders>BUILD SUCCESSFUL

B.9 Build and Deploy the SOAShopper Case Study
(Chapters 9 and 10)

SOAShopper is online shopping search tool discussed in Chapters 9 and 10.
It provides an Ajax front-end that runs in a browser. Because Ajax is based
on JavaScript, and all browsers do not implement JavaScript the same way,
the SOAShopper front-end renders differently on different browsers. On
some browsers, it may not work at all. I have tested it with Firefox 2.0.0.1
and Microsoft IE 6.0.2900.x. For both of these browsers it works fine.

The code for SOAShopper can be found at <book-code>/chap09/
soashopper in the book example code download. (See Section B.4 for
instructions for downloading and installing the book example code.)

Before attempting to build and run SOAShopper, please make sure you
have completed the configuration steps outlined in Section B.1 through
Section B.8. Once you have completed the configuration, follow these steps
to build SOAShopper and open the Ajax front-end:

1. Open a console window and go to the directory <book-code>/
chap09/soashopper.

2. Enter mvn clean.
3. Enter mvn install.
4. Enter ant deploy.

B.11 Install Java SE 6 (Optional) 535

5. Open your browser at the following URL: http://${glass-
fish.host}:${glassfish.deploy.port}/soashopper/ajax/
search.html. For example, using the default values, the URL would
be http://localhost:8080/soashopper/ajax/search.html.

6. To undeploy the application, return to the console window and enter
ant undeploy.

B.10 Build and Deploy the SOA-J Application Framework
(Chapter 11)

Please check http://soabook.com for instructions on building and running
SOA-J and the code examples from Chapter 11. The source code can be
found at <book-code>/chap11/soaj.

B.11 Install Java SE 6 (Optional)

You need to install Java SE 6 only if you want to run the javax.xml.ws.End-
point example from Chapter 7, Section 7.7. But I recommend you do so,
because the Endpoint API is very cool and you will enjoy seeing how it works.
You can get it from http://java.sun.com/javase/downloads.

1. Download and install the Java SE Development Kit (JDK) 6. When
you are doing the installation, and following along with the wizard, I
recommend you do not install the JRE (unless you want to run Java
SE 6 as your default JRE)—particularly if you are using Windows.
I’ve seen Windows get confused when JREs are installed for both
Java SE 6 and Java SE 5.

2. Review the instructions for Sections B.5 and B.6 (configuring Maven
and Ant) to make sure you have set the property named jdk6.home
to be the location of the JDK 6 installation.

537

A P P E N D I X C

Namespace Prefixes

To simplify the XML used in examples and figures, namespace prefix defini-
tions are not always provided. Where namespace prefixes are not explicitly
defined, they conform to standard usage in the Java EE, Java SE, and W3C
specifications, or the standard usage in this book, as summarized here.

env1 http://schemas.xmlsoap.org/soap/envelope SOAP 1.1

env2 http://www.w3.org/2003/05/soap-envelope SOAP 1.2

jaxb http://java.sun.com/xml/ns/jaxb JAXB 2.0

jaxws http://java.sun.com/xml/ns/jaxws JAX-WS 2.0

soap http://schemas.xmlsoap.org/wsdl/soap WSDL 1.1 SOAP
Binding

wsdl http://schemas.xmlsoap.org/wsdl/ WSDL 1.1

xsl http://www.w3.org/1999/XSL/Transform XSLT 1.0

wsrm http://docs.oasis-open.org/wsrm/200510 WS-RX

wsse http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-1.0.xsd

WS-Security

xmime http://www.w3.org/2005/05/xmlmime Binary Data in XML

xop http://www.w3.org/2004/08/xop/include XOP 1.0

xs http://www.w3.org/2001/XMLSchema XML Schema 1.0

539

Glossary

The glossary provides definitions for many of the technical terms specific to
Java Web Services. Definitions often reference other definitions, and terms
appearing in italics are defined within the glossary.

Ajax A Web browser-based user interface development technique that is
short for Asynchronous JavaScript and XML. Ajax is primarily used to
create Web browser user interfaces that do not require full-page
refreshes each time new data is retrieved from the server. Ajax pro-
grammers use the JavaScript type XMLHttpRequest to exchange data
with the server behind the scenes (i.e., without having to reload the
entire HTML page being displayed by the browser). When new data
(usually in XML format) is received by an XMLHttpRequest instance,
JavaScript is used to update the DOM structure of the HTML page
(e.g., inserting some rows in a table) without rebuilding the entire
HTML page in memory.

annotations Annotations are program elements added to the Java pro-
gramming language starting with J5SE to enable a declarative style of
programming. Within a Java source file, annotations are indicated by
the “@” symbol. For example, the @WebService annotation is used to
declare that a class should be deployed as a Web service.

anonymous type An XML Schema type that is not defined explicitly, but
rather implicitly as part of an element definition. Such types are called
anonymous because they do not have qualified names.

AOP See aspect oriented programming.
aspect oriented programming The programming paradigm of aspect-

oriented programming (AOP) provides for the encapsulation and modu-
larization of cross-cutting concerns.1 The basic idea is that concerns such
as security, which cut across an application, should not have to be “re-
implemented” in each place they are needed. Instead, a single security

1. See www2.parc.com/csl/groups/sda/publications/papers/Kiczales-ECOOP97/for-web.pdf.

540 Glossary

implementation should be referenced as needed. Java EE 5 implements
AOP concepts using annotations.

binding See Java/XML binding.
binding declaration An instruction, written in the binding language,

that maps a particular XML Schema or WSDL component to its Java
representation. JAXB 2.0 binding declarations are specified as instances
of the <jaxb:bindings> element. JAX-WS 2.0 binding declarations use
the <jaxws:bindings> element.

binding language An XML-based language that uses the XML Schema
elements to embed JAXB and/or JAX-WS binding customization
instructions into WSDL and/or XML Schema documents. The binding
language is used to customize the default WSDL/XML to Java map-
pings defined by JAX-WS and JAXB. The binding language is used to
express binding declarations.

binding runtime framework The run-time part of a JAXB 2.0 imple-
mentation. It provides the marshal and unmarshal operations.

data transformation The process of changing the format of an XML
document from one schema representation to another. Data transfor-
mation is used when getting data from a source system (e.g., an Order
Management System) and using it to update a target system (e.g., a
Customer History database). In this example, an order record goes
through data transformation to create a customer history record that is
used to update the database.

datatype mapping A datatype mapping is a transformation from one
representation of a datatype to another. For example, an XSTL transfor-
mation from one XML Schema representation of a product to another
can be referred to as a datatype mapping. A datatype mapping is similar
to a type mapping, except that the term datatype mapping is usually
used when both types are represented in the same language (e.g., both
Java or both XML). The term type mapping is typically used when the
transformation applies to types represented in different forms (e.g.,
Java to XML).

declarative (programming language) A language is said to be declara-
tive, rather than procedural, if it defines a set of rules that are applied to
an input to create an output.

delegate See delegation.
delegation As described in [Go4], page 20, “Delegation is a way of mak-

ing composition as powerful for reuse as inheritance.” In delegation, a
class implements a method by invoking methods on a delegate instance.

Glossary 541

This is like inheritance, where a class can defer implementation of a
method to the implementation defined in a parent class. However, it is
more flexible than inheritance because the delegation relationship can
change at runtime by using delegates of different types.

dependency injection A programming design pattern whereby an
instance of an object (the Injection Target) can be “injected” at runtime
so that a program may use the instance without having to programmati-
cally construct it or locate it. Java implements dependency injection
with the @Resource annotations, for example.

derived schema See schema generator.
deserialization Converting a sequential byte (serial) representation of an

object to an in-memory (which may be stored as a tree, graph, etc.) rep-
resentation.

deserializer A programming component that implements deserialization.
dispatching Dispatching is part of the invocation process. Given a SOAP

message, determining its target WSDL operation and the correspond-
ing Java method to invoke is referred to as dispatching.

Document Object Model A standard, in memory, representation of an
HTML or XML document. The standard is maintained by the W3C—
see [DOM]. A DOM structure represents a document as a tree. Web
browsers typically represent HTML using the DOM. XML is com-
monly manipulated using DOM within Java programs.

DOM See Document Object Model.
ECMAScript A scripting language standard defined by Ecma Interna-

tional in its ECMA-262 specification. JavaScript is an implementation
of ECMAScript.

EJB See Enterprise Bean.
endpoint listener A component of the deployment subsystem of a Web

Services Platform Architecture. The endpoint listener is responsible for
listening for request messages at a certain address and transport (e.g.,
HTTP). When a Web service is deployed, it is associated with a particu-
lar endpoint listener.

Enterprise Bean An Enterprise Bean or Enterprise JavaBean (EJB) is a
Java class whose instances are managed at runtime by an Enterprise
JavaBean container.

Enterprise JavaBean container The component of a Java EE 5 imple-
mentation that hosts EJBs. The EJB container provides services such as
persistence, transaction processing, concurrency control, security, and
so on.

542 Glossary

Extensible Stylesheet Language Transformations Abbreviated
XSLT, Extensible Stylesheet Language Transformations is an XML-
based language used to describe transformations of XML documents.
Using an XSLT, for example, you can transform an XML document into
a human-readable HTML page. XSLT can be used within an SOA
framework to transform data representations from one format to
another. This can be very useful for facilitating integration where, for
example, Company A’s representation of a Purchase Order needs to be
transformed into Company B’s representation.

fail-fast validation A form of JAXB 2.0 validation whereby each manipu-
lation (e.g., setting a property) of a JAXB-annotated program element is
checked against the associated schema. An unchecked exception is
thrown whenever a manipulation would result in the underlying XML
Infoset becoming invalid with respect to the schema.

fault bean See JAX-WS fault bean.
flexible unmarshalling mode Contrasted with structural unmarshal-

ling, when using the JAXB 2.0 flexible unmarshalling mode, certain
types of validation errors are ignored, such as out-of-order elements or
missing attributes.

HTTP parameter A set of parameter/value pairs may be passed to a pro-
gram deployed at a URL endpoint using HTTP parameters in the form
p1=v1&p2=v2&...&pn=vn, where p1 ... pn are parameters and v1 ...
vn are the corresponding values. Such parameters are URL encoded and
can be passed either in the HTTP body (e.g., when an HTTP form is
submitted) or in a query string.

IDL See Interface Definition Language.
Injection Target See dependency injection.
interceptor An aspect oriented programming (AOP) concept. An intercep-

tor program element can be used to intercept, and take action, before or
after a method’s invocation. A common example involves security. A secu-
rity interceptor could be associated with all the methods in a particular
application that need to check credentials before being executed.

Interface Definition Language (IDL) An Interface Definition Lan-
guage is a computer language that provides a standard method for
describing how to invoke a software component.

Java content interface JAXB 1.0 binds complex types to content inter-
faces rather than value classes. Implementations of these interfaces are
generated by object factories. This type of binding is still available in

Glossary 543

JAXB 2.0 as an alternative to value classes. Structural unmarshalling
requires the use of Java content interfaces.

Java dynamic proxy class A Java dynamic proxy class is a class, created
at runtime, that implements a list of interfaces that are also specified at
runtime.

Java program elements Java program elements include the compo-
nents of a Java data model for an application: package, field, property
(i.e., JavaBean property), and types (classes and enum construct).

Java Remote Method Invocation (Java RMI) Java Remote Method
Invocation (Java RMI) is a technology for distributed Java to Java appli-
cations, in which the methods of remote Java objects can be invoked
from other Java virtual machines, possibly on different hosts. RMI uses
object serialization to marshal and unmarshal parameters.

JavaScript JavaScript is an implementation of the ECMAScript standard.
It is a scripting language commonly used to do client-side programming
for Web applications. Most Web browsers support JavaScript. Java-
Script programs can read to and write from a browser interface by
manipulating the browser’s DOM representation of an HTML page.
JavaScript is not a variant of Java. The two languages are very different.
See Ajax.

JavaScript Object Notation A text-based data interchange format used
for serialization. Often referred to as JSON, it is lightweight and easier
to read than XML. For these reasons, it is considered by some to be
preferable to XML for the exchange of simple data structures often
encountered in Ajax programming.

Java/XML binding A Java/XML binding is a one-to-one Java/XML map
between a set of Java program elements and XML Schema components
and a set of rules that are used to convert an instance of a Java program
element (e.g., a class) into an instance of its corresponding XML
Schema component (e.g., an XML Schema type).

Java/XML map A Java/XML map is a set of pairs <J, X>, where J is a Java
program element and X is an XML Schema component. Each pair <J,
X> is referred to as an individual type mapping.

JAXB-annotated Java program elements Java program element defi-
nitions that have been annotated with mapping annotations.

JAXB 2.0 schema-derived program elements Java program elements
that are created by the JAXB 2.0 schema compiler when it compiles a
schema. These program elements are said to be “bound” to their
respective schema components.

544 Glossary

JAXB 2.0 standard Java/XML mapping The standard mapping defined
by JAXB 2.0 that associates XML Schema components with JAXB-
annotated Java program elements.

JAXB value class Generated by a schema compiler, a JAXB value class
provides JavaBeans-style access (i.e., get and set) methods to the con-
tent of its corresponding schema component.

JAX-WS fault bean A Java class generated by the JAX-WS mapping to
represent the contents of a fault message described by a WSDL docu-
ment. JAX-WS maps wsdl:fault elements to Java exceptions that wrap
fault beans containing the contents of the fault. More specifically, a
wsdl:fault element inside a wsdl:portType always refers to a
wsdl:message that contains a single wsdl:part with an element
attribute. The global element declaration referred to by that
wsdl:part’s element attribute is mapped by JAX-WS to a Java bean
called a fault bean.

JAX-WS port component A JAX-WS port component defines the pro-
gramming model artifacts that make up a portable Web service applica-
tion. These components are defined by WSEE 1.2 [JSR 109]. A port
component must include a service implementation bean. It may also
include a service endpoint interface (SEI), a WSDL document, Security
Role References, and a Web Services deployment descriptor.

JAX-WS Service Endpoint A WSEE [JSR 109] term for a Web service
port component deployed as a WAR in the Web container. This is a con-
fusing term because it sounds a lot like JAX-WS service endpoint inter-
face (SEI). In fact, a SEI can be implemented by either a JAX-WS
Service Endpoint or a Stateless Session EJB in an EJB container.

JAX-WS service endpoint interface (SEI) A Java interface that is
mapped to a wsdl:portType according to the JAX-WS WSDL/Java
mapping. A SEI must include an @WebService annotation. Other anno-
tations may be used to influence the mapping of the interface to the
WSDL.

JAX-WS service implementation bean (SIB) A service implementa-
tion bean contains the business logic of a JAX-WS Web service. It is
annotated with @WebService or @WebServiceProvider and its methods
can be exposed as Web Service operations. The service implementation
bean is fully defined in WS-Metadata [JSR 181].

JSON See JavaScript Object Notation.
JSR-181 processor WS-Metadata 1.0 (JSR-181) implementations pro-

vide a processor that reads the annotations on a Java Web service source

Glossary 545

file to create the deployment descriptors and other artifacts needed to
create a runnable Web service.

mapping annotations Java language annotations that are used to control
how Java program elements are mapped to either XML Schema com-
ponents or WSDL components. JAXB 2.0 provides mapping annota-
tions for Java to XML Schema. JAX-WS 2.0 and WS-Metadata provide
mapping annotations for Java to WSDL.

marshal The JAXB 2.0 process of converting instances of JAXB-annotated
classes to an XML Infoset representation according to the JAXB 2.0 stan-
dard Java/XML mapping as customized by the mapping annotations.

mock object A mock object is a Java class used for test-driven develop-
ment. The mock object implements the API of a real object, but its
return value(s) are hard-coded with test data. Mock objects are used to
test the run-time behavior of interface definitions without requiring the
business logic implementations.

multivariate type mapping A multivariate type mapping is a type map-
ping in which there is no one-to-one correspondence between schema
elements and attributes and Java properties. Such mappings involve
combining and/or splitting schema elements and attributes to create a
Java property or set of properties. An simple example of such a mapping
is when you have a phone number represented as a single xs:string in
an XML schema, but as two properties—an area code and a number—
in a Java class.

MTOM See MTOM/XOP.
MTOM/XOP The W3C standard titled “SOAP Message Transmission

Optimization Mechanism” (see www.w3.org/TR/soap12-mtom/). It
describes a standard procedure for content out of the XML Infoset, com-
pressing it, packaging it as a MIME attachment, and replacing it with a
reference in the Infoset. The packaging encoding used with MTOM is
XOP, another W3C standard titled “XML-binary Optimized Packaging”
(see www.w3.org/TR/xop10/). XOP replaces base64-encoded content
with an xop:include element that references the respective MIME part
encoded as a binary octet stream. If data is already available as a binary
octet stream, it can be placed directly in an XOP package.

noun (REST) Within the REST context, the word noun refers to a
resource—for example, a purchase order. Nouns are contrasted with
verbs, which define actions.

POJO Plain Old Java Object. This term is usually used to distinguish a
regular Java class from an EJB.

546 Glossary

port component See JAX-WS port component.
POX Plain Old XML. POX is used to describe XML when it is used as a

stand-alone message format (e.g., without a SOAP layer). POX is the
style of message used by RESTful Web services that communicate using
XML/HTTP.

predicate Predicates are code fragments that apply schema validation
rules to program element properties. They are used by JAXB 2.0 imple-
mentation to implement fail-fast validation.

procedural (programming language) A language is said to be proce-
dural, rather than declarative, if it consists of a set of instructions to be
executed sequentially in a stateful environment.

program element See Java program elements.
QoS See Quality of Service.
Quality of Service A Quality of Service requirement refers to a Web ser-

vice’s capability to meet a specific Service Level Agreement (SLA) stan-
dard such as network reliability. For example, a “guaranteed processing
order” QoS might be a requirement that a Web service process mes-
sages in the order they are received.

query string A query string is the part of a URL, following the “?” char-
acter, that contains a list of HTTP parameters to be passed to a program
that is deployed at an endpoint. A URL containing a query string as the
format http://host/path/program?p1=v1&p2=v2&...&pn=vn, where
p1 ... pn are parameters and v1 ... vn are the corresponding values.
Since some characters cannot be part of a URL (e.g., a space), these are
represented using special codes defined by the URL encoding specifica-
tion (RFC 1738). For example, the URL-encoding for a white space is
%20. Query strings are often used as a mechanism to pass parameters to
RESTful endpoints (e.g., Yahoo! Shopping APIs).

Remote Procedure Call (RPC) A protocol that enables a client pro-
gram to invoke a procedure (e.g., Java method) on a remote server (i.e.,
a different address space).

Representational State Transfer An architectural style of networked sys-
tems usually referred to by its acronym: REST. The REST style was first
formalized in [Fielding]. As used in this book, REST refers to an architec-
tural approach using simple XML over HTTP interfaces without SOAP or
any of the additional complexities introduced by the Web Services stack.

representation (REST) In the REST context, a representation is
defined to be a particular formatting of a REST resource. For example,

Glossary 547

the representation of the purchase order at http://myserver.com/oms/po
could an XML file—po.xml.

request bean A Java class that represents a WSDL request. JAX-WS 2.0
defines a mapping from WSDL to Java. This mapping defines a request
bean corresponding to the input message for a wsdl:operation. Like-
wise, a response bean is defined corresponding to the output message
for a wsdl:operation. Together with JAXB 2.0, the JAX-WS runtime
can serialize a request bean instance into a properly constructed SOAP
message payload corresponding to the wsdl:operation input message.
Likewise, the message payload of a SOAP response can be deserialized
into the response bean, from which the Java representation of the
wsdl:operation response can be extracted.

response bean See request bean.
resource (REST) In the REST context, a resource is defined to be a

piece of information (e.g., a purchase order) that can be referred to
using a URI.

REST See Representational State Transfer.
RESTful A Web service designed and deployed using the REST

approach is referred to as a RESTful service.
reusable schema The SOA Integration architectural concept of having

standard, reusable XML Schema definitions for the XML messages that
are exchanged between SOA components. This concept implements
the goal of having well-defined interface definitions between SOA com-
ponents, because the XML schemas that are standardized are the build-
ing blocks of the WSDL interface definitions.

RPC See Remote Procedure Call.
SAAJ The Java APIs used for creating and manipulating SOAP mes-

sages. It is an acronym for SOAP with Attachments API for Java. See
[JSR 67] Java™ APIs for XML Messaging: SOAP with Attachments
API for Java™ (SAAJ).

schema compiler A JAXB 2.0 schema compiler takes an XML Schema
instance as input and generates a set of schema-derived Java program
elements according to the standard Java/XML mapping.

schema component See XML schema component.
schema-derived program elements See JAXB 2.0 schema-derived pro-

gram elements.
schema generator A JAXB 2.0 schema generator takes a set of existing

program elements and generates an XML Schema instance referred to

548 Glossary

as the derived schema. The JAXB runtime can (un)marshal instances of
the program elements to instances of the derived schema.

Security Role References The Java EE 5 mechanism for providing Web
Services security, Security Role References are logical role names declared
by a port component’s deployment descriptors. Roles such as “User” and
“Admin” can be used to provide varying levels of access to Web services.

semantic mapping A semantic mapping is similar to a datatype map-
ping, except it is concerned with mapping the meaning of a type (e.g.,
schema definition, class) rather than just its structure. Although the
boundary between semantic mappings and datatype mappings is a little
fuzzy, it is most common to see mappings of Java method implementa-
tions from one API to another referred to as semantic mapping. For
example, the mapping of a shopping search API from a generic model
to the Amazon and Yahoo! shopping services would be described as a
semantic mapping (see Chapter 9).

Separation of Concerns The software architecture principle which holds
that separate concerns (i.e., features) should not share overlapping code.
For example, the code for the user interface should not, in general, con-
tain code that makes database updates. The use of the term, as applied to
computer science, is explained in detail in [Disjkstra].

serialization Converting an in-memory representation of an object
(which may be stored as a tree, graph, etc.) to a sequential byte (serial)
representation.

serializer A programming component that implements serialization.
service endpoint interface See JAX-WS service endpoint interface.
service implementation bean See JAX-WS service implementation bean.
Service Level Agreement An agreement between a Web service con-

sumer and a Web service provider that guarantees certain properties of
performance. Examples include quantifiable measures like guaranteed
response time and guaranteed reliability (i.e., if a message is sent it is
guaranteed to be delivered).

Service Oriented Architecture A style of software architecture that is
based on the use of services to create applications. Abbreviated SOA, it
implies a style of systems development whereby applications are com-
posed by linking together individual services in a loosely coupled manner.

SLA See Service Level Agreement.
SOA See Service Oriented Architecture.

Glossary 549

SOA Component A single service that can be part of an SOA application.
When doing SOA based on Web Services, an SOA component corre-
sponds to a wsdl:port. Sometimes, SOA Component is also used to
refer to an individual wsdl:operation within a wsdl:port.

SOA-style loosely coupled systems integration An approach to sys-
tems integration that involves deploying the applications to be inte-
grated as sets of SOA-style services. The integration is accomplished
by aggregating the resulting services and applying workflow tech-
niques to create loosely coupled applications built on the underlying
services.

SOA-style systems integration See SOA-style loosely coupled systems
integration.

SOA Integration See SOA-style loosely coupled systems integration.
SOAP A protocol for exchanging XML-based messages across a network.

SOAP is the messaging standard for Web Services. See [SOAP 1.1] and
[SOAP 1.2].

SOAP body A SOAP message must contain a <Body> element. It is used
to carry the payload of the SOAP message.

SOAP header block A SOAP message may contain an optional
<Header> element. It is used to pass application-related information
intended to be processed by SOAP nodes along the path the message
travels—so-called metadata. The immediate children of the <Header>
element are called header blocks. A header block usual contains some
logical grouping of metadata such as its security information.

SOAP Messages with Attachments SOAP Messages with Attachments
(SwA) (www.w3.org/TR/SOAP-attachments) was the industry’s first
attempt to standardize an approach to treating binary data as SOAP
message attachments. SwA defines a binding for a SOAP 1.1 message
within a MIME multipart/related message. The MIME multipart
mechanism for encapsulation of compound documents is used to bun-
dle attachments with the SOAP message.

Standard Java/XML mapping See JAXB 2.0 Standard Java/XML
mapping.

“Start from Java” development mode A Java EE approach to the devel-
opment of Java Web Services where the programmer starts with a Java
class (or classes) he wishes to deploy as a Web service. The class is anno-
tated using WS-Metadata and JAXB annotations that describe how it
should map to a WSDL interface definition. Tools are invoked (e.g., a

550 Glossary

JAXB schema generator) to generate the WSDL and XML Schema
used in the interface definition.

“Start from WSDL and Java” development mode A combination of
the “Start from Java” and “Start from WSDL” development modes. In
this case, you have both an existing WSDL that defines a set of Web ser-
vices to be deployed, and a set of existing Java classes you need to use to
implement those Web services. The challenge is to map between the
existing WSDL and Java to implement the Web services. This develop-
ment mode is most commonly encountered when doing SOA-style
loosely coupled systems integration.

“Start from WSDL” development mode A Java EE approach to the
development of Java Web Services where the programmer starts with a
WSDL document he wishes to implement as a Web service. The
WSDL (and the XML Schema type definitions it includes) may be
annotated using WS-JAX-WS and JAXB binding declarations that
describe how it should map to a set of Java classes. Tools are invoked
(e.g., a JAXB schema compiler) to generate the Java classes that get
deployed as Web services. These generated classes provide the deploy-
ment structure for the Web service, and the programmer must add the
business logic to them.

stateless An application that does not keep a persistent set of data
between transactions.

structural unmarshalling mode Contrasted with flexible unmarshal-
ling, this is the unmarshalling mode where strict validation of XML data
against schema is enforced.

SwA See SOAP Messages with Attachments.
test-driven development Test-driven development is a software

development methodology that focuses on writing tests first (as a
means of specification), and then implementing the software to make
the tests pass.

type mapping A type mapping defines a relationship between a Java pro-
gramming element and an XML Schema component—for example,
corp:AddressType and samples.Address. A type mapping is imple-
mented by a serializer and a deserializer. The serializer converts
instances of the Java class into XML instances that conform to the
schema. The deserializer does the reverse.

unmarshal The JAXB 2.0 process of converting an XML Infoset repre-
sentation to a tree of content objects. The conversion is defined by the
Infoset’s associated XML schema together with the JAXB 2.0 standard

Glossary 551

Java/XML mapping as customized by any mapping annotations speci-
fied in the program element definitions of the target content objects.
The content objects’ Java program elements are either JAXB 2.0
schema-derived program elements or existing program elements
mapped to the schema by the schema generator.

URL-encoded See query string.
value class See JAXB value class.
verb (REST) Within the REST context, the word verb refers to a proto-

col operation—for example, the HTTP GET operation. REST empha-
sizes a minimal use of verbs, as contrasted with RPC, where a great
diversity of operations may be implemented and specified with an inter-
face definition language such as WSDL.

W3C See World Wide Web Consortium.
Web Services A Web service is a programmatic interface for application-

to-application communication that is invoked by sending and receiving
XML. The term “Web Services” refers to the discipline of writing,
deploying, and using Web services. A “Web service” is different from a
“service” as defined within a Service Oriented Architecture. As the term
is used in this book, a “Web service” is a “service” that has an XML
interface and is defined using WSDL or REST.

Web Services Definition Language An interface definition language,
written in XML, used for describing Web services. WSDL 1.1 is cur-
rently the most commonly used (www.w3.org/TR/wsdl)—but it is not an
official W3C recommendation. WSDL 2.0 (www.w3.org/TR/wsdl20/) is
on track to become a W3C Recommendation.

Web Services protocol stack A layered collection of protocols used to
define, implement, locate, and invoke Web services. At the bottom layer
of the stack is a service transport (e.g., HTTP, SMTP) responsible for
transporting messages. On top of that is an XML messaging layer (e.g.,
SOAP 1.2) used to encode messages in a common XML format. A service
description protocol (e.g., WSDL) is often used to describe the public
interface of a service. There may also be a service discovery protocol (e.g.,
UDDI) involved to provide access to a central directory (or registry) of
Web services. In addition, there are Quality of Service (QoS) layers that
can be used together with SOAP such as WS-Addressing (for service
transport independent addressing), WS-Security (for security), and WS-
ReliableMessaging (for message reliability).

Web Services stack See Web Services protocol stack.

552 Glossary

World Wide Web Consortium A standards body that provides many of
the most important Web Services specifications (e.g., XML, XML
Schema, SOAP, WSDL). See www.w3.org.

wrapper-based integration An approach to the “Start from WSDL and
Java” development mode where the WSDL/schema compiler is used to
create Java wrapper classes that can be deployed to implement the Web
services specified in a particular WSDL. These wrapper classes are then
edited to invoke the actual classes that implement the business logic
behind a Web service.

wrapper element See WSDL wrapper element.
WSDL See Web Services Definition Language.
WSDL compiler A JAX-WS 2.0 WSDL compiler takes a WSDL instance

as input and generates a set of schema-derived Java program elements
according to the standard WSDL/Java and XML/Java mappings. A
WSDL compiler delegates the compilation of the XML schema ele-
ments within the source WSDL to a JAXB schema compiler.

WSDL wrapper element An element defined in the <wsdl:types> sec-
tion of a document/literal wrapped style WSDL that “wraps” the parame-
ter types of the input and/or output messages used by the Web service.
The parameters appear as child elements of the wrapper element.

WS-I Attachments Profile Version 1.0 The WS-I Attachments Profile
Version 1.0 (see www.ws-i.org/Profiles/AttachmentsProfile-1.0.html)—
WSIAP—clarifies SOAP Messages with Attachments (SwA). See SOAP
Messages with Attachments. SwA was the industry’s first attempt to
standardize an approach to treating binary data as SOAP message
attachments. The industry now seems to be converging on MTOM/XOP,
rather than SwA, as the primary standard for handling binary data with
SOAP.

WSIAP See WS-I Attachments Profile Version 1.0.
XMLHttpRequest A JavaScript API used to transfer data (often XML)

to and from a Web server over HTTP. See Ajax.
XML Information Set A W3C Recommendation that provides a set of

definitions used to refer to the information contained in an XML docu-
ment (www.w3.org/TR/xml-infoset/). Commonly referred to as an XML
Infoset, an Information Set can include up to 11 different types of infor-
mation items, including documents, elements, attributes, processing
instructions, and so on.

XML Infoset See XML Information Set.

Glossary 553

XML Infoset representation A programming language representation of
an XML Infoset. One example is the W3C’s Document Object Model
(DOM) (www.w3.org/DOM/) that provides an object-oriented API for
accessing an XML document as a tree structure. Alternatively, an XML
Infoset can be represented as a stream of events. This approach is used by
the Simple API for XML (SAX) (www.saxproject.org/). There are many
other representations of XML Infosets—each suited to a particular pro-
gramming language or style of XML processing. Of particular importance
in this book is JAXB, which represents an XML Infoset as instances of Java
classes that are bound to XML Schema components.

XML Path Language Often abbreviated XPath, the XML Path Language is
a W3C defined syntax for addressing portions of an XML document
(www.w3.org/TR/xpath). For example, XPath enables you to specify a par-
ticular child element of an element defined in an XML document.

XML Schema A W3C Recommendation that defines an XML schema
language (www.w3.org/XML/Schema). Other schema languages include
Document Type Definition (DTD) and RELAX NG. An XML schema
is a description of a type of XML document. It constrains the structure
and contents of conforming documents. XML Schema provides a lan-
guage for expressing such constraints, effectively enabling the definition
of XML types.

XML schema component A schema defined in the XML Schema lan-
guage is composed of a variety of components, including complex and
simple type definitions, element declarations, attribute declarations,
model groups, and so on. These are formally defined in the W3C docu-
ment “XML Schema Part 1: Structures Second Edition” (www.w3.org/
TR/2004/REC-xmlschema-1-20041028/structures.html).

XPath See XML Path Language.
XSLT See Extensible Stylesheet Language Transformations.

555

References

[AIA] Crane, David, Eric Pascarello, and Darren Jones. Ajax in Action.
Manning Publications. ISBN 0201633612, January 1995.

[AXIS] Apache Axis 1.x.
http://ws.apache.org/axis

[AXIS2] Apache Axis 2.x.
http://ws.apache.org/axis2

[CASTOR] The Castor Project.
www.castor.org/

[DIJKSTRA] Dijkstra, E. “On the Role of Scientific Thought,” Selected
Writings on Computing: A Personal Perspective. Springer-Verlag, 1982,
pp. 60–66.

[DOJO] The Dojo JavaScript toolkit, The Dojo Foundation.
http://dojotoolkit.org/

[DOM] Document Object Model (DOM) Level 3 Core Specification Ver-
sion 1.0, W3C Recommendation April 7, 2004.
www.w3.org/TR/DOM-Level-3-Core/

[Eckstein] Eckstein, and Robert Rajiv Mordani. “Introducing JAX-WS 2.0
with the Java SE 6 Platform, Part 2,” November 2006.
http://java.sun.com/developer/technicalArticles/J2SE/jax_ws_2_pt2/

[Fielding] Fielding, Roy Thomas. “Architectural Styles and the Design of
Network-based Software Architectures.” Doctoral dissertation, Univer-
sity of California, Irvine, 2000.
www.ics.uci.edu/~fielding/pubs/dissertation/top

[GLASSFISH] GlassFish Open Source Java EE 5 Application Server.
https://glassfish.dev.java.net/

[Go4] Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional Computing Series. ISBN 1932394613,
October 2005.

556 References

[GROOVY] The Groovy Java Scripting Language.
http://groovy.codehaus.org/

[Hunt] Hunt, Andrew, and David Thomas. The Pragmatic Programmer:
From Journeyman to Master. Addison-Wesley Professional; 1st edition,
ISBN 020161622X, October 1999.

[Hunter] Hunter, David, et al. Beginning XML. Wrox (Third Edition),
ISBN 0764570773, September 2004.

[JSON] Crockford D. “The application/json Media Type for JavaScript
Object Notation (JSON).” The Internet Engineering Task Force (Net-
work Working Group) RFC-4627, July 2006.
http://tools.ietf.org/html/rfc4627

[JSR 109] Web Services for Java EE 1.2. JSR, JCP, May 11, 2006.
http://jcp.org/en/jsr/detail?id=109

[JSR 152] JavaServer PagesTM 205. JSR, JCP, November 24, 2003.
http://jcp.org/en/jsr/detail?id=152

[JSR 154] JavaTM Servlet 2.5. JSR, JCP, May 11, 2006.
http://jcp.org/en/jsr/detail?id=154

[JSR 166] Concurrency Utilities. JSR, JCP, September 30, 2004.
http://jcp.org/en/jsr/detail?id=166

[JSR 173] Streaming API for XML. JSR, JCP, March 25, 2004.
http://jcp.org/en/jsr/detail?id=173

[JSR 175] A Metadata Facility for the Java™ Programming Language. JSR,
JCP, September 30, 2004.
http://jcp.org/en/jsr/detail?id=175

[JSR 181] Web Services Metadata for the Java™ Platform 2.0. JSR, JCP,
May 1, 2006.
http://jcp.org/en/jsr/detail?id=181

[JSR 196] Java™ Authentication Service Provider Interface for Containers.
JSR, JCP, in progress.
http://jcp.org/en/jsr/detail?id=196

[JSR 206] Java™ API for XML Processing (JAXP) 1.3. JSR, JCP, September
30, 2004.
http://jcp.org/en/jsr/detail?id=206

[JSR 222] The Java™ Architecture for XML Binding (JAXB) 2.0, JSR, JCP,
May 11, 2006
http://jcp.org/en/jsr/detail?id=222

References 557

[JSR 224] The Java™ Architecture for XML-Based Web Services (JAX-WS)
2.0. JSR, JCP, May 11, 2006.
http://jcp.org/en/jsr/detail?id=224

[JSR 244] JavaTM Platform, Enterprise Edition 5 (Java EE 5) Specification.
JSR, JCP, May 8, 2006.
 http://jcp.org/en/jsr/detail?id=244

[JSR 250] Common Annotations for the Java Platform. JSR, JCP, May 11,
2006.
 http://jcp.org/en/jsr/detail?id=250

[JSR 52] A Standard Tag Library for JavaServer PagesTM 1.2 (Maintenance
Release 2). JSR, JCP, May 11, 2006.
http://jcp.org/en/jsr/detail?id=52

[JSR 67] Java™ APIs for XML Messaging: SOAP with Attachments API for
Java™ 1.3 (SAAJ). JSR, JCP, April 12, 2006.
http://jcp.org/en/jsr/detail?id=67

[JSR 914] JavaTM Message Service (JMS) API. JSR, JCP, December 2, 2003.
http://jcp.org/en/jsr/detail?id=914

[Monson-Haefel] Monson-Haefel, Richard. J2EE Web Services. Addison-
Wesley Professional, ISBN 0130655678, October 2003.

[Namespaces in XML] Namespaces in XML 1.0 (Second Edition). W3C
Recommendation August 16, 2006.
www.w3.org/TR/REC-xml-names/

[Ramachandran] Personal e-mail communication from Vijay Ramachan-
dran. Sun Microsystems, January 15, 2007.

[SOAP 1.1] Simple Object Access Protocol (SOAP) 1.1. W3C Note, May 8,
2000.
www.w3.org/TR/soap11/

[SOAP 1.2] SOAP Version 1.2 Part 0: Primer. W3C Recommendation, June
24 2003.
www.w3.org/TR/soap12-part0

[STRUTS] Apache Struts.
http://struts.apache.org

[SwA] SOAP Messages with Attachments. W3C Note, December 11, 2000.
www.w3.org/TR/SOAP-attachments

[SYSTINET] Systinet Server for Java.
www.systinet.com/products/ssj/overview

558 References

[Walmsley] Walmsley, Priscilla. Definitive XML Schema. Prentice-Hall
PTR, ISBN 0321146182, December 2001.

[WS-ADDRESSING 1.0 Core] Web Services Addressing 1.0—Core. W3C
Recommendation, May 9, 2006.
www.w3.org/TR/ws-addr-core/

[WSDL 1.1] Web Services Description Language (WSDL) 1.1. W3C Note,
March 15, 2001.
www.w3.org/TR/wsdl

[WSDL 2.0 Part 2] Web Services Description Language (WSDL) Version
2.0 Part 2: Adjuncts. W3C Working Draft, August 3, 2005.
www.w3.org/TR/wsdl20-adjuncts

[WSDL 2.0] Web Services Description Language (WSDL) Version 2.0 Part
1: Core Language. W3C Working Draft, August 3, 2005.
www.w3.org/TR/wsdl20/

[WS-I BP 1.1] Basic Profile Version 1.1, Final Material. August 24, 2004.
www.ws-i.org/Profiles/BasicProfile-1.1.html

[WSIAP] XML Attachments Profile Version 1.0, WS-I Final Material. April
20, 2006.
www.ws-i.org/Profiles/AttachmentsProfile-1.0.html

[WS-RM] Web Services ReliableMessaging (WS-ReliableMessaging).
OASIS Web Services Reliable Exchange (WS-RX) Technical Commit-
tee, Committee Draft 03, March 14, 2006.
http://docs.oasis-open.org/ws-rx/wsrm/200602/wsrm-1.1-spec-cd-03.pdf

[WS-Security 1.1] Web Services Security (WS-Security). OASIS Web Ser-
vices Security (WSS) Technical Committee, OASIS Standard Specifica-
tion, February 1, 2006.
www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss#technical

[WS-Security] Web Services Security OASIS Standard 1.1.
www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss#technical

[XFIRE] Codehaus XFire Java SOAP Framework.
http://xfire.codehaus.org

[XJ] XML Enhancements for Java, IBM Alphaworks.
www.alphaworks.ibm.com/tech/xj

[XMIME] Describing Media Content of Binary Data in XML. W3C Work-
ing Group Note, May 4, 2005.
www.w3.org/TR/xml-media-types/

References 559

[XML 1.0] Extensible Markup Language (XML) 1.0 (Second Edition).
W3C Recommendation, October 6, 2000.
www.w3.org/TR/2000/REC-xml-20001006.

[XML Catalog 1.1] XML Catalogs. OASIS Standard V1.1, October 7, 2005.
www.oasis-open.org/committees/download.php/14810/xml-catalogs.pdf

[XMLBeans] Apache XMLBeans.
http://xmlbeans.apache.org

[XML-Infoset] XML Information Set, John Cowan and Richard Tobin, eds.
W3C, March 16, 2001.
www.w3.org/TR/2001/WDxml-infoset-20010316/

[XOP] XML-binary Optimized Packaging. W3C Recommendation, January
25, 2005.
www.w3.org/TR/xop10/

[XPath], XML Path Language, James Clark and Steve DeRose, eds. W3C,
November 16, 1999.
www.w3.org/TR/1999/RECxpath-19991116

[XSD Part 0] XML Schema Part 0: Primer. W3C Recommendation, May 2,
2001.
 www.w3.org/TR/xmlschema-0/

[XSD Part 1] XML Schema Part 1: Structures. W3C Recommendation,
May 2, 2001.
www.w3.org/TR/xmlschema-1/

[XSD Part 2] XML Schema Part 2: Datatypes. W3C Recommendation, May
2, 2001.
www.w3.org/TR/xmlschema-2/

[XSLT 1.0] XSL Transformations (XSLT), Version 1.0. James Clark. W3C
Recommendation, November 16, 1999.
www.w3.org/TR/1999/REC-xslt-19991116

561

Index

A
ad hoc paths, 371
adaptive serializers, 509–512
addPort method (Service), 102, 104, 110
Ajax, 463–480

front end to SOAShopper case study,
470–479

Java EE 5 Web services with, 468–470
algorithmic type mappings, 15
Amazon.com SOAP-based services,

434–444
annotations, 14, 37, 61, 74, 273–278

dependency injection, 82–83, 317, 330
creating proxy instances, 279–280

external annotation files, 197
JAXB annotations

implementing type mappings with,
224–235

for XML messaging, 289–292
mapping annotations, 59–62

WSDL/Java mapping and, 78
processing, 366–367
SEI (service endpoint interface),

273–278
anonymous complex types,

mapping, 201
Apache Ant 1.7.x

configuring, 530–531
installing, 527

Apache Maven 2.0.x
configuring, 528–530
installing, 527

application frameworks, 6–7

ASF (Adaptive Serializer
Framework), 198

AsyncHandler class (javax.xml.ws),
297, 301–302

asynchronous invocation, 50, 297–304
callback, 50, 301–304
polling, 50, 297–299
with proxies, 299–301

AttachmentMarshaller class, 73
AttachmentUnmarshaller class, 73
auto-deployment, 365
automatic (“drag-and-drop”)

deployment, 80, 402–404
AXIOM object model, 67

B
BASIC-AUTH authentication, 405–406
BigInteger class, 201, 208
binary data encoding, 72–73
Binder class (javax.xml.bind), 71–72
binding

mapping vs., 195–199
standard WSDL/Java mapping, 38, 78,

267–273
binding declarations, 62–63
binding language (JAXB 2.0),

62–65, 235–245
asynchronous invocation with SEI

proxies, 300
binding runtime framework, 65–69
BindingProvider interface

(javax.xml.ws), 113
@BindingType annotation, 132
body, SOAP messages, 146

562 Index

book example code
configuring environment for, 84
installing, 528

Bridge Pattern, 450

C
callback, asynchronous, 50, 301–304
callbacks, marshal events, 71
Castor utility, 198

client-side invocation with custom
Java/XML mappings, 292–296

server-side invocation with custom
Java/XML mappings, 325–329

client-side invocation, 9–11, 265–310
asynchronous, 50, 297–304

callback, 50, 301–304
polling, 50, 297–299
with proxies, 299–301

custom Java/XML mappings,
292–296

JAX-WS proxies, 46, 265–285
asynchronous invocation, 299–301
creating and using, 267
fault handling with, 282–285
invoking Web service with, 279–282
WSDL/Java mapping, 267–273

SOAP message handlers, 304–309
steps of, 34–36
XML messaging, 285–292

client-side JWS support, 34–36
client-side message handlers, 304–309
client-side thread management, 50
component scope for binding

declarations, 63
configuration files (handler chain files),

47, 388–389
connect method (HttpURLConnection),

99, 106
create method (Service), 280
createDispatch method (Service),

46, 102, 104, 110, 288

D
data transformation

JAXB 2.0 specification for, 256–261
XSLT for. See XSLT

DatatypeConverter class
(javax.xml.bind), 241

definition scope for binding
declarations, 63

dependency injection, 82–83, 317, 330
creating proxy instances, 279–280

deployment, 16–18, 359–375
automatic (“drag-and-drop”),

80, 402–404
with custom Java/XML mappings,

325–329
with deployment descriptors, 384–402

ejb-jar.xml descriptor, 372, 390–394
platform-specific descriptors,

397–402
webservices.xml descriptor,

357–358, 372, 395–397
web.xml descriptor,

384–389, 398, 430
EJB endpoints (WSEE), 371–375
with Endpoint class, 347–355
REST services, 125–135

with JWS, 131–135
without JWS, 126–131

SOA-J application framework, 514–519
without deployment descriptors,

376–384
WSEE 1.2 and. See WSEE 1.2

specification
deserialization, 11. See also serialization

during invocation, 12–14, 67
using schema generated beans,

186–188
deserializers. See serializers
details element (SOAP fault

messages), 283
development modes, 40–42, 44
Dispatch interface (javax.xml.ws), 46

asynchronous polling with, 297–299

Index 563

creating Dispatches from Service
instances, 46, 102, 104, 110, 288

pull messaging (HTTP GET), 101
push messaging (HTTP POST),

110–112
for XML messaging, 287–291, 296

dispatching, 8, 151–166
document/literal style, 156–159
document/literal wrapped style,

51, 159–162
EJB endpoints (WSEE), 371–375
JAX-WS 2.0 WSDL/Java mapping

workarounds, 166–175
rpc/literal style, 51, 154–156

document/literal styles vs., 159
SOAP messages for, 155

summary of process, 162–164
WSDL port, determining, 151–153

document/literal style, 156–159
document/literal wrapped style,

51, 159–162
Dojo widget. See Ajax
DOM, implement Web service

processing with, 323–325
drag-and-drop (automatic) deployment,

80, 402–404
dynamic JAX-WS clients, 45–46
dynamic proxies, 265–266. See also

proxies, JAX-WS (SEI)

E
ease-of-use features in JWS, 36–43
eBay SOAP-based services, 434–444
EIS (Enterprise Information Systems)

getting records from REST with JWS,
101–105

getting records from REST without
JWS, 98–100

sending records to REST with JWS,
110–114

sending records to REST without JWS,
105–109

XML documents and schema for,
88–97

EJB 3.0 specification, POJO support, 83
EJB-JAR, packaging servlet endpoints

with, 363–365
EJB endpoints (WSEE), 82

deployment and dispatching, 371–375
ejb-jar.xml for, 390–394

ejb-jar.xml descriptor, 372, 390–394
encoding binary data, 72–73
encryption with WSEE-deployed

services, 407
Endpoint API (javax.xml.ws), 52–53

Java SE deployment with, 347–355
endpoint listeners, 152, 311–312
endpoint publishing at runtime, 52–53
Enterprise Information Systems.

See EIS
example code

configuring environment for, 84
installing, 528

exceptions (Java)
asynchronous callback, 303–304
converting to SOAP fault messages, 49

ExecutionException exception
(java.util.concurrent), 304

Executor interface (java.util.concurrent),
50, 298

external annotation files, 197
external bindings files (JAXB),

63–64, 244–245
external mapping files (Castor), 292–295

F
fail-fast validation, 70
fault bean, 334–337
fault processing, 329, 332–343

with SEI proxies, 282–285
flexible unmarshalling mode. See

validation
Future interface (java.util.concurrent),

297, 302

564 Index

G
GET requests (HTTP), 29–30, 32

Dispatch interface (javax.xml.ws),
101–102

HttpURLConnection class (javax.net),
98–100

getContext method (Response), 298
getPort method (Service), 280

asynchronous callback, 301
getRequestContext method

(BindingProvider interface), 48
getResponseContext method

(BindingProvider interface),
48, 113

GlassFish server. See also deployment
automatic (“drag-and-drop”)

deployment, 80, 402–404
EJB endpoint deployment and

dispatching, 372–375
servlet endpoint deployment, 366–368
wsimport utility, 171, 266, 270–271, 435

GlassFish server, starting and
stopping, 532

global scope for binding
declarations, 62–63

granularity constraints, 45

H
handler annotations (WS-Metadata), 79
handler chains, 47

configuration files, 47, 388–389
packaging SIBs for deployment,

362, 365
handler programming model

(WSEE), 82
@HandlerChain annotation, 47, 79.

See also EJB endpoints (WSEE)
client-side handlers, 305
server-side handlers, 343–345

handleResponse method
(AsyncHandler), 302–303

HandlerResolver interface
(javax.xml.ws.handler), 305–306

handlers, JAX-WS, 47, 340–342
client-side message handlers, 304–309
server-side message handlers, 343–347

header blocks, SOAP, 146
HTTP binding, 49, 132
HTTP transport for SOAP messages,

29–30
HttpServlet class, deploying RESTful

services, 127–128
HttpURLConnection class (javax.net)

pull messaging (HTTP GET), 98–100
push messaging (HTTP POST),

105–107

I
interceptors, 83
invocation, 8–11

asynchronous, 50, 297–304
callback, 50, 301–304
polling, 50, 297–299
with proxies, 299–301

with Java proxies, 279–282. See also
proxies, JAX-WS (SEI)

JAXB binding runtime framework and,
66–67

mapping WSDL/SOAP to. See
dispatching

SEI proxies, 46, 265–285
asynchronous invocation, 299–301
creating and using, 267
fault handling with, 282–285
invoking Web service with, 279–282
WSDL/Java mapping, 267–273

serialization during, 12–14, 67
server-side, 8–9, 11, 311–356

deployment with custom Java/XML
mappings, 325–329

deployment with Endpoint class,
347–355

fault processing, 329, 332–343
JAX-WS architecture, 311–316
providers and XML processing

without JAXB, 320–325

Index 565

server-side handlers, 343–347
“Start from WSDL” with SEI,

316–320
steps of, 30–34, 312–315
validation, 329–332

SOA-J application framework, 493–503
with XML, 46

invocation, client-side, 9–11, 265–310
asynchronous, 50, 297–304

callback, 50, 301–304
polling, 50, 297–299
with proxies, 299–301

custom Java/XML mappings, 292–296
JAX-WS proxies. See proxies,

JAX-WS (SEI)
SOAP message handlers, 304–309
steps of, 34–36
XML messaging, 285–292

InvocationHandler class
(java.lang.reflect), 266

invoke method (Dispatch), 102, 110, 112
for XML messaging, 289

invoke method (Provider), 133, 320–321
invokeAsync method (Dispatch), 298

J
J2EE programming model, 357
Java, starting with (development mode),

40–42
Java EE 5 platform, 82–84

Ajax with, 468–470
JWS standards. See JSRs
SDK installation, 526–527

Java exceptions
asynchronous callback, 303–304
converting to SOAP fault messages, 49

Java Interface Proxies, 46
Java RMI, 265
Java SE 6 platform, installing, 535
Java value classes, 57–58, 205–206
Java/WSDL mapping, 38, 267–273

mapping annotations and, 78

Java/XML binding or mapping,
54–59, 137

binding versus mapping, 196–197
Castor for. See Castor utility
custom, client-side invocation with,

292–296
custom, server-side invocation with,

325–329
JAX-WS 2.0 limitations, 180–181
JAXB standard for, overview of,

199–209
limitations, working around, 182–194

dispatching, 166–175
using schema compiler, 182–189
using schema generator, 189–194

mapping annotations, 59–62, 78
role of, 178–179

java.lang.reflect.InvocationHandler
class, 266

java.math.BigInteger class, 201, 208
java.net.URL class

pull messaging (HTTP GET), 98–100
push messaging (HTTP POST),

105–107
java.util.concurrent.ExecutionException

exception, 304
java.util.concurrent.Executor class,

50, 298
java.util.concurrent.Future interface,

297, 302
java.util.concurrent.Response

interface, 297
javax.jws.soap package, 78
javax.jws.SOAPBinding annotation, 51
java.xml.bind.JAXBElement class,

180, 222–223
javax.net.HttpURLConnection class

pull messaging (HTTP GET), 98–100
push messaging (HTTP POST),

105–107
javax.wms package, 78
javax.xml.bind.annotation.XmlAdapter

class, 245–256
javax.xml.bind.Binder class, 71–72

566 Index

javax.xml.bind.DatatypeConverter
class, 241

javax.xml.soap.SOAPFault class,
284, 338–339

javax.xml.transform.Transformer
class, 216

javax.xml.validation.Schema class, 216
javax.xml.ws.AsyncHandler class,

297, 301–302
javax.xml.ws.BindingProvider

interface, 113
javax.xml.ws.Dispatch class, 46

asynchronous polling with, 297–299
creating Dispatches from Service

instances, 46, 102, 104, 110, 288
pull messaging (HTTP GET), 101
push messaging (HTTP POST),

110–112
for XML messaging, 287–291, 296

javax.xml.ws.Endpoint API, 52–53
Java SE deployment with, 347–355

javax.xml.ws.handler.HandlerResolver
interface, 305–306

javax.xml.ws.MessageContext class, 48
javax.xml.ws.Provider interface,

46–47, 131–133
server-side invocation, 320–325

javax.xml.ws.Service class, 34, 45
creating Dispatches,

46, 102, 104, 110, 288
pull messaging (HTTP GET), 101–102
push messaging (HTTP POST),

110–112
javax.xml.ws.soap.SOAPFaultException

exception, 282, 337–338
javax.xml.ws.WebServiceContext

interface, 317, 330
javax.xml.ws.WebServiceException

exception, 340–342
JAX-RPC 1.1 specification, 40

JAX-WS 2.0 improvements over, 5, 54
JAX-WS 2.0, 524
JAX-WS 2.0 specification, 5, 43–53

annotations. See also source code
annotations

asynchronous, 50, 297–304
callback, 50, 301–304
polling, 50, 297–299
with proxies, 299–301

client-side development,
9–11, 265–310

asynchronous. See asynchronous
invocation

custom Java/XML mappings,
292–296

proxies. See proxies, JAX-WS (SEI)
SOAP message handlers, 304–309
steps of, 34–36
XML messaging, 285–292

dispatching, 151–166
determining WSDL port, 151–153
document/literal style, 156–159
document/literal wrapped style,

159–162
rpc/literal style, 154–156
shortcomings of, 165–166
working around limitations of,

166–175
WS-I Basic Profile, 153–154

dynamic and static clients, 45–46
feature map, 43
SEI proxies, 46, 265–285

asynchronous invocation, 299–301
creating and using, 267
fault handling with, 282–285
invoking Web service with, 279–282
WSDL/Java mapping, 267–273

server-side development,
8–9, 11, 311–356

deployment with custom Java/XML
mappings, 325–329

deployment with Endpoint class,
347–355

fault processing, 329, 332–343
JAX-WS architecture, 311–316
providers and XML processing

without JAXB, 320–325

Index 567

server-side handlers, 343–347
“Start from WSDL” with SEI,

316–320
steps of, 30–34, 312–315
validation, 329–332

WSDL/Java mapping, 38, 267–273
mapping annotations and, 78

JAX-WS Service Endpoints, 360
JAXB 2.0 specification,

54–73, 195–263, 524
annotations. See also source code

annotations
binding versus mapping, 195–199
bypassing serialization process, 46
for data transformation, 256–261
feature map, 57
implementing type mappings, 209–217

with annotations, 224–235
with binding language, 235–245
recursively, 217–224
with XmlAdapter class, 245–256

serialization rules, 39
standard Java/XML binding, 199–209.

See also Java/XML binding
jaxb:class declaration, 237–238
JAXBElement class (java.xml.bind),

180, 222–223
jaxb:globalBindings declaration, 236–237
jaxb:javaType declaration, 239–240
jaxb:package declarations, 201
jaxb:property declarations, 207
jaxb:schemaBindings declaration,

236–237
jax:dom declarations, 65
JAXP (Java API of XML Processing),

121–125
JAXWSServlet class, 367–368
JSR-181 processor, 79
JSRs (Java Web Services standards),

30–36
client-side support, 34–36
server-side support, 30–34

JWS (Java Web Services), 25–84
ease-of-use features, 36–43

Java EE 5 platform, impact of, 82–84
JAX-WS 2.0. See JAX-WS 2.0

specification
JAXB. See JAXB 2.0 specification
in SOA development, 26–36
WS-Metadata, 31, 73–80, 357, 358

annotations, 37, 74–75, 78–79. See
also source code annotations

auto-deployment, 365
feature map, 76

WSEE 1.2 specification,
31, 80–82, 357–358

encryption with, 407
feature map, 81

L
local element declarations, 201
logical handlers, 47, 344–345

M
mapping annotations, 59–62

WSDL/Java mapping and, 78
mapping, binding vs., 195–199
Mapping class (Castor), 295
mapping strategies, 14–15. See also type

mappings
mapping WSDL to/from Java,

38, 267–273
mapping annotations and, 78

marshalling (unmarshalling), JAXB,
65–69

annotated classes, 233–234
event callbacks, 71
with schema generated beans, 187–188
validation and, 69

Maven
configuring, 528–530
installing, 527

message context, 48
message handlers (SOAP), 304–309
Message mode (Provider interface), 321
Message Payload mode (Provider

interface), 321

568 Index

MessageContext class (javax.xml.ws), 48
MTOM standard, 66, 67, 72–73
multivariate type mappings, 245. See also

XmlAdapter class

N
named complex types, mapping, 208
namespace prefix definitions, 537

O
OASIS XML Catalogs 1.1 specification,

51, 407–409
one-way operations (WSDL), 50
openConnection method (URL), 99, 105
Order Management Service (example),

26–29

P
packaging Web services, 359–375. See

also deployment
parameter style (WSDL style), 152–153
parseMethod attribute (jaxb:javaType),

240–242
partial binding of XML documents,

71–72
PAYLOAD service mode, 288
platform-specific deployment

descriptors, 397–402
POJO support, 83
POJOs, annotating, 225
polling, 50, 297–299
port components, 30–31, 81, 359
port, WSDL, 151–153
portability, JAXB, 70
POST requests (HTTP), 29–30

HttpURLConnection class (javax.net),
105–107

printMethod attribute (jaxb:javaType),
240–242

protocol handlers, 47, 344–345
Provider interface (javax.xml.ws),

46–47, 131–133

server-side invocation, 320–325
proxies, JAX-WS (SEI), 46, 265–285

asynchronous invocation, 299–301
creating and using, 267
fault handling with, 282–285
invoking Web service with, 279–282
WSDL/Java mapping, 267–273

pseudo reference passing, 52
publish method (Endpoint), 349
publishing endpoints and runtime, 52–53
publishing WSDL, 16–17

R
raw XML for messaging, 286–289
recursive framework for type mappings,

217–224
reference passing, 52
Representational State Transfer. See

REST paradigm
request handlers, JAX-WS, 47
request message (SOAP), example of,

146–147
in document/literal style, 158–159
in document/literal wrapped style, 162
in rpc/literal style, 156

@RequestWrapper annotation,
173, 273–275, 277

@Resource annotation, 317
response handlers, JAX-WS, 47
Response interface

(java.util.concurrent), 297
response message (SOAP), example of,

147–148
@ResponseWrapper annotation,

173, 275, 278
REST paradigm, 85–136

client-side services consumption,
98–114

getting EIS records with JWS,
101–105

getting EIS records without JWS,
98–100

Index 569

sending EIS records with JWS,
110–114

sending EIS records without JWS,
105–109

deployment of, 125–135
with JWS, 131–135
without JWS, 126–131

IDL for XML over HTTP without
SOAP, 139

server-side invocation, 315
SOAP vs., 87, 145–146, 259
SOAShopper services,

423–431, 444–449
roles, security, 406
rpc/literal style, 51, 154–156

document/literal styles vs., 159
SOAP messages for, 155

RPC messages, RESTful services vs., 86
rule-based type mappings, 15
run-time architecture for endpoint,

311–312
runtime endpoint publishing, 52–53

S
SAAJ interface, 67

fault processing, 337–339
SAX (Simple API for XML), 36
Schema class (javax.xml.validation), 216
schema compiler, 57, 182–189, 196
schema generator,

59, 59–60, 189–194, 196
schema scope for binding declarations, 63
scope, binding declarations, 62–63
security, 405–407

SOAP message handlers, 304–305
SEI (service endpoint interface),

9, 34–35, 45, 265, 359–360
annotations, 273–278
deploying SIB without descriptors,

378–381
with Endpoint class, 347–348
proxies, 46, 265–285

asynchronous invocation, 299–301

creating and using, 267
fault handling with, 282–285
invoking Web service with, 279–282
WSDL/Java mapping, 267–273

server-side invocation, 316–320
separation of concerns, 256
serialization, 11–16, 195

binary data encoding, 72–73
during invocation, 12–14, 67
mapping annotations for, 60
recursive, 217–224
SOA-J application framework, 503–514
validation and. See validation

serialization context, 14, 16, 39–40
SOA-J application framework, 485

Serializer interface, 219–220
serializers, 218–224
server-side invocation, 8–9, 11, 311–356

deployment with custom Java/XML
mappings, 325–329

deployment with Endpoint class,
347–355

fault processing, 329, 332–343
JAX-WS architecture, 311–316
providers and XML processing without

JAXB, 320–325
server-side handlers, 343–347
“Start from WSDL” with SEI, 316–320
steps of, 30–34, 312–315
validation, 329–332

Service class (java.xml.ws), 34, 45
creating Dispatches,

46, 102, 104, 110, 288
pull messaging (HTTP GET), 101–102
push messaging (HTTP POST), 110–112

service-oriented architecture. See SOA
service endpoint interface. See SEI
service implementation bean. See SIB
ServiceDeployment class, 139
@ServiceMode annotation, 322
servlet endpoints (WSEE), 32, 81

deployment, 367
packaging using WARs, 361–363
web.xml for, 384–389

570 Index

setAttachmentMarshaller method
(Marshaller), 73

SetAttachmentUnmarshaller method
(Unmarshaller), 73

setContentType method
(HttpServletResponse), 129

setHandlerResolver method
(Service), 305

setMapping method (Mapping), 295
setMetadata method (Endpoint API),

53, 349
setSchema method (Marshaller or

Unmarshaller), 208–209
SFJ. See “Start from Java” development

mode
SFWJ. See “Start from WSDL and Java”

development mode
SIB (service implementation bean),

38, 79, 169–170, 359
deploying without descriptors,

376–378
packaging SIBs for deployment,

361–364
Provider usage modes, 321–322
validation. See validation

simplified packaging, WSEE, 82
SOA

data transformation, 115
example of, 26–29
need for SOAP, 145–146
need for WSDL, 108–109, 138–139
role of XML Schema, 91–97
schema libraries, 139–141
suitability of JAXB, 195–199
type mappings, 178–179
WSDL-centric framework, 481–482

SOA-J application framework,
7, 481–521

architecture, 483–486
building and deploying, 535
deployment subsystem, 514–519
invocation subsystem, 493–503
serialization subsystem, 503–514

WSDL-centric development with,
486–493

SOA Integration
definition, 137
SOAShopper example architecture,

412–415
start from WSDL and Java,

56, 175–177
using the Bridge pattern, 450–459

SOAP, 145–151
binary data encoding of messages,

72–73
dispatching messages. See dispatching
fault messages

converting Java exceptions to, 49
examples of, 148–150
handling with proxies, 282–285

mapping to Java invocation. See
dispatching

message handlers, 304–309
REST vs., 145–146, 259
SOAShopper services,

417–423, 434–444
Version 1.1 standard, 524

SOAP binding annotations
(WS-Metadata), 78

SOAP binding for message
processing, 48

SOAP/JMS deployment, 315
SOAP messages, 29

examples of, 146–150
fault. See SOAP, fault messages
transport protocols for, 29–30
validating. See validation

SOAP services, REST services vs., 87
soap:address element, 151–152, 377,

380, 382, 386–387
identifying (dispatching process), 163

@SOAPBinding annotation, 51, 76, 78
SOAPFault class (javax.xml.soap),

284, 338–339
SOAPFaultException exception

(javax.xml.ws.soap), 282, 337–338
@SOAPMessageHandlers annotation, 79

Index 571

SOAShopper case study, 411–461
Ajax front-end, 470–479
API and Integration Layer, 450–460
building and deploying, 534–535
eBay and Amazon Services (SOAP),

434–444
overview of, 411–416
RESTful services and standard XML

schema, 423–431
service implementation, 431–434
SOAP services, 417–423
Yahoo! Services (REST), 444–449

source code annotations, 14, 37, 61, 74
dependency injection, 82–83, 317, 330

creating proxy instances, 279–280
external annotation files, 197
JAXB annotations

implementing type mappings with,
224–235

for XML messaging, 289–292
mapping annotations, 59–62, 78

WSDL/Java mapping and, 78
processing, 366–367
SEI (service endpoint interface),

273–278
standard binding, 14
standard serialization context,

14, 16, 39–40
SOA-J application framework, 485

standard WSDL/Java mapping,
38, 267–273

mapping annotations and, 78
“Start from Java” development mode,

40, 42, 44, 74
implementing type mappings, 224–235
Java/XML binding and, 59
Java/XML bindings and, 56

“Start from WSDL” development mode,
40–42, 44

server-side invocation, 316–320
“Start from WSDL and Java”

development mode,
41–42, 175–181

annotation-centric design and,
61, 74–75

Java/XML binding and, 58–59
JAX-WS 2.0 limitations, 175
role of Java/XML mapping, 175–181
SOAShopper case study, 417
WS-Metadata annotations and, 79–80

“Start from XML and Java” development
mode, 56

“Start from XML Schema” development
mode

implementing type mappings, 235–245
Java/XML bindings and, 56

@Stateless annotation, 83, 360
stateless session bean. See EJB

endpoints (WSEE)
static JAX-WS clients, 45–46
static WSDL, 45
style attribute (WSDL style), 152–153
sun-ejb-jar.xml descriptor, 372, 400–402
sun-web.xml descriptor, 398–399
Symmetric HTTPS, 405, 407

T
thread control, client-side, 50
tools, JWS as, 6–7
trade-offs, JWS, 36–43
Transformer class

(javax.xml.transform), 216
type mappings, 14–15, 54

binding tools and, 196
implementing with JAXB.

See JAXB 2.0 specification
Java/XML. See Java/XML binding
recursive framework for, 217–224
schema compiler, 57, 182–189, 196
schema generator,

59, 59–60, 189–194, 196
SFWJ development and, 61
WSDL/Java mapping, 38, 78, 267–273
XML/HTTP, 49, 132

572 Index

U
unmarshal method (XmlAdapter), 250
unmarshalling. See marshalling

(unmarshalling), JAXB
URL class (java.net)

pull messaging (HTTP GET), 98–100
push messaging (HTTP POST),

105–107
use attribute (WSDL style), 152–153

V
validation, 69–70, 329–332

server-side handlers for, 345–347
value classes, 57–58, 205–206

W
waitfor task, 404
WARs, packaging servlet endpoints with,

361–363
Web Services, as hard to learn, 2–7
Web Services Addressing (WS-

ADDRESSING), 152
Web services deployment descriptors,

360, 384–402
Web Services Platform Architecture.

See WSPA
Web services security, 405–407

SOAP message handlers, 304–305
@WebFault annotation, 49
@WebMethod annotation, 173, 277

operationName element, 77, 79
@WebParam annotation, 275, 278

name element, 78
@WebResult annotation, 173, 275, 277

name element, 78
@WebService annotation, 40, 41, 76,

173, 277, 316–318, 348
WebServiceContext interface

(javax.xml.ws), 317, 330
WebServiceException exception

(javax.xml.ws), 340–342
@WebServiceProvider annotation,

131–132, 321–323

@WebServiceRef annotation,
83, 279–280

webservices.xml descriptor, 357–358,
372, 395–397

web.xml descriptor, 384–389, 398
SOAShopper REST endpoint

deployment, 430
wrappers

document/literal wrapped style,
51, 159–162

for JAXB-generated code, 39
“Start from WSDL and Java”

development and, 75
writeTo method (SOAPMessage), 309
WS-ADDRESSING 1.0

specification, 152
WS-I Basic Profile, 153–154
WS-Metadata 2.0 specification,

31, 73–80, 357, 358
annotations, 37, 74–75, 78–79. See also

source code annotations
auto-deployment, 365
feature map, 76

WS-Security standard, 407
WSDL, 138–145, 360, 523

example of, 141–145
mapping to Java invocation. See

dispatching
mapping to Java targets, 44–45
one-way operations, 50
publishing, 16–17
SOA-J application framework,

7, 481–521
architecture, 483–486
building and deploying, 535
deployment subsystem, 514–519
invocation subsystem, 493–503
serialization subsystem, 503–514
WSDL-centric development with,

486–493
starting with (as development mode),

40–42
static, 45

Index 573

WSDL artifacts, deploying with,
381–384

WSDL documents, 29
WSDL faults

converting Java exceptions to, 49
inputMessageValidationFault fault,

143, 149
WSDL/Java mapping, 38, 267–273

mapping annotations and, 78
WSDL Mapping Annotations

(WS-Metadata), 78
WSDL port, determining, 151–153
WSDL styles, 50–51, 152–153

document/literal style, 156–159
document/literal wrapped style,

51, 159–162
rpc/literal style, 51, 154–156

document/literal styles vs., 159
SOAP messages for, 155

wsdl:binding element, 143–144
wsdl:fault element, 332–334, 340

fault handling with proxies, 282–285
JAX-WS WSDL/Java mapping,

271–273
wsdl:input element, 271
wsdl:message element, 142–143

in document/literal style, 157–158
in document/literal wrapped style,

160–161
JAX-WS WSDL/Java mapping,

271–273
in rpc/literal style, 155–156

wsdl:operation, 157
wsdl:operation element, 152, 276

asynchronous invocation. See
asynchronous invocation

identifying (dispatching process), 163
JAX-WS WSDL/Java mapping, 271

wsdl:output element, 271
wsdl:port element, 151–152

deploying SIB without descriptors,
377, 380

obtaining (dispatching process), 163
wsdl:portType element, 142–143

deploying SIB without descriptors,
376, 379

JAX-WS WSDL/Java mapping,
267–273

obtaining (dispatching process), 163
shortcomings of JAX-WS 2.0

dispatching, 165–175
wsdl:service element, 144–145
wsdl:serviceName element, 376, 380
wsdl:types element, 141–142

in document/literal style, 157–158
in document/literal wrapped style,

160–161
JAX-WS WSDL/Java mapping,

271, 273
in rpc/literal style, 155–156

WSEE 1.2 specification,
31, 80–82, 357–358

encryption with, 407
feature map, 81

WSIAP standard, 72–73
wsimport utility, 171, 266, 270–271, 435
WSPA (Web Services Platform

Architecture), 8–18

X
XML, invocation with, 46
XML annotations. See binding language

(JAXB 2.0)
XML Catalogs, 51–52
XML documents

with REST services, 97–114
getting EIS records with JWS,

101–105
getting EIS records without JWS,

98–100
sending EIS records with JWS,

110–114
sending EIS records without JWS,

105–109
XML/HTTP binding, 49, 132
XML/Java mappings. See Java/XML

binding

574 Index

XML messaging, 285–292
with custom annotated JAXB classes,

289–292
with raw XML, 286–289

XML Schema Version 1.0, 524
XML schemas, extracting, 330–332
XML service providers, 46–47
@XmlAccessorType annotation, 183,

204, 228–229, 230
XmlAdapter class

(javax.xml.bind.annotation),
245–256

@XmlAttachmentRef annotation, 73
@XmlAttribute annotation, 208, 233
@XmlElement annotation,

201, 204, 227, 231
@XmlElementWrapper annotation, 228
@XmlJavaTypeAdapter annotation,

61–62, 241, 245, 247–250, 255–256
@XmlMimeType annotation, 72

@XmlRootElement annotation,
55, 204, 227

@XmlSchema annotation, 229–230
namespace element, 201

@XmlType annotation, 204, 231, 233
XPath

for external bindings files, 64
for XSLT data transformations, 117

xsl:apply-templates instructions, 119–120
XSLT (Extensible Stylesheet Language

Transformations), 114–125
versus JAXB 2.0, for data

transformation, 256
processing in Java. See JAXP
schema generator and, 189–194
Version 1.0 standard, 524

xs:positiveInteger mapping, 201
xs:schema nodes, extracting, 330–332

Y
Yahoo! RESTful services, 444–449

	SOA Using Java Web Services
	Contents
	Foreword
	Preface
	About This Book

	Acknowledgments
	About the Author
	Chapter 1 Service-Oriented Architecture with Java Web Services
	1.1 Am I Stupid, or Is Java Web Services Really Hard?
	1.1.1 Don’t Drink That Kool-Aid
	1.1.2 JWS Is a Toolset, Not an Application Framework
	1.1.3 Epiphany

	1.2 Web Services Platform Architecture
	1.2.1 Invocation
	1.2.2 Serialization
	1.2.3 Deployment

	1.3 Java Web Services Standards: Chapters 2 through 8
	1.4 The SOAShopper Case Study: Chapters 9 and 10
	1.5 SOA-J and WSDL-Centric Development: Chapter 11

	Chapter 2 An Overview of Java Web Services
	2.1 The Role of JWS in SOA Application Development
	2.1.1 A Hypothetical SOA Application
	2.1.2 JWS Enables SOA Development

	2.2 A Quick Overview of the Ease-of-Use Features
	2.2.1 Source Code Annotations
	2.2.2 Standard WSDL/Java Mapping
	2.2.3 Standard Serialization Context
	2.2.4 Development Models
	2.2.5 JWS Trade-Offs

	2.3 JAX-WS 2.0
	2.3.1 Java/WSDL Mapping
	2.3.2 Static WSDL
	2.3.3 Dynamic and Static Clients
	2.3.4 Invocation with Java Interface Proxies
	2.3.5 Invocation with XML
	2.3.6 XML Service Providers
	2.3.7 Handler Framework
	2.3.8 Message Context
	2.3.9 SOAP Binding
	2.3.10 HTTP Binding
	2.3.11 Converting Exceptions to SOAP Faults
	2.3.12 Asynchronous Invocation
	2.3.13 One-Way Operations
	2.3.14 Client-Side Thread Management
	2.3.15 WSDL Styles—Support for RPC/Literal and Document/Literal Wrapped
	2.3.16 XML Catalogs
	2.3.17 Pseudoreference Passing (Holder<T> for Out and In/Out Parameters)
	2.3.18 Run-time Endpoint Publishing (Java SE Only)

	2.4 JAXB 2.0
	2.4.1 Binding XML Schema to Java Representations
	2.4.2 Mapping Java Types to XML Schema
	2.4.3 Mapping Annotations
	2.4.4 Binding Language
	2.4.5 Binding Run-time Framework (Marshal/Unmarshal)
	2.4.6 Validation
	2.4.7 Portability
	2.4.8 Marshal Event Callbacks
	2.4.9 Partial Binding
	2.4.10 Binary Data Encoding (MTOM or WS-I)

	2.5 WS-Metadata 2.0
	2.5.1 WSDL Mapping Annotations
	2.5.2 SOAP Binding Annotations
	2.5.3 Handler Annotations
	2.5.4 Service Implementation Bean
	2.5.5 Start from WSDL and Java
	2.5.6 Automatic Deployment

	2.6 WSEE 1.2
	2.6.1 Port Component
	2.6.2 Servlet Endpoints
	2.6.3 EJB Endpoints
	2.6.4 Simplified Packaging
	2.6.5 Handler Programming Model

	2.7 Impact of Other Java EE 5 Annotation Capabilities
	2.7.1 Dependency Injection
	2.7.2 Interceptors
	2.7.3 POJO Support in EJB 3.0

	2.8 Conclusions
	2.8.1 Configuring Your Environment to Build and Run the Software Examples

	Chapter 3 Basic SOA Using REST
	3.1 Why REST?
	3.1.1 What Is REST?
	3.1.2 Topics Covered in This Chapter

	3.2 XML Documents and Schema for EIS Records
	3.2.1 No WSDL Doesn’t Necessarily Mean No Interfaces

	3.3 REST Clients with and without JWS
	3.3.1 Getting EIS Records from a REST Service without Using JWS
	3.3.2 Getting EIS Records from a REST Service with JWS
	3.3.3 Sending EIS Records to a REST Service without Using JWS
	3.3.4 Sending EIS Records to a REST Service with JWS

	3.4 SOA-Style Integration Using XSLT and JAXP for Data Transformation
	3.4.1 How and Why to Use XSLT for Data Transformation
	3.4.2 XSLT Processing Using JAXP

	3.5 RESTful Services with and without JWS
	3.5.1 Deploying a REST Service without Using JWS
	3.5.2 Deploying a RESTful Service with JWS

	3.6 Conclusions

	Chapter 4 The Role of WSDL, SOAP, and Java/XML Mapping in SOA
	4.1 The Role of WSDL in SOA
	4.1.1 A WSDL Example

	4.2 The Role of SOAP in SOA
	4.3 Dispatching: How JAX-WS 2.0 Maps WSDL/SOAP to Java Invocation
	4.3.1 Determining the WSDL Port
	4.3.2 The Role of the WS-I Basic Profile
	4.3.3 RPC/Literal
	4.3.4 Document/Literal
	4.3.5 Document/Literal Wrapped
	4.3.6 Summary of the Dispatching Process
	4.3.7 Shortcomings of the JAX-WS 2.0 Dispatching for SOA Integration

	4.4 Working around Some JAX-WS 2.0 Dispatching Limitations
	4.5 SOA Often Requires “Start from WSDL and Java”
	4.5.1 The Role of Java/XML Mapping in SOA
	4.5.2 Limitations of JAXB 2.0 for Java/XML Mapping in SOA

	4.6 Working around JAXB 2.0 Java/XML Mapping Limitations
	4.6.1 Using the Schema Compiler and Java
	4.6.2 Using the Schema Generator and XSLT

	4.7 Conclusions

	Chapter 5 The JAXB 2.0 Data Binding
	5.1 Binding versus Mapping
	5.2 An Overview of the Standard JAXB 2.0 Java/XML Binding
	5.3 Implementing Type Mappings with JAXB 2.0
	5.4 A Recursive Framework for Type Mappings
	5.5 Implementing Type Mappings with JAXB 2.0 Annotations
	5.6 Implementing Type Mappings with the JAXB 2.0 Binding Language
	5.7 Implementing Type Mappings with the JAXB 2.0 XmlAdapter Class
	5.8 JAXB 2.0 for Data Transformation (Instead of XSLT)
	5.9 Conclusions

	Chapter 6 JAX-WS—Client-Side Development
	6.1 JAX-WS Proxies
	6.1.1 The JAX-WS WSDL to Java Mapping
	6.1.2 Service Endpoint Interface Annotations
	6.1.3 Invoking a Web Service with a Proxy
	6.1.4 Fault Handling with Proxies

	6.2 XML Messaging
	6.2.1 XML Messaging with Raw XML
	6.2.2 XML Messaging with Custom Annotated JAXB Classes

	6.3 Invocation with Custom Java/XML Mappings: An Example Using Castor Instead of JAXB
	6.4 Asynchronous Invocation
	6.4.1 Polling
	6.4.2 Asynchronous Methods with Proxies
	6.4.3 Callback

	6.5 SOAP Message Handlers
	6.6 Conclusions

	Chapter 7 JAX-WS 2.0—Server-Side Development
	7.1 JAX-WS Server-Side Architecture
	7.2 Start from WSDL Using a Service Endpoint Interface (SEI)
	7.3 Providers and XML Processing without JAXB
	7.4 Deploying Web Services Using Custom Java/XML Mappings
	7.5 Validation and Fault Processing
	7.5.1 Validation
	7.5.2 Fault Processing

	7.6 Server-Side Handlers
	7.7 Java SE Deployment with javax.xml.ws.Endpoint
	7.8 Conclusions

	Chapter 8 Packaging and Deployment of SOA Components (JSR-181 and JSR-109)
	8.1 Web Services Packaging and Deployment Overview
	8.1.1 Packaging a Servlet Endpoint Using a WAR
	8.1.2 Packaging an EJB Endpoint Using an EJB-JAR
	8.1.3 Auto-Deployment
	8.1.4 Overview of the Container’s Deployment Processing
	8.1.5 EJB Endpoint Deployment and Dispatching

	8.2 Deployment without Deployment Descriptors
	8.2.1 Using Only a Service Implementation Bean
	8.2.2 Using a Service Endpoint Interface
	8.2.3 Including a WSDL Artifact

	8.3 Using Deployment Descriptors
	8.3.1 web.xml for Servlet Endpoints
	8.3.2 ejb-jar.xml for Stateless Session Bean Endpoints
	8.3.3 When to Use webservices.xml
	8.3.4 Platform-Specific Deployment Descriptors

	8.4 Automatic Deployment with GlassFish
	8.5 Web Services Security
	8.6 OASIS XML Catalogs 1.1
	8.7 Wrapping Up

	Chapter 9 SOAShopper: Integrating eBay, Amazon, and Yahoo! Shopping
	9.1 Overview of SOAShopper
	9.2 SOAShopper SOAP Services
	9.3 An SOAShopper RESTful Service and the Standard XML Schema
	9.4 Service Implementation
	9.5 eBay and Amazon Services (SOAP)
	9.6 Yahoo! Services (REST)
	9.7 SOAShopper API and the Integration Layer
	9.8 Conclusions about Implementing Real-World SOA Applications with Java EE

	Chapter 10 Ajax and Java Web Services
	10.1 Quick Overview of Ajax
	10.2 Ajax Together with Java EE Web Services
	10.3 Sample Code: An Ajax Front-End for SOAShopper
	10.4 Conclusions about Ajax and Java EE

	Chapter 11 WSDL-Centric Java Web Services with SOA-J
	11.1 SOA-J Architecture
	11.2 WSDL-Centric Development with SOA-J
	11.3 Invocation Subsystem
	11.4 Serialization Subsystem
	11.5 Deployment Subsystem
	11.6 Conclusions

	Appendix A Java, XML, and Web Services Standards Used in This Book
	Appendix B Software Configuration Guide
	B.1 Install Java EE 5 SDK
	B.2 Install Apache Ant 1.7.x
	B.3 Install Apache Maven 2.0.x
	B.4 Install the Book Example Code
	B.5 Configure Maven
	B.6 Configure Ant
	B.7 Starting and Stopping the GlassFish Server
	B.8 Test the Installation by Running an Example
	B.9 Build and Deploy the SOAShopper Case Study (Chapters 9 and 10)
	B.10 Build and Deploy the SOA-J Application Framework (Chapter 11)
	B.11 Install Java SE 6 (Optional)

	Appendix C Namespace Prefixes
	Glossary
	A
	B
	D
	E
	F
	H
	I
	J
	M
	N
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	References
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y

