SOA Using
Java~ Web Services

Mark D. Hansen

PRENTICE
HALL

Upper Saddle River, NJ ¢ Boston ¢ Indianapolis ¢ San Francisco
New York ¢ Toronto ® Montreal ¢ London ¢ Munich ¢ Paris ¢ Madrid
Capetown ¢ Sydney ¢ Tokyo ¢ Singapore ¢ Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: www.prenhallprofessional.com
Library of Congress Cataloging-in-Publication Data

Hansen, Mark D.

SOA Using Java Web Services / Mark D. Hansen.

cm.

Includes bibliographical references and index.

ISBN 978-0-13-044968-9 (pbk. : alk. paper) 1. Web services.

2. Java (ComputOer program language) 3. Computer network architectures. I.
Title.

TK5105.88813.H35 2007

006.76—dc22

2007009650

Copyright © 2007 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission
in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc.

Rights and Contracts Department

One Lake Street

Upper Saddle River, NJ 07458

Fax: (201) 236-3290

ISBN-13: 978-0-13-044968-9
ISBN-10: 0-13-044968-7

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, April 2007

Contents

Chapter 1

Chapter 2

Foreword e XV
Preface e Xix

About This BOOK . . . o it it e e e e e e e e e e XXi
Acknowledgments e XXVii
About the Author XXiX

Service-Oriented Architecture with Java
WebServicesccueeunsnnnnnnnnnnnnnsnssd

1.1 Am | Stupid, or Is Java Web Services Really Hard? 2
1.1.1 Don’t Drink That Kool-Aid 4
1.1.2 JWS Is a Toolset, Not an Application Framework 6
1.1.3 Epiphany 7
1.2 Web Services Platform Architecture 8
1.2.1 INVOCAtiON .« o v v i e e e e e e 8
1.2.2 Serialization e 11
1.2.3 Deployment e 16
1.3 Java Web Services Standards: Chapters 2 through 8. 18
1.4 The SOAShopper Case Study: Chapters Qand 10 21
1.5 SOA-J and WSDL-Centric Development: Chapter 11 22

An Overview of JavaWeb Services. cccneus:x 25

2.1 The Role of JWS in SOA Application Development 26
2.1.1 A Hypothetical SOA Applicationc...... 26
2.1.2 JWS Enables SOA Development.o v i ... 29
2.2 A Quick Overview of the Ease-of-Use Features 36
2.2.1 Source Code Annotationsuuueuuunn... 37
2.2.2 Standard WSDL/Java Mapping 38
2.2.3 Standard Serialization Context 39
2.2.4 DevelopmentModelst 40
2.2.5 JWSTrade-Offs 42

vii

viii Contents

2.3

2.4

2.5

2.6

JAXAWS 2.0 e 43
2.3.1 Java/WSDLMappingo v v it i e it e e 44
2.3.2 StaticWSDL . ..o e e e e e 45
2.3.3 Dynamicand StaticClients., 45
2.3.4 Invocation with Java Interface Proxies 46
2.3.5 Invocationwith XML 46
2.3.6 XML Service Providers 46
2.3.7 Handler Framework vttt i e e e 47
2.3.8 Message CoNtext . . . v v v vt i vttt e e e 48
2.3.9 SOAPBINAING .« o oo v e e e e e e e e e 48
2.3.10 HTTPBINAING . .+« o o i e e e e e e e e e e e e e e e e s 49
2.3.11 Converting Exceptions to SOAP Faults 49
2.3.12 Asynchronous Invocation v s 50
2.3.13 One-Way Operations iiiiinnnnnnnnnn 50
2.3.14 Client-Side Thread Management 50
2.3.15 WSDL Styles—Support for RPC/Literal and

Document/Literal Wrapped i 50
2.3.16 XMLCatalogs . .o v v v vttt e it e e e e e e 51
2.3.17 Pseudoreference Passing (Holder<T> for Out

and In/Out Parameters) oo it e e 52
2.3.18 Run-time Endpoint Publishing (Java SEOnly) 52
JAXB 2.0 .. e e 54
2.4.1 Binding XML Schema to Java Representations 57
2.4.2 Mapping Java Types to XML Schema 59
2.4.3 Mapping Annotations e 59
2.4.4 BiINdiNgLANGUAZE . « « « v v v v e e e e e e 62
2.4.5 Binding Run-time Framework (Marshal/Unmarshal) 65
2.4.6 Validationt e e e e 69
247 Portability . . . v it e e e e 70
2.4.8 Marshal Event Callbacksc.. ... 71
2.4.9 Partial Binding e e 71
2.4.10 Binary Data Encoding MTOM OorWS-)ot 72
WS-Metadata 2.0 73
2.5.1 WSDL Mapping Annotations 78
2.5.2 SOAP Binding Annotationsc....... 78
2.5.3 Handler Annotations 79
2.5.4 Service ImplementationBean, 79
255 StartfromWSDLandJavacovuiiiunnn.. 79
2.5.6 Automatic Deployment 80
WSEE 1.2 .. e 80
2.6.1 PortComponent. it 81
2.6.2 ServletEndpoints it 81
2.6.3 EJBENAPOINIS i it i i e 82
2.6.4 Simplified Packagingt 82

2.6.5

Handler Programming Model 82

Contents ix

Chapter 3

Chapter 4

2.7

2.8

Impact of Other Java EE 5 Annotation Capabilities 82
2.7.1 Dependency Injectionttt 82
2.7.2 INterceptors . .. v it ittt e e 83
2.7.3 POJOSupportinEJB3.0ttt 83
CONCIUSIONS . . o o 84
2.8.1 Configuring Your Environment to Build and Run the

Software EXamples . . v v v v it e 84

Basic SOAUSINng REST:.cccvvuusess-:85

3.1

3.2

3.3

3.4

3.5

3.6

Why REST 2. e e e e 85
3.1 Whatls REST?. . . .ot e e e e e e e 86
3.1.2 Topics Covered in ThisChapter, 87
XML Documents and Schema for EIS Records 88
3.2.14 No WSDL Doesn’t Necessarily Mean No Interfaces 96
REST Clients with and without JWS 97
3.3.1 Getting EIS Records from a REST Service

without Using JWS e e 98
3.3.2 Getting EIS Records from a REST Service with JWS 101
3.3.3 Sending EIS Records to a REST Service

without Using JWS i . 105
3.3.4 Sending EIS Records to a REST Service with JWS 110
SOA-Style Integration Using XSLT and JAXP for Data
Transformation 114
3.4.1 How and Why to Use XSLT for Data Transformation 115
3.4.2 XSLT Processing USing JAXPo .. 121
RESTful Services with and without JWS 125
3.5.1 Deploying a REST Service without Using JWS 126
3.5.2 Deploying a RESTful Service with JWS 131
CONCIUSIONS . . . o e 136

The Role of WSDL, SOAP, and Java/XML
MappinginSOA..........ccveeenssnnnnnnnss 137

4.1

4.2
4.3

The Role of WSDLin SOA 138
411 AWSDLExample 141
The Role of SOAP in SOA 145
Dispatching: How JAX-WS 2.0 Maps WSDL/SOAP to

Javalnvocation. 151
4.3.1 Determiningthe WSDLPort 151
4.3.2 The Role of the WS-l Basic Profile 153
4.3.3 RPC/Literalo i e e e e e e 154
4.3.4 Document/Literalo v i it 156

4.3.5 Document/Literal Wrappedo ... 159

X Contents

Chapter 5

Chapter 6

4.4
4.5

4.6

4.7

4.3.6 Summary of the Dispatching Process 162
4.3.7 Shortcomings of the JAX-WS 2.0 Dispatching for

SOA Integrationo i e 165
Working around Some JAX-WS 2.0 Dispatching Limitations .. 166
SOA Often Requires “Start from WSDL and Java” 175
4.5.1 The Role of Java/XML Mapping in SOA 178
4.5.2 Limitations of JAXB 2.0 for Java/XML Mapping in SOA 180
Working around JAXB 2.0 Java/XML Mapping Limitations ... 182
4.6.1 Using the Schema CompilerandJava 182
4.6.2 Using the Schema Generatorand XSLT 189
CoNCIUSIONS . . oo e e 194

The JAXB 2.0 DataBinding195

5.1
5.2
5.3
5.4
5.5
5.6

5.7

5.8
5.9

Binding versus Mapping i 195
An Overview of the Standard JAXB 2.0 Java/XML Binding 199
Implementing Type Mappings with JAXB2.0 209
A Recursive Framework for Type Mappings 217
Implementing Type Mappings with JAXB 2.0 Annotations 224
Implementing Type Mappings with the JAXB 2.0

Binding Language 235
Implementing Type Mappings with the JAXB 2.0

XmlAdapter Class it e e 245
JAXB 2.0 for Data Transformation (Instead of XSLT) 256
CoNCIUSIONS . v oo e e 262

JAX-WS—Client-Side Development 265

6.1

6.2

6.3

6.4

JAXAWS Proxies . ..o oo e e e e 265
6.1.1 The JAX-WS WSDL to Java Mapping 267
6.1.2 Service Endpoint Interface Annotations 273
6.1.3 Invoking a Web Service witha Proxy 279
6.1.4 Fault Handling with Proxieso vi i on.. 282
XML MeESSagingo ittt e et e e e 285
6.2.1 XML MessagingwithRaw XML 286
6.2.2 XML Messaging with Custom Annotated JAXB Classes 289
Invocation with Custom Java/XML Mappings: An Example

Using Castor Instead of JAXB. o it 292
Asynchronous Invocation o i e e 297
6.4.1 Polling e e e e 297
6.4.2 Asynchronous Methods with Proxies 299

6.43 Callback........ ... 301

Contents Xi

Chapter 7

Chapter 8

6.5
6.6

SOAP Message Handlers. 304
CoNCIUSIONS . . . e e e 310

JAX-WS 2.0—Server-Side Development 311

7.1
7.2
7.3
7.4

7.5

7.6

7.7
7.8

JAX-WS Server-Side Architecture.. 311
Start from WSDL Using a Service Endpoint Interface (SEl) ... 316
Providers and XML Processing without JAXB 320
Deploying Web Services Using Custom Java/XML

MapPPINES v v vt e 325
Validation and Fault Processing 329
7.5.14 Validation e 329
7.5.2 Fault Processing ennnnnnnnn 332
Server-Side Handlers i 343
Java SE Deployment with javax.xml.ws.Endpoint 347
CoNClUSIONS .« . . oo 355

Packaging and Deployment of SOA Components
(JSR-181and JSR-109)c:ccvuccennnsass 357

8.1

8.2

8.3

8.4
8.5
8.6
8.7

Web Services Packaging and Deployment Overview 359
8.1.1 Packaging a Servlet Endpoint Usinga WAR 361
8.1.2 Packaging an EJB Endpoint Using an EJB-JAR 363
8.1.3 Auto-Deployment 365
8.1.4 Overview of the Container’s Deployment Processing 365
8.1.5 EJB Endpoint Deployment and Dispatching 371
Deployment without Deployment Descriptors 376
8.2.1 Using Only a Service ImplementationBean 376
8.2.2 Using a Service Endpoint Interface 378
8.2.3 Including a WSDL Artifact 381
Using Deployment Descriptors oot 384
8.3.1 web.xml for Servlet Endpoints 384
8.3.2 ejbjar.xml for Stateless Session Bean Endpoints 390
8.3.3 When to Use webservices.xml, 395
8.3.4 Platform-Specific Deployment Descriptors 397
Automatic Deployment with GlassFish 402
Web Services Security 405
OASISXML Catalogs 1.1 oot e e e 407

Wrapping Up . .. oo 409

Xii Contents

Chapter 9

Chapter 10

Chapter 11

Appendix A

Appendix B

SOAShopper: Integrating eBay, Amazon, and
Yahoo!Shopping ittt nnneaa.:.411

9.1 Overview of SOAShopper i i i 411
9.2 SOAShopper SOAP Services 417
9.3 An SOAShopper RESTful Service and the Standard XML

Schema e e 423
9.4 Service Implementation. oo, 431
9.5 eBay and Amazon Services (SOAP) 434
9.6 Yahoo! Services (REST) 444
9.7 SOAShopper API and the Integration Layer 450
9.8 Conclusions about Implementing Real-World SOA

Applications withJavaEE 460

Ajax and Java Web Services::vc:sus...463

10.1 Quick Overview of Ajax 464
10.2 Ajax Together with Java EE Web Services 468
10.3 Sample Code: An Ajax Front-End for SOAShopper 470
10.4 Conclusions about Ajaxand JavaEE 479

WSDL-Centric Java Web Services with SOA-J 481

11.1 SOA-J Architecturet i e 483
11.2 WSDL-Centric Development with SOA-J 486
11.3 Invocation Subsystem o e 493
11.4 Serialization Subsystem oo 503
11.5 Deployment Subsystem. i 514
11.6 ConClUSIONS . . o ot i 519

Java, XML, and Web Services Standards
UsedinThisBookccituunnnssssaaa523

Software Configuration Guide.................525

B.1 InstallJavaEES5SDK 526
B.2 Install Apache Ant 1.7.X 527
B.3 Install Apache Maven 2.0.Xo i it i e i 527

B.4 Install the Book Example Code 528

Contents Xiii

Appendix C

B.5 Configure Maven 528
B.6 Configure Ant 530
B.7 Starting and Stopping the GlassFish Server 532
B.8 Test the Installation by Running an Example 532
B.9 Build and Deploy the SOAShopper Case Study

(Chapters 9and 10) i i e i e 534
B.10 Build and Deploy the SOA-J Application Framework

(Chapter 1)ot e e e e e e e 535
B.11 Install Java SE 6 (Optional) 535

Namespace PrefiXxes.....ccceceicennnnnnsnsss 537

GloSSarNY . . vt e 539
References e 555
INAEX .t e e e 561

Foreword

Pat Helland, formerly of Microsoft, has a great acronym he likes to use
when talking about interoperability: HST, or “Hooking Stuff Together.”
(Actually, he uses an altogether different word there in the middle, but I'm
told this is a family book, so I paraphrased.) No matter how much you dress
it up in fancy words and complex flowcharts, interoperability simply means
“Hooking Stuff Together’—something Web Services are all about.

Ever since the second computer came online, True Interoperability
remains the goal that still eludes us. IT environments are home to a wide array
of different technologies, all of which serve some useful purpose (or so I'm
told). Despite various vendors” attempts to establish their tool of choice as the
sole/dominant tool for building (and porting) applications, the IT world has
only become more—not less—diverse. Numerous solutions have been posited
as “the answer” to the thorny problem of getting program “A” to be able to talk
to program “B,” regardless of what language, platform, operating system, or
hardware the two programs are written in or running on. None had proven to
be entirely successful, either requiring an “all-or-nothing” mentality, or offering
only solutions to handle the simplest situations and nothing more.

In 1998, Don Box and Dave Winer, along with a couple of guys from
Microsoft, IBM, and Lotus, sat down and wrote a short document
describing an idea for replicating a remote procedure call stack into an
XML message. The idea was simple: If all of the various distributed object
toolkits available at the time—DCOM, Java RMI, and CORBA being the
principal concerns—shared a common wire format, it would be a simple
matter to achieve the Holy Grail of enterprise IT programming: True
Interoperability.

In the beginning, SOAP held out the prospect of a simpler, better way
to Hook Stuff Together: XML, the lingua franca of data, passed over HTTP,
the Dark Horse candidate in the Distributed Object wars, with all the
semantics of the traditional distributed object programming model sur-
rounding it. It seemed an easy prospect; just slip the XML in where nobody
would see it, way down deep in the distributed object’s generated code.
What we didn’t realize at the time, unfortunately, was that this vision was all

XV

XVi

Foreword

too simplistic, and horribly naive. It might work for environments that were
remarkably similar to one another (a la Java and .NET), but even there,
problems would arise, owing to differences XML simply couldn’t wash
away. Coupled with the fact that none of the so-called standards was, in fact,
a standard from any kind of legitimate standards body, and that vendors
were putting out “WS-Foo” specifications every time you turned around,
the intended simplicity of the solution was, in a word, absent. In fact, to put
it bluntly, for a long time, the whole Web Services story was more “mess”
than “message.”

In Chapter 1 of this book, Mark Hansen writes, “Web Services are not
easy.” Whatever happened to the “Simple” in “SOAP?”

Ironically, even as Web Services start to take on “dirty word” status,
alongside EJB and COBOL, the message is becoming increasingly clear,
and the chances of “getting it right” have never been higher. Distractions
such as the SOAP versus REST debate aside (which really isn’t a debate, as
anyone who’s really read the SOAP 1.2 spec and the REST dissertation can
tell), the various vendors and industry groups are finally coming to a point
where they can actually Hook Stuff Together in more meaningful ways than
just “T'll pass you a string, which you'll parse....”

As an instructor with DevelopMentor—where I taught Java, NET, and
XML—I had the privilege of learning about SOAP, WSDL, and Web Ser-
vices from the very guys who were writing the specs, including Don Box and
Martin Gudgin, our representative to the W3C, who helped coauthor the
SOAP and Schema specs, among others. As an industry consultant focused
on interoperability between Java, NET, and other platforms, I get a unique
first-person view of real-world interoperability problems. And as an inde-
pendent speaker and mentor, I get to study the various interoperability tool-
kits and see how well they work.

Not everybody gets that chance, however, and unless you're a real low-
level “plumbing” wonk like T am, and find a twisted joy in reading through
the myriad WS-*-related specifications, things like SOAP and WSDL
remain arcane, high-bar topics that seemingly nobody in his or her right
mind would attempt to learn, just to get your Java code to be able to talk to
other platforms. That’s okay; quite honestly, you shouldn’t have to. If you
have to absorb every level of detail in a given programming environment in
order to use it, well, something is wrong.

The JAX-WS and JAXB standards were created to help you avoid hav-
ing to know all those low-level, byzantine details of the Web Services
plumbing, unless and until you want to. Mark’s book will help you navigate
through the twisty parts of JAX-WS and JAXB because he’s been there. He
had to fight his way through the mess to get to the message, and now he’s

Foreword Xvii

going to turn around and act as your guide—Virgil to your Dante, if you
will—through the rocky parts.

Because in the end, all of this is supposed to be about Hooking Stuff
Together.

—Ted Neward
Java, NET, XML Services
Consulting, Teaching, Speaking, Writing
www.tedneward.com

Preface

Java became a powerful development platform for Service-Oriented Archi-
tecture (SOA) in 2006. Java EE 5, released in May 2006, significantly
enhanced the power and usability of the Web Services capabilities on the
application server. Then Java SE 6, released in December 2006, incorpo-
rated the majority of those capabilities into the standard edition of the Java
programming language.

Because robust Web Services technology is the foundation for imple-
menting SOA, Java now provides the tools modern enterprises require to
integrate their Java applications into SOA infrastructures.

Of course, Java has had basic Web Services capabilities for some time.
JAX-RPC 1.0 was released in June 2002. J2EE 1.4, finalized in November
2003, included JAX-RPC 1.1. So what is significant about the latest versions
of the Java Web Services (JWS) APIs?

The answers are power and ease of use. Programmers will find it much
easier to build enterprise-class applications with Web Services in Java EE 5
than in J2EE 1.4. Evidence of that is contained in Chapters 9 and 10, which
describe an application I developed to integrate online shopping across
eBay, Yahoo! Shopping, and Amazon. Its a pure Java EE 5 application,
called SOAShopper, that consumes REST and SOAP services from those
shopping sites. SOAShopper also provides its own SOAP and REST end-
points for cross-platform search, and supports an Ajax front-end. SOAShop-
per would have been a struggle to develop using J2EE 1.4 and JAX-RPC.
With the new Java Web Services standards, it was a pleasure to write.

This book focuses on the following standards comprising the new Java
Web Services:

m JAX-WS 2.0 [JSR 224]—The Java API for XML-Based Web Ser-
vices. The successor to JAX-RPC, it enables you to build and con-
sume Web services with Java.

m JAXB 2.0 [JSR 222]—The Java Architecture for XML Binding.
Tightly integrated with JAX-WS, the JAXB standard controls how
Java objects are represented as XML.

Xix

XX

Preface

m WS-Metadata [JSR 181]—Web Services Metadata for the Java Plat-
form. WS-Metadata provides annotations that facilitate the flexible
definition and deployment of Java Web Services.

m WSEE 1.2 [JSR 109]—Web Services for Java EE. WSEE defines the
programming model and run-time behavior of Web Services in the
Java EE container.

These standards contain a few big improvements and many little
enhancements that add up to a significantly more powerful Web Services
programming platform. New annotations, for example, make it easier to
write Web Services applications. And the delegation, in JAX-WS 2.0 [JSR
224], of the Java/XML binding to JAXB 2.0 [JSR 222] greatly improves the
usability of JAX-WS as compared with JAX-RPC. The deployment model
has been greatly simplified by WS-Metadata 1.0 [JSR 181] and an improved
1.2 release of WSEE [JSR-109].

Chapters 1 and 2 review these JWS standards in detail and describe
how they improve on the previous set of JWS standards. Chapters 3 through
10 focus on writing code. To really understand the power and ease of use of
the new Java Web Services, you need to start writing code. And that is pri-
marily what this book is about. Chapters 3 through 10 are packed with code
examples showing you how to best take advantage of the powerful features,
avoid some of the pitfalls, and work around some of the limitations.

Chapter 11 looks to the future and offers some ideas, along with a pro-
totype implementation, for a WSDL-centric approach to creating Web Ser-
vices that might further improve JWS as a platform for Service-Oriented
Architecture.

I started writing this book in 2002, when JAX-RPC first appeared on the
scene. I soon ran into trouble, though, because I wanted it to be a book for
programmers and I had a hard time writing good sample code with JAX-
RPC. Four years later, when I started playing around with beta versions of
the GlassFish Java EE 5 application server, I noticed that things had signifi-
cantly improved. It was now fun to program Web Services in Java and I
recommitted myself to finishing this book.

The result is a book with lots of code showing you how to deal with
SOAP, WSDL, and REST from inside the Java programming language.
Hopefully this code, and the writing that goes with it, will help you master
Java Web Services and enable you to start using Java as a powerful platform
for SOA.

Preface XXi

About This Book

An Unbiased Guide to Java Web Services for SOA

My primary goal in this book is to offer an unbiased guide to using the Java
Web Services (JWS) standards for SOA. Of course, any author has a bias,
and I admit to believing that the JWS standards are quite good. Otherwise,
I would not have written this book.

Having admitted my bias, I also freely admit that JWS has weaknesses,
particularly when it comes to the development approach known as Start
from WSDL and Java. As you will see described in many different ways in
this book, the JWS standards present a Java-centric approach to Web Ser-
vices. That approach can be troublesome when you need to work with
established SOA standards and map your Java application to existing XML
Schema documents and WSDLs.

In such situations, its helpful to be able to take a WSDL-centric
approach to Web Services development. In this area, JWS is less strong.
Throughout the book, I point out those shortcomings, and offer strategies
you can use to overcome them. Chapter 11 even offers a prototype frame-
work, called SOA-], that illustrates an alternative, WSDL-centric approach
to Java Web Services.

Written for Java Developers and Architects

This is a book for people who are interested in code—primarily the devel-
opers who write systems and the architects who design them. There are a
lot of coding examples you can download, install, and run.

Being a book for Java programmers working with Web Services, the dis-
cussion and examples provided within assume you have a working knowledge
of Java and a basic understanding of XML and XML Schema. You don’t need
to know a lot about SOAP or WSDL to dive in and start learning. However, as
you go along in the book, you might want to browse through an introductory
tutorial on WSDL and/or XML Schema if you need to firm up your grasp on
some of the Web Services basics. Throughout the book, I offer references to
Web sites and other books where you can brush up on background material.

Knowledge of J2SE 5.0 Is Assumed

This book assumes you have a basic understanding of J2SE 5.0—particu-
larly the Java language extensions generics and annotations. If you are not

xXxii

Preface

familiar with generics or annotations, you can learn all you need to know
from the free documentation and tutorials available at http:/java.sun.com.

Don't be intimidated by these topics. Generics and annotations are not
hard to master—and you need to understand them if you are going to do
Web Services with Java EE 5 and Java SE 6. The reason I have not written
an introduction to generics and annotations as part of this book is that there
is so much good, free information available on the Web. My focus in this
book is to go beyond what is freely available in the online tutorials and doc-
umentation.

Why GlassFish?

All the code examples presented in this book have been developed and
tested using the GlassFish [GLASSFISH] open source Java EE 5 reference
implementation. At the time I wrote this, it was the only implementation
available. Now that the book is going to press, there are more, and the code
should run on all these platforms without change. The only changes that
will need to be made have to do with the build process where GlassFish
specific tools (e.g., the wsimport WSDL to Java compiler, the asadmin
deployment utility) are used.

I plan to test the example code on other platforms as they become avail-
able and to post instructions for running them on JBoss, BEA, IBM, and so
on, as these vendors support the JWS standards. Check the book’s Web site
(http://soabook.com) for updates on progress with other platforms.

If you haven't tried GlassFish, I suggest you check it out at https://
glassfish.dev.java.net. It supports the cutting edge in Java EE and the
community is terrific. In particular, I've had good experiences getting
technical support on the mailing lists. It's not uncommon to post a ques-
tion there and have one of the JSR specification leads respond with an
answer within minutes!

Why Some Topics Aren’t Covered

Both SOA and Web Services are vast topics. Even when restricting the dis-
cussion to Java technology, it is impossible to cover everything in one book.
Faced with that reality, I decided to focus on what I consider to be the core
issues that are important to Java developers and architects. The core issues
involve creating, deploying, and invoking Web Services in a manner that
enables them to be composed into loosely coupled SOA applications.

Preface XXxiii

In narrowing the book’s focus, it is inevitable that I will have disap-
pointed some readers because a particular topic of interest to them isn't
covered. Some of these topics, pointed out by my reviewers, are listed here,
along with the reasons why I didn’t include them.

SOA Design Principles

This is not a book that covers the concepts and design philosophy behind
SOA. It is a how-to book that teaches Java developers to code SOA com-
ponents using Java Web Services. For a thorough introduction to SOA
concepts and design, I recommend Thomas Erls Service-Oriented
Architecture [Erl].

UDDI

UDDI is very important. And Java EE 5 includes the JAX-R standard inter-
face to UDDI repositories. But JAX-R hasn’t changed since J2EE 1.4. And
it is covered well in many other books and online tutorials. So, in an effort to
keep this book to a manageable size, I have left it out.

Enterprise Messaging

I wish I could have included a chapter on Enterprise Messaging. After all, it is
a cornerstone of SOA. However, this book restricts itself to the capabilities
provided by JWS. JWS does not support WS-Reliable Messaging [WS-RM]
or any other SOAP/WSDL-oriented reliable messaging mechanism. Of
course, Java EE 5 includes support for the Java Message Service API (JMS).
And JMS is a useful tool for implementing SOA applications. But by itself,
JMS isn’t a Web Services tool. So, in the interest of focus, I have left it out.

WS-Addressing, WS-Security, and the Many Other WS-* Standards

Explaining the myriad standards for the Web Services stack would require
many thousands of pages. Since these WS-* standards are not yet part of
JWS, T have not covered them. In addition, my sense is that most Java
developers are still mastering SOAP over HTTP. The need for a program-
mer’s guide to WS-+ is probably several years away.

XXiv

Preface

Fonts and Special Characters

Courier font is used for Java types, XML Schema components, and all code
examples included in the text. For example:

java.lang.String—a Java class (fully qualified)
MyPurchaseOrder—a Java class

xs:string—an XML Schema type
po:billTo—an XML Schema global element

Courier font is also used to signify software-environment-specific items
(e.g., paths, directories, environment variables) and text interactions with
the computer. For example:

JAVA_HOME—an environment variable
$JAVA_ HOME/bin—a directory
mvn install—an instruction typed into the console

Italics indicate that a term is defined in the glossary. I don’t always use
italics—only when a term may not have been used before and I think the
reader might want to know it is defined in the Glossary. For example, Chap-
ter 2 uses this sentence:

When a service implementation bean (SIB) with minimal source
code annotations is deployed, the resulting WSDL is based on this
default mapping.

In this usage, the term “service implementation bean” has not yet been
defined.

Italics may also be used for emphasis, as in this example:

However, while the standard mapping makes it easy to deploy a Web
Service, it is not clear that the result is a useful Web Service.

<> indicates an environment specific directory location. For example:
<appserver>—the location where the Java EE 5 application server is

installed
<book-code>—the location where the book example code is installed

Preface XXV

Code Fragments in Text

The text contains lots of code fragments to illustrate the discussion. At the
bottom of each code fragment is the file path showing where it came from.
So, for example, the following code fragment comes from <book-code>/
chap03/eisrecords/src/xml/orderxml. Moreover, the line numbers on the
left show you the line number in the file where the code comes from.

4 <Order xmlns="http://www.example.com/oms"

5 xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
6 xsi:schemalLocation="http://www.example.com/oms
7 http://soabook.com/example/oms/orders.xsd">

8 <OrderKey>ENT1234567</0rderKey>

9 <OrderHeader>

10 <SALES_ORG>NE</SALES_ORG>

11 <PURCH_DATE>2005—12—09</PURCH_DATE>

12 <CUST_NO>ENT0072123</CUST_NO>

13 <PYMT_METH>PO</PYMT_METH>

14 <PURCH_ORD_NO>P0-72123-0007</PURCH_ORD_NO>
15 <WAR_DEL_DATE>2005-12-16</WAR DEL_DATE>

16 </OrderHeader>

17 <OrderItems>

18 <item>

19 <ITM_NUMBER>0 12345</ITM_NUMBER>

20 <STORAGE_LOC>NE 02</ STORAGE_LOC>

21 <TARGET QTY>50</TARGET QTY>

22 <TARGET_UOM>CNT</ TARGET UOM>

23 <PRICE_PER UOM>7.95</PRICE_PER UOM>

24 <SHORT_TEXT>7 mm Teflon Gasket</SHORT_ TEXT>
25 </item>

26 <item>

27 <ITM_NUMBER>543210</ITM_NUMBER>

28 <TARGET QTY>5</TARGET QTY>

29 <TARGET UOM>KG</TARGET UOM>

30 <PRICE_PER UOM>12.58</PRICE_PER_UOM>

31 <SHORT TEXT>Lithium grease with PTFE/Teflon</SHORT TEXT>
32 </item>

33 </OrderItems>

34 <OrderText>This order is a rush.</OrderText>

35 </Order>

book-code/chap03/eisrecords/src/xml/order.xml

Acknowledgments

I could not have written this book without help and support from many tal-
ented people. In particular, I am indebted to everybody in the Project
GlassFish community for providing valuable insights that appear through-
out this book. In particular, I'd like to recognize Stephen DiMilla, Jerome
Dochez, Joseph Fialli, Mike Grogan, Doug Kohlert, Kohsuke Kawaguchi,
Jitendra Kotamraju, Bhakti Mehta, Carla Mott, Dhiru Pandey, Vivek Pan-
dey, Dinesh Patil, Eduardo Pelegri-Llopart, Vijay Ramachandran, and
Kathy Walsh. From among this list, additional thanks are owed to Vijay
Ramachandran and Doug Kohlert at Sun Microsystems for reviewing the
chapters on WS-Metadata, WSEE, and JAX-WS.

I first considered this project when Professor Stuart Madnick invited
me to be a visiting scholar at MIT where I conducted research on process
and data integration using Web Services technology. Working with him and
his research team sparked my interest in Java Web Services and eventually
led to this book.

Bruce Scharlau, Art Sedighi, and Matt Anderson reviewed early ver-
sions of this book and provided many helpful comments that have been
incorporated.

I would also like to acknowledge my friends in Bangalore, India—
Kishore Gopalakrishna and his team: Rohit Agarwal, Vinit Sharma, and
Rohit Choudhary. They provided invaluable contributions to the SOA-]
project described in Chapter 11.

Ted Neward provided insightful comments and graciously agreed to
write the Foreword. It is a great privilege to have him associated with this
project.

This book could never have happened without the patient guidance of
my editor, Greg Doench, at Prentice Hall. His wisdom and experience were
invaluable. T'd also like to thank Michelle Housley, Julie Nahil, Dmitri
Korzh, and all the staff at Prentice Hall for shepherding this book through
the publication process.

On the home front, my children, Elizabeth, Eric, and Emily, provided
lots of hugs and playful interruptions that helped keep me going while I was

XXvii

XXviii Acknowledgments

writing. Lastly, and most importantly, it was the love and support of my
wife, Lorraine, that made this book possible. Without her patience and
understanding, this task would have been impossible.

About the Author

Mark D. Hansen, Ph.D., is a software developer, consultant, and entre-
preneur. His company, Javector Software, provides consulting and software
application development focused on Web Services. Mark is also a content
developer for Project GlassFish and has developed the open source SOA-]
application framework for WSDL-centric Web Services development.

Previously, Mark was a visiting scholar at MIT researching applications
for process and data integration using Web Services technology. Before
that, Mark was an executive vice president for Xpedior, Inc., a leading pro-
vider of eBusiness consulting services. He joined Xpedior when they
acquired his consulting firm—XKinderhook Systems.

Mark founded Kinderhook in 1993 to develop custom Internet solutions
for Fortune 500 firms. Prior to founding Kinderhook Systems, Hansen was a
founder and vice president of technology for QDB Solutions, Inc., a Cam-
bridge, Massachusetts, based software firm providing tools for data integrity
management in corporate data warehouses. QDB Solutions was acquired by
Prizm Technologies in 1997.

Mark’s work has been featured in publications such as the Wall Street
Journal, Information Week, Computer World, Database Management, Data-
base Programming and Design, Business Communications Review, EAI Jour-
nal, and IntelligentEnterprise.

Mark earned a Ph.D. from the MIT Laboratory for Computer Science, a
masters degree from the MIT Sloan School of Management, a master’s degree
in mathematics from the University of Chicago, and a bachelors degree in
mathematics from Cornell University.

Mark and his wife, Lorraine, live in suburban New York, with their
three children, Elizabeth, Eric, and Emily.

XXix

CHAPTER 1

Service-Oriented
Architecture with Java Web
Services

Modern enterprise Java applications need to support the principles of Ser-
vice-Oriented Architecture (SOA). The foundation of most SOA applica-
tions is Web Services. So, if you are an enterprise Java developer, you
probably want to master the Web Services standards included with Java EE 5
and Java SE 6. These standards include JAX-WS (formerly JAX-RPC) [JSR
224], JAXB [JSR 222], Web Services Metadata (WS-Metadata) [JSR 181],
SOAP with Attachments API for Java (SAA]) [JSR 67], and Web Services
for Java EE (WSEE)' [JSR 109]. I call these standards, taken together, Java
Web Services (JWS).

SOA applications are constructed from loosely coupled Web services.
Therefore, naturally, as enterprise Java developers, we turn to JWS tools for
creating SOA applications. Furthermore, the leading enterprise Java ven-
dors hold out JWS technologies as the development platform of choice for
SOA applications.

So, the JWS standards are very important. They are the foundation for
SOA development with enterprise Java. And loosely coupled SOA applica-
tions are critical to corporate competitiveness because they enable business
processes to be flexible and they adapt to rapidly changing global markets.

Unfortunately, if you are like me, you may have found the Java Web
Services learning curve a little steep. It seems that lots of powerful and
complex machinery is required just to deploy a Java class as a Web service
or create a simple client to consume such services. Sure, you can get the
simple “Hello World” application from the Java EE 5 tutorial to work.

1. As the deployment standard for EE containers, WSEE is supported only in Java EE, not
Java SE.

1

2 Service-Oriented Architecture with Java Web Services

However, when you need to deploy your purchase ordering system,
things suddenly seem to get much more complicated. Either the WSDL
you start with gets compiled into myriad bizarre classes that have to be
manually wrapped and mapped into your real purchasing system, or, if
you start from your Java classes, the WSDL that gets produced doesn’t
turn out the way you need it to. If you have been frustrated by problems
like these, I sympathize with you. So have I, and that is what motivated
me to write this book.

1.1 Am | Stupid, or Is Java Web Services Really Hard?

At first, I just thought I was stupid. Prior to getting involved with Java Web
Services, I had been running a consulting business. I figured that since I'd
been a manager for the past several years, the technologist side of my brain
had atrophied. “Keep working at it!” I said to myself, “and you'll master this
stuff.” That was three years ago, and as I wrestled with JWS annotations,
deployment descriptors, WSDL proxies, schema compilers, and so on, I've
compiled my “lessons learned” into this book.

During these past three years, I've mastered topics such as Java gener-
ics, reflection, persistence, and concurrency. I've studied the Apache Axis
[AXIS, AXIS2] source code—and even submitted a few patches. I've con-
vinced myself that I'm not stupid. Yet, it was a long struggle for me to
develop an intuitive understanding of the JWS standards. And I'm not the
only one who has experienced this.

Richard Monson-Haefel, a distinguished technologist, published a 960-
page book [Monson-Haefel] on the J2EE 1.4 versions of these Java Web
Services specifications in late 2003. Nine hundred sixty pages! That fact
alone indicates that a significant learning curve is associated with JWS. It’s
not that any one particular topic is very difficult. Sure, it takes a little while
to figure out what the JAX-WS API does. However, the real difficulty is get-
ting your mind around all these APIs and how they relate to the underlying
Web Services standards (e.g., XML, WSDL, and SOAP), the HTTP proto-
col, and the other Java EE container services (e.g., dependency injection).
Trying to mentally connect what’s going on at the Java level with the under-
lying WSDL, SOAP, XML, and HTTP can make working with the JWS
standards feel awkward and unnatural.

During the past two years, a chorus of technologists—Monson-Haefel
among them—has been bashing the Java Web Services standards. Their

1.1 Am | Stupid, or Is Java Web Services Really Hard? 3

view is based on experiences they had working with the older, J2EE 1.4 ver-
sions, of JWS. And I agree that it is difficult to do useful SOA-style develop-
ment work with those older APIs. However, I have trouble agreeing that the
specifications themselves, especially the latest versions embedded in Java
EE 5 and Java SE 6, are the real problem. Instead, I suspect the problem
itself—creating a general-purpose framework for Java Web Services devel-
opment—is just plain complicated.

Richard Monson-Haefel posted this e-mail on his blog April 22, 2006. It
summarizes pretty well how many of us feel after having spent a lot of time
working on Java Web Services:

Dave Podnar’s Five Stages of Dealing with Web Services

1.
2.

Denial—It’'s Simple Object Access Protocol, right?

Over Involvement—OK, I'll read the SOAR WSDL, WS-l BR JAX-RPC, SAAJ,
JAX-R ... specs. Next, I'll check the Wiki and finally follow an example
showing service and client sides.

Anger—I can’t believe those #$%&*@s made it so difficult!
Guilt—Everyone is using Web Services, it must be me, | must be missing
something.

Acceptance—It is what it is, Web Services aren’t simple or easy.

One thesis of this book, simply stated, is that Web Services are hard. We
need to accept that fact and move on. Web Services are hard because they
are a form of distributed computing, and distributed computing is just
about the hardest problem in computer science.

So, this book doesn’t hype the JWS standards and tell you that they
make building SOA-style applications easy. Instead, this book helps you
navigate JWS and understand the strengths and weaknesses of its compo-
nent technologies. Along the way, I share with you the lessons I have
learned, showing how JWS can be used to build powerful SOA-style appli-
cations that deploy and consume Web Services effectively. The culmination
of this journey is the construction of the sample SOAShopper application,
in Chapters 9 and 10, which implements a consolidated shopping engine
integrated with eBay, Amazon, and Yahoo! Shopping. SOAShopper pub-
lishes both REST and SOAP endpoints, consumes both REST and SOAP
endpoints, and provides an Ajax front end.

Service-Oriented Architecture with Java Web Services

1.1.1 Don’t Drink That Kool-Aid

In early 2001, when Ariba, IBM, and Microsoft published WSDL 1.1 as a
W3C Note [WSDL 1.1], Web Services were envisioned as a way to make
distributed computing easier. No longer would developers need to under-
stand CORBA to create cross-platform, distributed applications. Even bet-
ter, Web Services were envisioned as a technology to make distributed
computing over the Internet possible.

Like me, most Java developers bought into this early Web Services
vision. It made sense given our experience with the Internet during the
1990s. HTML over HTTP had fueled the astonishing growth of the World
Wide Web—a distributed computing platform for people. We believed that
standards (like SOAP and WSDL) for XML over HTTP would fuel similar
growth for Web Services—a distributed computing platform for business
applications.

We all drank that Kool-Aid. We believed that Web Services would make
distributed computing easy.

The leaders of the Enterprise Java industry set to work implementing
the Web Services vision. Along the way to realizing this vision, the Java
industry discovered that they had created some pretty daunting specifica-
tions. The people who read the early JAX-RPC, JAXB, and other specifica-
tions—including myself—became alarmed. We figured that something must
have gone wrong. We assumed that the Expert Groups leading these specifi-
cations had gotten off-track. We became disillusioned and bitter about the
lost promise of Web Services. We started bickering among ourselves about
SOAP versus REST and who is to blame for the complexity of the Java Web
Services speciﬁcations.

But the complexity problem isnt a result of choosing the SOAP frame-
work instead of REST. It’s not a result of overengineering on the part of the
Expert Groups. As the Expert Groups got down to brass tacks—trying to
make the Web Services vision happen—they rediscovered that distributed
computing really is a daunting challenge. SOAP, WSDL, XML, and even
REST are not going to make distributed computing easy.

Certainly, the JWS specifications are flawed. But that is to be
expected—new technologies often come out with quirks and idiosyncra-
sies that make them difficult to work with (look at EJB). These problems
are corrected as enhancements are made in subsequent versions® of the

technology.

2. Note that EJB 3.0 continues to improve and implements the advanced Aspect Oriented
Programming and Inversion of Control features its many detractors have been calling for.

1.1 Am | Stupid, or Is Java Web Services Really Hard? 5

As one example of how the JWS specifications have improved, consider
JAX-WS 2.0. Chapters 6 and 7 describe that specification in detail, so for
now, I'm just going to give a preview of why I think it’s such a big improve-
ment over JAX-RPC 1.1. For starters, the JAX-RPC data binding has been
removed and the specification has been simplified to focus on the WSDL to
Java mapping along with support for REST endpoints. The XML Schema to
Java data binding from JAX-RPC has been replaced with JAXB 2.0, a much
superior and widely used technology. Second, JAX-WS lets you use annota-
tions to control the shape of the WSDL generated from a Java interface.
The use of annotations in this manner simplifies and in some cases elimi-
nates the need for the deployment descriptors required to deploy a JAX-
RPC service. Third, JAX-WS provides interfaces (pispatch on the client
side and Provider on the server side) that enable programmers to directly
access and work with XML—effectively bypassing the JAXB data binding
when they don’t want to use it.

For certain, JAX-WS 2.0 could still be improved. The biggest improve-
ment I can think of would be to provide an alternative binding (in addition
to JAXB) that lets the developer work directly with the native XML types
that are specified in a WSDL and its associated schema. Some type of XML
extension to Java, like X]J [X]], might do the job. Much of the complexity
and confusion developers experience when working with JAX-WS relate to
the difficulty of determining how the JAX-WS/JAXB-generated classes cre-
ated by the JAX-WS WSDL compiler map to the XML messages specified
in the WSDL. However, that is a whole research area (creating a language
that makes it simple to program directly with native XML types) unto itself
where we are all still waiting for some breakthroughs. My point here is not
that JAX-WS is ideal, but simply that is has improved on JAX-RPC, much as
EJB 3.0 has improved on EJB 2.1.

To summarize, in the years since the WSDL specification came out,
the Enterprise Java community has created from scratch a Java-centric
platform for distributed computing based on Web Services technologies.
This has been a Herculean task and it shouldn’t surprise anyone that the
specifications are difficult to understand! Viewed from this perspective,
the JWS standards are not bad at all. In fact, they are a huge step toward
enabling Java to become an SOA development platform. These standards
give us the APIs we need to wrestle with the complexities of Web Services
development.

So why are we disillusioned? What lesson should we be learning as we
wallow in our disillusionment? I think it is the same lesson we learn over
and over again in this business— Don’t drink the Kool-Aid”! If we didn’t
start out by assuming that Web Services were going to be a silver bullet

Service-Oriented Architecture with Java Web Services

for distributed computing, we wouldn’t be disillusioned. Instead, we
would be optimistic.

1.1.2 JWS Is a Toolset, Not an Application Framework

Realizing that Web Services are intrinsically difficult forced me to rethink
my assumptions about the JWS specifications. I no longer believed that
these specifications could be significantly simplified. I accepted their com-
plexity as the natural expression of the complexity of the underlying distrib-
uted computing problem.

Instead of viewing JWS as an application framework for SOA-style
development, I recognized it as a toolset for consuming and deploying Web
Services—the components of an SOA-based distributed computing envi-
ronment. My problem had not been stupidity, but expecting too much from
my tools. Creating SOA applications with the JWS technologies requires
some discipline and design savvy. Throughout this book, I offer examples of
good design that make application development with JWS easier.

For example, in Chapter 4 I discuss the use of centralized XML
Schema libraries as a mechanism to promote separation of concerns. Such
libraries separate the type definition process (a necessary part of creating
SOA application with Web Services) from the interface definition process
(i.e., creating WSDL representations of individual SOA components). As
another example, Chapter 5 shows how to isolate the JWS generated
classes from the rest of your application by introducing a type mapping
layer into your SOA systems. This technique is then used in the Chapter 9
implementation of SOAShopper.

One way to encourage good design and make programming easier is
to use an application framework. For example, the Apache Struts
[STRUTS] framework encourages Web applications development based
on the Model 2 or Model View Controller (MVC) framework. Frame-
works offer a layer of abstraction on top of complex toolsets. The layer of
abstraction encourages you to program in a certain way. By restricting
your programming choices to a subset of proven patterns, the framework
makes your job easier and less confusing.

Application frameworks can also encourage good design. A good
SOA framework, therefore, should encourage the use of XML Schema
libraries and promote the reuse of schema across WSDL documents. A
good SOA framework should separate compiled schemas and WSDL
from the rest of the application classes.

1.1 Am | Stupid, or Is Java Web Services Really Hard? 7

Application frameworks employ toolsets, but they also go beyond
toolsets. They encourage a particular manner of using toolsets. Struts,
for example, employs servlets and JavaServer Pages (JSP), among other
toolsets. On top of these toolsets, Struts provides a framework of classes
(e.g., Action, ActionMapping) for building applications according to the
MVC framework.

Thinking through the Struts analogy to Web Services, I realized that
JWS provides a toolset but not an application framework. To develop SOA
business applications, I really wanted an application framework like
Struts—not just the underlying toolset. Because SOA is WSDL-centric (i.e.,
WSDL defines the interfaces for communicating with services), ideally, I
wanted a framework that allowed me to do WSDL-centric development.

Unfortunately, as of this writing, no popular application frameworks,
analogous to Struts, have emerged for Java Web Services. I've taken a first
pass at developing one, called SOA-J. For curious readers, an overview of

SOA-J is included in Chapter 11.

1.1.3 Epiphany

Understanding that JWS is a toolset and not an application framework was
my epiphany. Once I got past that, I realized that to be successful with JWS,
I would need to spend a lot of time getting intimately familiar with how the
toolset operates. This book passes those experiences on to you. It is filled
with lots of examples of how to accomplish various tasks (e.g., publish a
REST endpoint, replace the JAXB binding with something else like Castor,
consume a Web service with no WSDL, etc.). So, if you like lots of code
examples, you will not be disappointed.

Before digging in to the code, however, I need to introduce some com-
mon terminology to discuss the different components common to any plat-
form that enables the development and deployment of Web Services.? I call
any such platform a Web Services platform. The next section introduces
what I call the Web Services Platform Architecture (WSPA), which provides
the common terminology that is used throughout this book for discussing
Web Services platforms. Think of the WSPA as our reference architecture.
As we discuss Java Web Services, we will refer to the WSPA to discuss its
strengths and weaknesses.

3. Some other platforms, in addition to Java EE 5, for deploying Web services include Axis
[AXIS] [AXIS2], Systinet Server [SYSTINET], and XFire [XFIRE].

8 Service-Oriented Architecture with Java Web Services

1.2 Web Services Platform Architecture

A Web Services platform is a set of tools for invoking and deploying Web
Services using a particular programming language. Although my focus is
Java, the concepts described in this section apply across languages.

The platform has server-side components and client-side components.
The server-side components are usually packaged within some type of con-
tainer (e.g., a Java EE application server or a servlet engine). The client-
side components are usually packaged as tools for accessing Java interface
instances that are bound to Web Services. Any Web Services platform,
whether Apache Axis, XFire, Systinet Server [SYSTINET], JWS, or some-
thing else, has to provide three core subsystems: Invocation, Serialization,*
and Deployment. To get started, a basic discussion of these subsystems, in
the abstract, will help us understand what JWS is designed to do and give us
some terminology for discussing its behavior.

1.2.1 Invocation

There are invocation mechanisms on both the server side and the client
side. On the server side, the invocation mechanism is responsible for:

Server-Side Invocation

1. Receiving a SOAP message from a transport (e.g., from an HTTP or
JMS endpoint).

2. Invoking handlers that preprocess the message (e.g., to persist the
message for reliability purposes, or process SOAP headers).

3. Determining the message’s target service—in other words, which
WSDL operation the message is intended to invoke.

4. Given the target WSDL operation, determining which Java class/
method to invoke. I call this the Java target. Determining the Java
target is referred to as dispatching.

5. Handing off the SOAP message to the Serialization subsystem to
deserialize it into Java objects that can be passed to the Java target as
parameters.

6. Invoking the Java target using the parameters generated by the Seri-
alization subsystem and getting the Java object returned by the tar-
get method.

4. T use the term “Serialization” as shorthand for “Serialization and Deserialization.”

1.2 Web Services Platform Architecture 9

7. Handing off the returned object to the Serialization subsystem to
serialize it into an XML element conformant with the return mes-
sage specified by the target WSDL operation.

8. Wrapping the returned XML element as a SOAP message response
conforming to the target WSDL operation.

9. Handing the SOAP response back to the transport for delivery.

At each stage in this process, the invocation subsystem must also handle
exceptions. When an exception occurs, the invocation subsystem often must
package it as a SOAP fault message to be returned to the client. In practice,
the invocation process is more nuanced and complex than this. However,
the steps outlined here offer a good starting point for our discussion of Java
Web Services architecture. Later chapters go into greater detail—particu-
larly Chapters 6 and 7 where I examine JAX-WS, and Chapter 11 where the
SOA-J? invocation mechanism is described.

As you can see, the invocation process is nontrivial. Part of its complex-
ity results from having to support SOAP. We'll look at a simpler alternative,
known as REST (Representational State Transfer), in Chapter 3. Even with
REST, however, invocation is complicated. It’s just not that easy to solve the
generalized problem of mapping an XML description of a Web service to a
Java target and invoking that target with an XML message.

On the client side, the invocation process is similar if you want to invoke
a Web service using a Java interface. This approach may not always be the
most appropriate way to invoke a Web service—a lot depends on the prob-
lem you are solving. If your client is working with XML, it might be easier
to just construct a SOAP message from XML and pass it to the Web service.
On the other hand, if your client is working with Java objects, as JWS
assumes, the client-side invocation subsystem is responsible for:

Client-Side Invocation

1. Creating an instance of the Web service endpoint implementing a
Java interface referred to (JWS terminology) as the service endpoint
interface (SEI). The invocation subsystem has one or more factories
for creating SEI instances. These instances are either created on the
fly, or accessed using JNDI. Typically, SEI instances are imple-
mented using Java proxies and invocation handlers. I cover this fasci-
nating topic in depth in Chapter 6.

2. Handling an invocation of the SEI instance.

5. SOA-J is introduced in Section 1.5 as an application framework built on top of JWS.

10

Service-Oriented Architecture with Java Web Services

3. Taking the parameters passed to the SEI and passing them to the
Serialization subsystem to be serialized into XML elements that con-
form to the XML Schema specified by the target service’s WSDL.

4. Based on the target service’s WSDL, wrapping the parameter ele-
ments in a SOAP message.

5. Invoking handlers that post-process the message (e.g., to persist the
message for reliability purposes, or set SOAP headers) based on
Quality of Service (QoS) or other requirements.

6. Handing off the message to the transport for delivery to the target

Web service.

. Receiving the SOAP message response from the transport.

. Handing off the SOAP message to the Serialization subsystem to
deserialize it into a Java object that is an instance of the class speci-
fied by the SET’s return type.

9. Completing the invocation of the SEI by returning the deserialized

SOAP response.

X

Again, for simplicity of presentation, I have left out a description of the
exception handling process. In general, client-side invocation is the inverse
of server-side invocation. On the server side, the invocation subsystem
front-ends a Java method with a proxy SOAP operation defined by the
WSDL. It executes the WSDL operation by invoking a Java method. Con-
versely, on the client side, the invocation subsystem front-ends the WSDL-
defined SOAP operation with a proxy Java interface. It handles a Java
method call by executing a WSDL operation. Figure 1-1 illustrates this
mirror image behavior.

One interesting point to make here is that only the middle part of Fig-
ure 1-1, the SOAP request/response, is specified by the WSDL. The Java
method invocations at either end are completely arbitrary from a Web Ser-
vices perspective. In fact, you have one Java method signature on the client
side and a completely different method signature on the server side. In
most cases, the method signatures are different, and the programming lan-
guages used are different, because if both sides were working with the same
Java class libraries, this invocation could occur via Java RMI.

Also keep in mind that Figure 1-1 simply illustrates the mirror-image
nature of invocation on the client and server sides. In practice, one side of
this diagram or the other is probably not doing a Java method invocation.
For example, Web Services enable us to have a Java client invoking a CICS
transaction over SOAP/HTTP. In that scenario, you have a Java invocation
subsystem only on the client side and something else that converts SOAP to
CICS on the server side.

1.2 Web Services Platform Architecture 11

Invocation Subsystem Invocation Subsystem
(Client Side) (Server Side)
| | param
param I Request : iy Request : I
SOAP SOAP \I\ aram
param \

q
(]
—+
c
=
>

Target :
Java Object

I
| [z
I

SEI : Java Prox

=

Java Method
Invocation

Response : Response : |

Java Method

Exchange .
Invocation

|

| |
| |
| SOAP Message |
| |
| (Specified by WSDL) |

Figure 1-1 The client-side invocation subsystem translates a method call on the SEI
proxy into a SOAP request/response and, vice versa, the server-side invocation sub-
system translates the SOAP request/response into a method call on the Java target.

1.2.2 Serialization

Serialization is the process of transforming an instance of a Java class into an
XML element. The inverse process, transforming an XML element into an
instance of a Java class, is called deserialization. In this book, I often refer to
both serialization and deserialization as simply “serialization.”

Serialization is arguably the most important component of any platform
for Java Web Services. Figure 1-2 illustrates the problem serialization
solves. I'm going to dive into some details about how serialization relates to
WSDL and SOAP here to explain this figure.® The details are necessary
(even in Chapter 1!) to understand exactly what the serialization subsystem
of the WSPA is doing.

Hosted within a Web Services container may be many SOAP end-
points—each corresponding to a group of Web services. An endpoint has an
associated WSDL interface that defines the operations that can be per-
formed on the endpoint.

6. Don’t worry if you need a better understanding of WSDL and SOAP to understand
this explanation. I cover it in more detail in Chapter 4. For now, just focus on getting the
general idea.

12

Service-Oriented Architecture with Java Web Services

In Figure 1-2, the callout box in the lower right shows a snippet of such
a WSDL interface. Examine this snippet and notice the <types> element.
This element contains the XML Schema type definitions that are used in
the Web services defined by the rest of the WSDL document. The snippet
shows the definition for an element named customerpurchase. The quali-
fied name of this element is wrapper:customerPurchase. As you can see,
that element is used as the single part in the message definition for oncus-
tomerPurchase. Looking further down in the snippet, the portType named
CustomerPurchase is defined with an operation named processCustomer-
Purchase that uses the oncustomerPurchase message as its input.

So, the snippet defines a Web service, processcustomerservice, which
requires an input message containing a single instance of the element
wrapper:customerPurchase. Invoking this Web service, therefore,
requires constructing a SOAP message containing an instance of wrap-
per:customerPurchase. Notice that the definition of wrapper:customer-
Purchase in the WSDL snippet references the two elements
imported:customer and imported:po. The schema for these two elements
is not shown, but from the name of the prefix (imported), we can assume
that they are imported into the WSDL elsewhere. So, constructing the
SOAP message requires creating instances of imported:customer and
imported:po.

Now, examine the Java snippet in the callout box in the lower-left side of
Figure 1-2 and notice the imported classes com.soabook.sales.Customer
and com. soabook.purchasing.Purchaseorder. These classes are used as the
parameter classes for the method newpurchase. The Web service proxy shown
in Figure 1-2 binds the Java interface method newPurchase to the WSDL
operation processCustomerPurchase. This proxy was created by the invoca-
tion subsystem. It invokes the WSDL operation deployed at the SOAP end-
point by sending it a SOAP message. So, the Web service proxy’s
implementation of the method newPurchase must invoke some machinery
that takes instances of com.soabook.sales.Customer and com.soabook.pur-
chasing.PurchaseOrder and creates an instance of wrapper :customerPur-
chase that can be embedded in the body of a SOAP message.

That machinery is the serialization subsystem of the Web Services Plat-
form Architecture (WSPA). The Serialization subsystem is responsible for
the following steps in the invocation process:

Serialization Subsystem’s Role during Invocation

1. Receiving the parameters from the Web service proxy
2. Serializing the parameter cust (an instance of com.soabook.sales
.Customer) into an instance of imported:customer

1.2 Web Services Platform Architecture 13

Java Virtual Machine

Web Services Container

SOAP
Message SOAP Endpoint
Web Service Proxy
O Java Interface O WSDL Interface
package com.soabook; <definitions ...

import com.soabook.sales.Customer;
import
com.soabook.purchasing.PurchaseOrder;

public interface PurchaseTransactions
public void newPurchase

(Customer cust,
PurchaseOrder po);

targetNamespace="http://soabook.com"
xmlns:soa="http://soabook.com"
xmlns:wrapper="http://soabook.com/wrapper" ...>
<types>
<schema elementFormDefault="qualified"
targetNamespace="http://soabook.com/wrapper"
R
<element name="customerPurchase">
<complexType>
<sequence>
<element ref="imported:customer"/>
<element ref="imported:po"/>
</sequence>
</complexType>
</element>
</schema>
</types>
<message name="onCustomerPurchase">
<part element="wrapper:customerPurchase"
name="purchase"/>
</message>
<portType name="CustomerPurchase">
<operation name="processCustomerPurchase">
<input message="soa:onCustomerPurchase"
el />
</operation>
</portType>

</definitions>

Figure 1-2 Serialization translates a Java instance into an XML document for transport

via SOAP to a Web service.

14

Service-Oriented Architecture with Java Web Services

3. Serializing the parameter po (an instance of com.soabook.purchas-
ing.PurchaseOrder) into an instance of imported:po

4. Combining these two elements into an instance of wrapper:custom-
erPurchase

5. Handing off the instance of wrapper:customerPurchase to the Web
service proxy to be embedded in a SOAP message and sent to the
SOAP endpoint

As this simple example illustrates, the serialization subsystem is cen-
tral to the process of invoking a Web service via a Java interface. The seri-
alization subsystem translates the parameters (passed to the interface
proxy) from instances of their respective Java classes into instances of the
target XML Schema—in this case, the target is wrapper:customerPur-
chase. These mappings—{rom Java classes to target XML Schema com-
ponents—are called type mappings. To accomplish this translation, the
serialization engine needs a set of mapping strategies (as illustrated in
Figure 1-3) that tell it how to implement the type mappings; in other
words, how to serialize the instances of the Java classes into instances of
the XML Schema components.

A mapping strategy associates a Java class, its target XML Schema type,
and a description of a serializer (or deserializer) that can transform
instances of the class to instances of the Schema type (or vice versa). A seri-
alization context is a set of mapping strategies that can be used by the serial-
ization subsystem to implement the type mappings used by a particular
Web service deployment.

Different Web Services platforms provide different mechanisms for
specifying the mapping strategies that make up a serialization context. In
many cases, multiple methods are used. Some of these mechanisms are:

Mechanisms for Implementing Type Mappings

m Standard binding. The mappings are predefined by a standard bind-
ing of Java classes to XML Schema. Each Java class has a unique rep-
resentation as an XML Schema. JWS starts from this approach and
allows customizations. The standard binding is described by the
JAXB and JAX-WS specifications.

m Source code annotations. JWS uses this approach to provide custom-
izations on top of the standard binding. Annotations in the source
code of a target Java class modify the standard binding to specify how
the class maps to XML Schema components and how the WSDL
description of the Web service is shaped.

1.2 Web Services Platform Architecture 15

m Algorithmic. The mappings are embedded in the algorithms exe-
cuted by the serialization subsystem. JAX-RPC 1.1 and Axis 1.x
[AXIS] take this approach.

m Rule-based. The mappings are specified as rules that can be created
and edited independent of the serialization subsystem. The rules are
interpreted by the serialization subsystem. SOA-J (introduced in
Section 1.5) uses a rule-based approach for mapping. The Castor
[CASTOR] serialization framework also supports this approach with
its mapping files mechanism.

Class1 «datatype»
Typel
Class2
Class3 «datatype»
Type2
Java Classes XML Schema

N /

Serialization Context

mapping strategy
mapping strategy

mapping strategy

Figure 1-3 The serialization context contains mapping strategies used by the
Serialization subsystem to perform serialization.

Each of these approaches has advantages and disadvantages. JWS has
introduced source code annotations as a mechanism to make it easier for
Java programmers to specify how a Java target should be represented as a
WSDL operation. I happen to like the rule-based approach because it

16

Service-Oriented Architecture with Java Web Services

enables end users to map preexisting Java classes to preexisting XML
Schema types—something that is very useful if you are using Web Services
to do enterprise integration in a loosely coupled, SOA style where there are
lots of legacy classes and schemas to work with.

Serialization is a rich and fascinating topic. Different approaches are
better suited to different types of tasks (e.g., legacy integration versus
Greenfield development). That is why there are and probably always will be
a number of different approaches to serialization competing in the market-
place. I look at JAXB 2.0 serialization in depth in Chapter 5.

1.2.3 Deployment

The deployment subsystem supplies the tools for setting up a Java target so
that it can be invoked as a Web service via SOAP messages. At a high level,
the deployment subsystem needs to handle:

Deployment Subsystem Responsibilities

m Deploying the Java target(s). This task varies greatly depending on
the Java container where invocation takes place. For an EJB con-
tainer, it may mean deploying a stateless session bean. In other situa-
tions, it simply means making each Java target’s class definition
available to the class loader employed by the invocation subsystem.

m Mapping WSDL operation(s) to a Java target(s). This involves con-
figuring the Web Services platform so that the invocation sub-
system can properly associate an incoming SOAP message with its
Java target. This association (or binding) is stored as meta-data
which the invocation subsystem can access from the deployment
subsystem to determine the Java target that should be invoked. In
addition to associating a WSDL operation with a Java method, the
deployment subsystem must help the invocation system to properly
interpret the SOAP binding (e.g., rpc versus document style,
wrapped versus unwrapped parameters) of an incoming message.

m Defining a serialization context. The deployment subsystem config-
ures the serialization subsystem with the serialization context (see
Figure 1-3) needed to bind the XML Schema types from the WSDL
with the parameter and return classes from the Java target(s). This
serialization context is used by the serialization subsystem to imple-
ment the binding of WSDL operation(s) to Java target(s).

m Publishing the WSDL. The deployment subsystem associates a
Java target with the WSDL document containing the WSDL oper-
ation it is bound to. This WSDL document is made available to the

1.2 Web Services Platform Architecture 17

Web service’s clients as a URL or in another form (e.g., within a
UDDI registry).

m Configuring SOAP handlers. The deployment subsystem configures
the necessary SOAP handlers needed to provide QoS pre- or post-
invocation of the Java target. These handlers provide services such as
authentication, reliability, and encryption. Although the invocation
subsystem invokes the handlers, they are configured and associated
with a Web service by the deployment subsystem.

m Configuring an endpoint listener. The deployment subsystem config-
ures the container so that there is a SOAP message transport listener
at the URI specified by the WSDL port. In some Web Services plat-
forms, the WSDL is supplied without an endpoint being defined,
and the endpoint is “filled in” by the deployment subsystem from a
deployment descriptor.

As you can see from this description, the deployment subsystem needs
to do a lot of rather nonglamorous tasks. To handle a wide variety of situa-
tions (e.g., QoS requirements, custom Java/XML bindings, configurable
endpoint URLSs, etc.), the deployment descriptors (XML files used by the
deployment subsystem) quickly grow complicated and difficult to manage
without visual tools.” Figure 1-4 shows the possible deployment descriptors
used by a Web Services platform and their relationships to the underlying
containers.

As shown in Figure 1-4, the Web Services platform may span multiple
containers. Here, I am showing you the application server container (e.g.,
Java EE) and a Web Services directory container (e.g., UDDI). The direc-
tory may be included in the application server container. Arrows show the
dependencies. As you can see, each of the objects deployed in the container
depends on container-specific deployment descriptors. The endpoint lis-
tener, SOAP handlers, and Java target may also be described in the WSDL/
Java mapping descriptor. The multiple references reflect the multiple roles
of the objects. For example, the Java target is deployed both as an object in
the container and in the Web Services platform.

To summarize, the Web Services Platform Architecture (WSPA) defines
three subsystems: invocation, serialization, and deployment. As the explora-
tion of Java Web Services unfolds through the rest of the book, I refer to

7. Historically, the proliferation of deployment descriptors has been a common complaint
when working with EJB 2.1. With Web Services in J2SE 1.4, the deployment descriptors
grow even more complex! Luckily, in Java EE 5, the need for deployment descriptors has
been greatly reduced.

18 Service-Oriented Architecture with Java Web Services

Web Services Platform

Web Services Directory
(e.g., UDDI)

Container (e.g., J5EE,

WSDL
Servlets, Axis)

+someOperation()

! Endpoint Listener

Descriptors

(e.g., EJB wrapper)

A\ _==T /]-url
- /
WSDL WSDL/Java , | _--~~ /
Deployment Mapping &--—--——————————- P-- SOAP
| T~~__ I Handlers
T S~ / /
| ~-< A
A T~n_i/
Y RSN Java Target
1y =
Iy -~ |+someMethod()
\or Pid
Serialization Contai L~)
Context D OT alnert === s
eploymen Source Artifacts

Figure 1-4 Many possible deployment descriptors can be used by a deployment subsystem.

these subsystems and their details, to discuss the roles that various compo-
nents of JWS play in the overall WSPA specified by Java EE and Java SE.

1.3 Java Web Services Standards: Chapters 2 through 8

As mentioned, the primary purpose of this book is to provide you with a
detailed technical understanding of how to use Java Web Services in your
SOA application development. Since real technical understanding only
comes with hands-on coding, this book provides many software examples
for you to examine and play with. The first step toward developing a
detailed technical understanding is to explore the JWS APIs in depth, exam-
ining their strengths and limitations. Chapter 2 provides a high-level over-
view of the JWS APIs. Chapters 3-8 provide detailed examples of how to
write and deploy Web services with these APIs. These examples go well
beyond the usual “Hello World™ tutorials provided by vendors. Rather, they

1.3 Java Web Services Standards: Chapters 2 through 8 19

provide detailed, real-world implementations. In addition to simply show-
ing you how to program with these APIs, I use the examples to relate them
back to the Web Services Platform Architecture described in Section 1.2.
Here is a summary of these chapters and how they work together.

Chapter 2: An Overview of Java Web Services—A high-level over-
view of the features, strengths, and weaknesses of the major Java Web Ser-
vices APIs is provided, including JAX-WS 2.0 [JSR 224], JAXB 2.0 [JSR
222], WS-Metadata 2.0 [JSR 181], and Web Services for Java EE 1.2 [JSR-
109]. I explore where each of these APIs fits into the Web Services Applica-
tion Framework. The SOAP with Attachments API for Java (SAAJ) [JSR 67]
is not discussed here, but investigated in Chapters 6 and 7 within the con-
text of the JAX-WS discussions on SOAP processing.

Chapter 3: Basic SOA Using REST—The technical examples start
by looking at the simplest approach to Web Services: Representational State
Transfer (REST). I show how to implement RESTful services using plain
old HTTP, and JWS. I also discuss the limitations of REST as an approach
to SOA integration. Understanding these limitations provides the motiva-
tion for introducing SOAP and WSDL in the next chapter.

Chapter 4: The Role of WSDL, SOAP, and Java/XML Mapping in
SOA—This chapter starts by discussing why WSDL and SOAP are needed
for SOA. Then, it moves into a detailed description of how SOAP and
WSDL are used in real-world SOA integration scenarios. I relate SOAP and
WSDL to the Web Services Platform Architecture described in Section 1.2
to show how the dispatching of a SOAP request depends on the structure of
the WSDL. Some limitations of the JAX-WS 2.0 dispatching mechanism are
pointed out. Lastly, this chapter discusses how the XML carried by a SOAP
request should be mapped to the Java classes that implement a Web service.
JAXB 2.0 is introduced as a tool for implementing such a mapping, and
some of its limitations and workarounds are described.

Chapter 5: The JAXB 2.0 Data Binding—]JAXB 2.0 is described in
depth and compared with other approaches for mapping XML to Java. Lots
of detailed technical examples are provided that demonstrate the JAXB 2.0
standard Java/XML binding, the schema compiler, and the annotations gener-
ated by the schema compiler. I also describe how the JAXB runtime performs
serialization and deserialization based on the annotations, and how you can
use your own annotations to customize the behavior of the JAXB serialization
and deserialization processes. I relate JAXB 2.0 back to the serialization sub-
system of the Web Services Platform Architecture—the reference architec-
ture used in this book. Some JAXB 2.0 limitations are explored in detail—in
particular, I discuss the difficulty of abstracting out type mappings from a seri-
alization subsystem based on JAXB 2.0, and how this violates separation of

20

Service-Oriented Architecture with Java Web Services

concerns and negatively impacts change management. Workarounds to these
limitations are demonstrated, including detailed examples of how to use
advanced JAXB 2.0 features like the xmladapter class and how to custom-
build your own recursive serialization subsystem based on JAXB 2.0. The cus-
tom serialization scheme introduced here is further elaborated on in Chapter
11 where the prototype SOA-] serialization subsystem is introduced.

Chapter 6: JAX-WS 2.0—Client-Side Development—The client-
side APIs from JAX-WS 2.0 are described in detail. I explain how to invoke
a Web service using a JAX-WS 2.0 proxy class that provides a Java interface
to the target service. In these examples, I show you how to use the JAX-WS
WSDL compiler (e.g., the GlassFish wsimport utility®) to create Java inter-
faces from WSDL at compile time, and then how to use those interfaces to
create JAX-WS proxy class instances that can invoke Web services at run-
time. In addition to these nuts-and-bolts examples, Chapter 6 provides an
in-depth discussion of the JAX-WS 2.0 WSDL to Java mapping. Under-
standing this mapping is critical to understanding how to use the classes
generated by the JAX-WS WSDL compiler. The annotations used by JAX-
WS on the generated interface classes are described, and I demonstrate
how these annotations shape the SOAP messages that are sent and received
by a JAX-WS 2.0 proxy. This chapter also discusses exception handling and
how JAX-WS maps SOAP fault messages to Java Exception class instances.
Having covered the basics, I then come back to the REST model intro-
duced in Chapter 3 and explore in more depth how to do XML messaging
(without SOAP) using JAX-WS. This leads to a discussion of how you can
replace the default binding and use JAX-WS (via the pispatch API) to
invoke Web services using a variety of bindings, including custom annotated
JAXB classes and Castor [CASTOR]. Detailed technical “how-to” examples
are also provided to illustrate JAX-WS asynchronous invocation and SOAP
message handlers.

Chapter 7: JAX-WS 2.0—Server-Side Development—This chapter
is the second half of the JAX-WS 2.0 discussion, and focuses on the server-
side APIs. The discussion starts with a description of the JAX-WS server-
side architecture and how it maps to the Web Services Platform Architec-
ture reference design discussed in Section 1.2. This description gives you a
detailed understanding of how the various JAX-WS pieces fit together,
including the SOAP protocol binding, fault processing, message handlers,

8. As discussed in the Preface to this book, all the examples have been developed and tested
using GlassFish [GLASSFISH]. However, the underlying code will run on any JAX-WS
implementation. The IBM, JBoss, BEA, and Oracle tools for JAX-WS, for example, will all
implement the same WSDL to Java mapping and generate similar classes.

1.4 The SOAShopper Case Study: Chapters 9 and 10 21

JAXB binding interface, WSDL generation, and dispatching services. After
this description, I introduce a series of examples that illustrate how to
deploy Web services using both the ewebservice and ewebServicepro-
vider annotations. Resource injection of the webserviceContext is
explored as a mechanism to access the HTTP request headers delivered
with a SOAP request. I also go through a detailed example of how to deploy
a Web service using Castor [CASTOR] as an alternative binding mechanism
to JAXB 2.0. The chapter ends with discussions of validation and fault pro-
cessing, and an example of how to implement server-side handlers and how
to do container-less deployment using the javax.xml.ws.Endpoint class
for Web Services deployment in J2SE.

Chapter 8: Packaging and Deployment of SOA Components
(JSR-181 and JSR-109)—This chapter wraps up the detailed discussion of
the JWS standards by focusing on the nuts and bolts of how Web services
are packaged and deployed. I cover the WS-Metadata [JSR 181] annota-
tions and give examples of how to use them to deploy Web services as E]B
and servlet endpoints. You learn how to deploy Web services without using
any deployment descriptors (yes, it is possible with Java EE 5!), and when
and where it makes sense to use deployment descriptors to override the
defaults and annotation-based deployment mechanisms. This chapter
includes a description of the WAR structure required for servlet endpoint
deployment, and the EJB JAR/EAR structure used with EJB endpoints. In
addition, I give a detailed overview of how a Java EE 5 container imple-
ments the deployment processing (i.e., how the container goes from anno-
tated package components to a deployed Web service). Like the other JWS
API descriptions, this discussion relates back to the Web Services Platform
Architecture reference design discussed in Section 1.2 to critique the pluses
and minuses of the Java EE 5 Web Services deployment subsystem. There
are many variations in how you can do packaging and deployment, so this
chapter includes ten different packaging examples illustrating the appropri-
ate use of each variation. Lastly, as an advanced topic, I cover the support
for OASIS XML Catalogs [XML Catalog 1.1] provided in Java EE 5.

1.4 The SOAShopper Case Study: Chapters 9 and 10

Chapters 9 and 10 pull together all the technologies and techniques
described in Chapters 2 through 8 and demonstrate how to build an SOA
integration application using JWS. The SOAShopper application is an
online shopping system that integrates eBay, Amazon, and Yahoo! Shop-

22

Service-Oriented Architecture with Java Web Services

ping. It is a Web Services consumer since it is a client of those shopping
sites. It is also a Web Services provider since it deploys REST and SOAP
endpoints that provide search services across the three shopping sites.

Chapter 9: SOAShopper: Integrating eBay, Amazon, and Yahoo!
Shopping—Although SOAShopper is a demo application, the techniques it
demonstrates are powerful. In this chapter, you will see all the tools of the
previous chapters come together to create a real SOA integration system.
The discussion and examples in this chapter include code for consuming
and deploying RESTful services, consuming and deploying WSDL/SOAP
services, implementing type mappings with JAXB, WSDL-centric service
integration, and support for Ajax clients.

Chapter 10: Ajax and Java Web Services—Chapter 10 uses the
SOAShopper application developed in Chapter 9 and shows how to build an
Ajax front-end that consumes the RESTful services it provides. The focus in
this chapter is on how JWS can be used to support Ajax clients.

1.5 SOA-J and WSDL-Centric Development: Chapter 11

Readers who only want to learn Java Web Services (JWS) can skip Chapter
11. However, if you are interested in exploring how to implement a Web
Services Platform Architecture (WSPA) that is WSDL-centric and uses the
tools provided by JWS, you should read Chapter 11. This final chapter pro-
vides a detailed walkthrough of SOA-J.

The term “WSDL-centric” means creating a Web service by building its
WSDL and annotating that WSDL document with references to the Java
elements that implement it. Such a WSDL-centric approach is intended for
situations” where you need to create Web services that integrate into a stan-
dard corporate or eBusiness framework (i.e., where there are standard
schemas and message descriptions).

SOA-] is a prototype application framework. I created it as a proof-of-
concept to explore the viability of WSDL-centric SOA development with
JWS. The source code (open source) for SOA-J is included with the code
examples you can download with this book." You can also find the latest
version of SOA-] at http://soa-j.org.

9. Such situations are discussed in Chapter 4.
10. See Appendix B for instructions on how to download, install, and configure the book
software.

1.5 SOA-J and WSDL-Centric Development: Chapter 11 23

Chapter 11: WSDL-Centric Java Web Services with SOA-J—This
chapter walks you through how SOA-J is designed as an application frame-
work on top of JWS. I show how it provides a straightforward mechanism for
composing an SOA component by constructing its WSDL. There are many
UML diagrams in this chapter, because I go through the architecture of SOA-
J in some detail. This discussion should be useful for anybody who has ever
wondered how a Web Services engine (aka “SOAP server”) works. The princi-
ples used here are summarized in the WSPA™ and are employed by products
such as Axis and XFire. My motivation for including the implementation
details goes back to my early experiments with Apache Axis. The first time I
looked at the Axis source code, I felt completely lost. After reading my
description of SOA-], hopefully you will not feel as lost when and if you ever
find yourself looking at the source code for another Web Services engine.

11. See Section 1.2.

CHAPTER 2

An Overview of Java Web
Services

This chapter provides an overview of the capabilities provided by the Java
Web Service (JWS) standards supported by Java EE 5 and Java SE 6. The
discussion starts (Section 2.1) by looking at the role of JWS in SOA applica-
tion development. Next (Section 2.2), some of the Java EE 5 “ease-of-use”
features are covered. Making the programming process easier was stated as
the number-one goal for the release of Java EE 5 Web Services, so right up
front there is a quick review of these ease-of-use design decisions and their
impact on development.

The main discussion in this chapter (Sections 2.3-2.5) groups each
JWS capability according to the Java Specification Request' (JSR) that
defines it. As each of the JSRs is reviewed, its features are related back to
the reference platform—the Web Services Platform Architecture described
in Chapter 1, Section 1.2. The primary JSRs discussed here, and throughout
the book, are JAX-WS 2.0 []SR 294], JAXB 2.0 []SR 2921, WS-Metadata 2.0
[JSR 181], and Web Services for]2EE 1.2 [JSR 109]—often abbreviated
WSEE.

The chapter concludes (Section 2.7) by looking at some of the other
Java EE 5 innovations that are not specifically part of the Web Services
JSRs, but have an impact on Web Services development. This discussion
covers capabilities such as dependency injection and EJB 3.0.

This chapter provides an appreciation for the big picture and sets the
stage to dive into the design and programming details described in Chap-
ters 3 through 11.

1. The Java community defines new features for the language using JSRs. [SRs are defined
and approved as part of the Java Community Process described at www.jcp.org.

25

26

An Overview of Java Web Services

2.1 The Role of JWS in SOA Application Development

Basically, JWS comprises a set of enabling technologies for consuming and
creating Web services using Java. To begin the discussion of where the JWS
enabling technologies fit in SOA development, a hypothetical SOA applica-
tion is examined.

2.1.1 A Hypothetical SOA Application

Figure 2-1 shows the hypothetical SOA application used in this discussion.
It is an Order Management application for processing customer orders. It
receives customer orders as SOAP requests and returns order confirmations
as SOAP responses.

The Order Management application at the center of Figure 2-1 is
labeled a “SOA Composite App” to emphasize that it is constructed as a
composite of underlying services. On page 46 of [Erl], Thomas Exl writes,
“services exist as independent units of logic. A business process can there-
fore be broken down into a series of services, each responsible for executing
a portion of the process.” Describing this example in Erl’s language, one
would say that the SOA composite application is automating the order man-
agement business process. That business process is broken down into the
following steps as labeled in Figure 2-1.

Order Management Business Process

1. A customer sends a Customer Order containing, among other infor-
mation, a PO Number and a list of Order Items—the products and
quantities being ordered.

2. The PO Number and Order Items are passed to the Purchase Order
System. It checks the Purchase Order to determine whether it cov-
ers the items being ordered and what payment terms are required.

3. If the PO covers the Order Items, an Authorization and a description
of the required Payment Terms are returned.

4. Next, the Order Items are forwarded to the Inventory Manage-
ment System to determine whether they are in stock and what the
likely delivery dates are.

5. This information—the Item Availability—is returned.

6. Lastly, a response message is sent back to the customer—the Order
Confirmation—detailing the payment terms and the anticipated
delivery dates for the items.

2.1 The Role of JWS in SOA Application Development 27

.
@ — SOAP
PO Number,
@ Order Items WSDL
Customer Order Purchase Order
—_— @ Service
SOAP
Order Confirmation Authorization,
@ Payment Terms Java EE 5
WSDL \
Order Management
SOA Composite App
Java EE 5
4
Item Availability Order Items
® |
SOAP
WSDL
Inventory
Managment
~ Service
.NET

Figure 2-1 An SOA composite application for order management.

Using Erl's terminology, this business process can be broken down into
two “independent units of logic”—the Purchase Order Service and the
Inventory Management Service. As services participating in an SOA com-
posite application, these “units of logic” can be described in terms of their
input and output messages. The Purchase Order Service (upper-right cor-
ner of Figure 2-1) is responsible for providing the following service:

Purchase Order Service

Input Message: A PO number and a list of items being ordered.

Processing: Determine whether the Purchase Order covers
the items being ordered and what payment terms
are required.

28 An Overview of Java Web Services

Output Message: ~ An authorization for the items being ordered and a
description of the payment terms required for those
items.

As indicated in Figure 2—1, the Purchase Order Service is implemented
using Java EE 5. The other service composed by the Order Management
System is the Inventory Management System. It is responsible for providing
the following service:

Inventory Management Service

Input Message: A list of the items being ordered.

Processing: Determines whether the items are in stock and
when they will be available to ship.

Output Message: A list of the items and their estimated ship dates—
referred to as Item Availability.

As indicated in Figure 2-1, the Inventory Management Service is
implemented using .NET.

The Order Management System, pictured in the center of Figure 2-1,
is described as an SOA composite application because it is a composite of
the underlying services provided by the Purchase Order Service and the
Inventory Management Service. It processes the incorning Customer Order
by invoking first the Purchase Order Service and then the Inventory Man-
agement Service, and combining the information received from those ser-
vices to create the Order Confirmation. Notice that this Order
Management System itself can be considered a service. In fact, to the
sender of the Customer Order, it is treated exactly as any other service.
Hence, using SOA, services can be composed of underlying services. The
Order Management Service thus constructed can be described as follows:

Order Management Service

Input Message: A Customer Order containing, among other infor-
mation, a PO Number and a list of Order Items—
the products and quantities being ordered.

Processing: Determines whether the customer is authorized to
purchase the requested items under the specified
PO, and if so, what the payment terms are and
when the items will be available to ship.

Output Message: Order Confirmation—detailing the payment terms
and the anticipated delivery dates for the items.

2.1 The Role of JWS in SOA Application Development 29

As indicated in Figure 2-1, the Order Management Service is imple-
mented using Java EE 5.

2.1.2 JWS Enables SOA Development

When thinking about this Order Management design, it is clear that com-
posite SOA applications require that the underlying services they invoke
have well-defined interfaces. For example, for the Order Management Sys-
tem to request authorization and payment terms from the Purchase Order
System, it must know exactly what form that request should take. It must
also know how to encapsulate that request in a message with a format that
can be received and understood by the Purchase Order Service. In this
example, Web Services standards provide the structure necessary to define
the required interfaces. Although not required for SOA, Web Services pro-
vide a set of interface and messaging standards that facilitate building SOA
applications in a platform-neutral manner. In the example just discussed,
the Purchase Order Service is implemented on Java EE 5 and the Inventory
Management Service is implemented on .NET. However, since both Java
EE 5 and .NET support Web Services, it is possible to construct the Order
Management by invoking those underlying applications using their Web
Services interfaces.

When using Web Services, interface definitions are defined using
WSDL [WSDL 1.1, WSDL 2.0]. Hence, each of the services pictured in
Figure 2-1 is illustrated as being associated with a WSDL document.
WSDL is expressed using XML. It defines the input and output parameters
of a Web service in terms of XML Schema? [XSD Part 0]. The input param-
eters are delivered to a Web service using a messaging structure. Likewise,
the output parameters are received in a message. Again, SOA does not force
any particular message structure, but an obvious choice is the SOAP [SOAP
1.1, SOAP 1.2] standard. SOAP messages can be used to carry the input and
output parameters specified by the WSDL interface definition. So, Web
Services provide two key ingredients needed for SOA development: an
interface definition language (WSDL) and a messaging standard (SOAP).

SOAP messages can be exchanged over a variety of transports (e.g.,
HTTP, SMTP, and JMS). In the Order Management example described
previously, HTTP is the transport that is used. HTTP GET requests are
issued to retrieve the WSDL interface definitions from services, and HTTP

2. This is just a quick overview. The use of WSDL and SOAP in Web Services is discussed in
detail in Chapter 4.

30

An Overview of Java Web Services

POST is used to handle the SOAP request/response exchanges. That is how
a basic Web Services framework (i.e., WSDL with SOAP/HTTP) is used for
SOA application development.

The JWS standards provide tools for working with WSDL and SOAP/
HTTP from within the Java programming language. There are server-side
tools for enabling Java methods to be invoked with SOAP and for publishing
the related WSDL interface definitions. Likewise, there are client-side tools
for reading WSDL documents and sending/receiving SOAP messages. Fig-
ure 2-2 shows how the various Java Web Services standards (JSRs) support
the server side of the equation. To explain the roles of these various JSRs on the
server side, the deployment and invocation of a service is traced using
the numerical labels in Figure 2-2. This discussion now becomes much
more detail-oriented, dropping down from the 10,000-foot SOA level to the
100-foot level where the JWS standards start to be discussed in depth.?

To understand what Figure 2-2 is illustrating, start at the bottom with
the folder labeled “Port Component.” This represents a packaged Web ser-
vice that is being deployed to the Java EE 5 container. The box in the cen-
ter, labeled “Web Service Application,” represents the run-time classes
(after deployment) that implement a Web service. Above that are some
boxes labeled “Java Parameters,” and a single box labeled “Java Return.”
The parameter boxes represent run-time instances of the Java objects being
passed to a method of one of the classes inside the “Web Service Applica-
tion.” Thinking back to the Purchase Order Service example (Figure 2-1),
these parameters could be the PO Number and Order Items. Likewise, the
boxes above these, labeled “XML Parameters” and “XML Return,” repre-
sent the XML form of these parameters and return value. Continuing up
the figure, near the top is a circle labeled “Endpoint.” That